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Objective: This study aims to investigate the feasibility of employing artificial

intelligence models for the detection and localization of cervical lesions by

leveraging deep semantic features extracted from colposcopic images.

Methods: The study employed a segmentation-based deep learning

architecture, utilizing a deep decoding network to integrate prior features and

establish a semantic segmentation model capable of distinguishing normal and

pathological changes. A two-stage decision model is proposed for deep

semantic feature mining, which combines image segmentation and

classification to categorize pathological changes present in the dataset.

Furthermore, transfer learning was employed to create a feature extractor

tailored to colposcopic imagery. Multi-scale data were bolstered by an

attention mechanism to facilitate precise segmentation of lesion areas. The

segmentation results were then coherently mapped back onto the original

images, ensuring an integrated visualization of the findings.

Results: Experimental findings demonstrated that compared to algorithms solely

based on image segmentation or classification, the proposed approach exhibited

superior accuracy in distinguishing between normal and lesioned colposcopic

images. Furthermore, it successfully implemented a fully automated pixel-based

cervical lesion segmentation model, accurately delineating regions of suspicious

lesions. The model achieved high sensitivity (96.38%), specificity (95.84%),

precision (97.56%), and f1 score (96.96%), respectively. Notably, it accurately

estimated lesion areas, providing valuable guidance to assisting physicians in

lesion classification and localization judgment.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1423782/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1423782/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1423782/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1423782/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1423782&domain=pdf&date_stamp=2024-11-22
mailto:pengchengbin@nbu.edu.cn
mailto:29010921@qq.Com
https://doi.org/10.3389/fonc.2024.1423782
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1423782
https://www.frontiersin.org/journals/oncology


Wang et al. 10.3389/fonc.2024.1423782

Frontiers in Oncology
Conclusion: The proposed approach demonstrates promising capabilities in

identifying normal and cervical lesions, particularly excelling in lesion area

segmentation. Its accuracy in guiding biopsy site selection and subsequent

localization treatment is satisfactory, offering valuable support to healthcare

professionals in disease assessment and management.
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1 Introduction

Cervical cancer stands as one of the most prevalent malignancies

affecting women globally (1), while the persistent high-risk HPV

infection (2) is the main cause of most cervical precancer and cervical

cancers. The introduction of the “three-step cervical cancer

screening” process in the 1950s—comprising cytology and/or

human papillomavirus (HPV) testing as the first step, followed by

colposcopy and then histopathology—has enabled the early detection

and treatment of cervical cancer and its precancerous conditions (3–

5). Colposcopy plays a pivotal role in the timely diagnosis of cervical

cancer and precancerous lesions (6–9).

Presently, colposcopy relies on a comprehensive description

system for colposcopic images (10–12), meticulously defining and

categorizing cervical epithelium and blood vessels based on their

borders, contours, morphology, and other tissue characteristics

(13–15). However, the diagnostic accuracy of colposcopy varies

widely due to differences in expertise among colposcopists,

impacting the standardized treatment of cervical lesions and

potentially resulting in over- or under-treatment (16–18).

In recent years, deep learning (DL) has emerged as a promising

tool to enhance the diagnostic efficiency and standardization of

medical images, leveraging its robust feature mining capabilities

(19). Nonetheless, prior studies predominantly focus on classifying

specific lesions across entire images, with limited research on

localizing and identifying lesion regions (20–23). Consequently,

practical clinical applications have seen minimal advancement. In

clinical practice, while lesion characterization can be validated

through final histopathology, colposcopic localization for guiding

biopsy or treatment remains crucial, fulfilling indispensable

clinical needs.

This study employs DL for colposcopic image segmentation and

feature recognition to analyze image features across various lesion

levels, thereby acquiring standardized information regarding the

progression of specific lesions. Furthermore, it establishes a feature

extractor through transfer learning from clinically significant

colposcopic image data within a two-stage architecture,

facilitating combined image segmentation. The findings not only

hold relevance for clinical screening but also offer guidance for

biopsy and subsequent localization treatment.
02
2 Materials and methods

2.1 Study subjects

A total of 1837 abnormal colposcopic images were collected

from Ningbo Medical Center Lihuili Hospital and The First

Affiliated Hospital of Ningbo University, comprising 1124 images

depicting low-grade squamous intraepithelial lesions, 575 images

depicting high-grade squamous intraepithelial lesions, and 138

images depicting cervical cancer. These images were annotated

according to the standardized colposcopic terminology established

by the International Federation for Cervical Pathology and

Colposcopy and the American Society for Colposcopy and

Cervical Pathology. Additionally, 1070 normal colposcopic images

were included for accurate lesion detection.
2.2 Data collection and labeling

2.2.1 Data collection
Colposcopic images, along with pertinent patient information

including age, ThinPrep cytologic test (TCT) results, and human

papillomavirus (HPV) status, were retrospectively gathered from

January 2018 to December 2021 at the Ningbo Medical Center

Lihuili Hospital. Colposcopy was conducted using a photoelectric

all-in-one digital electronic colposcope (Feinmechanik-Optik

GmbH) from LEISEGANG, Germany, equipped with a Canon

EOS600D camera. To mitigate model bias, additional colposcopic

images and patient data were obtained from The First Affiliated

Hospital of Ningbo University, utilizing a high-definition

colposcope (EDAN C6HD) from China.

Colposcopy procedures included a conventional 3% acetic acid

test and 5% Lugol’s iodine staining. Multi-point biopsy was

performed in areas exhibiting abnormal colposcopic findings,

while random biopsy was conducted in regions without

abnormalities. Additionally, cervical canal scratching was

executed in the triple transformation area. Biopsy specimens were

forwarded to the pathology department for examination, with

diagnoses classified according to The Lower Anogenital

Squamous Terminology (LAST) 2012 Edition (24).
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2.2.2 Data labeling
Labeling adhered to the standardized colposcopic terminology

outlined by the International Federation for Cervical Pathology and

Colposcopy (IFCPC) in 2011 and the American Society for

Colposcopy and Cervical Pathology (ASCCP) in 2018 (10, 11).

Lesions were categorized into low-grade squamous intraepithelial

lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL),

and suspicious invasive carcinoma signs. Typical acetate images

were selected for labeling, correlating lesion area and grade with

pathological diagnostic findings.

2.2.3 Annotation process
Annotation utilized the Pair annotation tool, accommodating

various data modalities and formats, and encompassing annotation

types such as segmentation, classification, target detection, and key

point localization. Annotations included ellipses, polygons,

rectangular boxes, key points, classification labels, and

measurement items. Data encryption ensured safeguarding. Initial

annotation was conducted by a specialist with over 5 years of

colposcopy experience, followed by review from a specialist with

over 10 years of experience. Consensus on lesion areas and criteria

for label identification was reached between reviewers.

2.2.4 Post-labeling
After excluding unclassifiable and invalid images, colposcopic

images were categorized into low-grade, high-grade, and invasive

cancer signs. A total of 1837 abnormal colposcopic images were

obtained from the two hospitals, comprising 1124 LSIL images, 575

HSIL images, and 138 cancer images. Concurrently, 1070 normal

colposcopic images were utilized to assess correct lesion

classification rates. Among these, 1370 abnormal colposcopic

images (838 LSIL, 428 HSIL, 104 cancer) and 800 normal

colposcopic images originated from Ningbo Medical Center

Lihuili Hospital. Additionally, 467 abnormal colposcopic images

(286 LSIL, 147 HSIL, 34 cancer) and 270 normal colposcopic images

were obtained from The Firs t Affi l ia ted Hospita l of

Ningbo University.
2.3 Lesion detection method of fusion
image segmentation and classification

2.3.1 Modeling tasks
In this research, images are labeled as Low-Grade Squamous

Intraepithel ial Lesions (LSIL), High-Grade Squamous

Intraepithelial Lesions (HSIL), and cervical cancer uniformly as

anomalous to differentiate them from normal imagery. Experiments

are conducted by using Convolutional Neural Networks (CNNs) to

train on these colposcopic cervical images, focusing on localizing

and segmenting lesions, yielding promising findings.

2.3.2 Related work
Image analysis is essential in computer vision, utilized for

processing 2D images, videos, and medical data. Key to this field
Frontiers in Oncology 03
is image segmentation, where pixels are classified to delineate

targets. Deep Learning has overtaken traditional approaches in

image analysis (25). Now, Artificial Intelligence(AI) advances aid

in analyzing colposcopic images for cervical cancer screening,

improving diagnosis with specialized algorithms. Current research

on colposcopic images encompasses various aspects, including

cervical region recognition and segmentation (26, 27), image

registration pre- and post-application of acetic acid (28) for

detecting regions of interest (ROIs), and lesion classification

(20, 29). Such studies significantly aid clinicians in colposcopy

diagnoses. Deep Learning (DL) excels in extracting features

through data-driven approaches. From preliminary analysis,

normal images typically do not show lesion characteristics. Low-

Grade Squamous Intraepithelial Lesion (LSIL) features are hard to

detect due to their subtlety, whereas High-Grade Squamous

Intraepithelial Lesion (HSIL) features are clearer, showcasing

distinct epithelial and vascular traits. Features of carcinoma are

the most pronounced among the groups, even though data for

carcinoma is less abundant. There’s a clear increase in lesion

severity from LSIL to carcinoma. In clinical screenings, accurately

distinguishing between normal and lesional colposcopic images

is essential.

2.3.3 Model design
The modeling task in the proposed approach is defined as a joint

image classification and semantic segmentation task within computer

vision (30). The proposed feature mining approach consists of three

key components: feature extraction of cervical regions, segmentation

and classification of cervical lesion networks, and visualization of

results. Initially, an enhanced Atrous Spatial Pyramid Pooling (ASPP)

(31) method is employed to extract features of the cervical areas from

images, incorporating an attention mechanism for multi-scale

information fusion. Subsequently, the extracted features are fed

into a decision network. Finally, the images are reconstructed and

scaled to their original proportions for visual presentation of the

findings. The proposed deep-decision network (DepDec) adopts a

two-stage design to overcome challenges posed by limited samples in

deep learning, thereby achieving superior results within a

constrained dataset.

2.3.4 Overview of the architecture
The comprehensive architecture of the DepDec model is

depicted in Figure 1. Structured around two core modules,

namely Feature Extraction and Decision Network, DepDec

presents a robust feature mining framework for image analysis.

2.3.5 Feature extraction
The proposed approach employs the Deep Residual Network

with 101 layers (ResNet101) network as the backbone for extracting

cervical lesion features. Incorporating an attention mechanism at

multiple scales, this approach enhances the discriminative

capability of the model, allowing it to focus on relevant features

and suppress the less informative ones, thereby improving the

accuracy of lesion detection and classification.
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Specifically, as shown in Figure 1, layer1 of ResNet101 is

employed as the low-level features, and layer4 is used as the

feature map input for Atrous Spatial Pyramid Pooling (ASPP)

(31). The formula is as follows:

y½i� =oK
k=1x½i + r · k�w½k� : (1)

Atrous convolution as a powerful tool, allows the work to

explicitly control the resolution of features computed by deep

convolutional neural networks and adjust the receptive field of

filters to capture multi-scale information. It extends the capabilities

of standard convolutional operations. To further enhance the

representational power of the network, this study introduce an

attention mechanism (32) after each convolutional layer. The

attention mechanism aims to selectively emphasize informative

features and suppress less relevant ones, enabling the network to

focus on important regions of the input. Subsequently, the low-level

features are dimensionally adjusted using 1� 1 convolutions, and

the high-level features are upsampled four times. Finally, the

low-level and high-level features are fused to incorporate

semantic information.

The network employs techniques such as enlarging the

receptive field, utilizing contextual information, and integrating

multi-scale features to obtain deep semantic information, thereby
Frontiers in Oncology 04
establishing the foundation for achieving pixel-level localization

and predictive segmentation of vaginoscopic images.
2.3.6 Decision network
It contains two key components. The first component is the

prediction head, which performs segmentation by utilizing 3�3

convolutions and bilinear interpolation to accurately identify the

colposcopic lesion region.

The second component is a discriminator, comprising a deep

residual network with internal residual blocks (33). The formula is

as follows:

Oi
h = aikI

i
h + bik,∀ i∈ wk (2)

that incorporate jump links. This design effectively addresses

the challenges associated with neural network depth and

significantly enhances accuracy. The discriminator is responsible

for discriminating whether the entire image exhibits anomalies.

2.3.7 Two-stage approach
The study employs a decision network comprising a segment

network and a discriminator. The segment network deciphers deep

features through convolution, pooling, and upsampling layers,

enabling precise pixel-level segmentation. The formula is as follows:
FIGURE 1

Schematic diagram of DepDec model network structure.
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Oh = �ai � Iih + �bi (3)

For lesion localization, it condenses the image’s characteristics

into a one-dimensional vector. Experimental findings underscore

the pivotal role of high-level semantic information in classification.

To tackle overfitting, the study conducts the two stages

independently. Initially, the pixel segmentation network

undergoes exclusive training. Subsequently, the segmentation

network’s weights are fixed, and the focus shifts to fine-tuning the

discriminator. This approach ensures effective learning of the

discriminator while minimizing the risk of overfitting associated

with the segmentation network’s extensive weight parameters.
2.4 Loss function

In the experimental procedure, this study employ both the focal

loss and the smooth L1 loss to compute the segmentation loss.

Additionally, the study utilize the cross-entropy loss function to

compute the classification loss. The designed loss function is as follows:

Loss   = −
1
No

N
i=1(lL1

Smooth y(i)0 , ^y(i)0
� �

+ lLfocal
Focal y(i)0 , ^y(i)0

� �
+ y(i)1 log ( ^y(i)1 )) (4)

Where N represents the total number of samples. y(i)0 denotes

the pixel predictions for the entire image, while ^  y(i)0 represents the

corresponding ground truth, lL1
and lLfocal

are the balancing hyper-

parameters. y(i)1 represents the classification prediction, and ^y(i)1
represents the corresponding ground truth, where y(i)* is the i-th

input image.
2.5 Experimental procedures

The experimental framework was executed using PyTorch 1.9.1

within a Compute Unified Device Architecture (CUDA) 11.1

environment on a single 3060 GPU. To circumvent the

constraints imposed by the graphics processing unit (GPU)

memory limitations, the study divided the batch size into four

sample layers. However, each pixel segmentation layer of the image

was treated as a separate training entity, effectively augmenting the

effective batch size.

This study performed fundamental image preprocessing

techniques, such as resizing, rotating, and flipping, to prepare the

data. Additionally, data augmentations including rotation and

shearing (34) are employed to enhance the diversity of the

experimental dataset and tackle issues related to data imbalance

among samples, thus simulating real-world scenarios. The original

lesion annotations were retained and converted into binary masks

to facilitate the semantic segmentation task of the images.

To assess the model’s performance and mitigate the risk of

overfitting, this study implemented five-fold cross-validation. The

dataset was split into an 80% training set and a 20% validation set.

We apply cross-validation and combine the test results from each

fold to present a comprehensive outcome, which reflects the
Frontiers in Oncology 05
aggregated performance across all test sets after five experimental

runs. Leveraging transfer learning, the study leveraged the

ResNet101 pre-trained model from the ImageNet dataset as the

feature extractor.

For the detection of lesion regions (LSIL, HSIL, cancer), the

study fine-tuned the network using an attention mechanism

embedded within the semantic segmentation framework. This

attention mechanism bolstered the representation capability of

the feature pyramid, consequently enhancing the depiction of

deep semantic features.

Experiments were conducted utilizing the DeepLabv3+ model

as the foundation for the initial semantic segmentation of image

data. The attention mechanism was subsequently incorporated for

fine-tuning to enhance the generalization capacity of the

segmentation network. The target output of the segmentation

network was identified as the lesion region, with the following

parameters: Batch=4, Epoch=200, ResNet101 backbone network

parameters training.

The parameters acquired from training were utilized to predict

the lesion region on the validation set of colposcopy images.

Subsequently, the prediction result map generated by the

algorithm was juxtaposed with the lesion region labeled by

medical professionals. A confusion matrix was then constructed

to derive the mean intersection over union (mIOU), mean average

precision (mAP), true positive rate (TPR), false positive rate (FPR),

and receiver operating characteristic curve (ROC curve) at

various thresholds.

Furthermore, this study deliberated on the two-stage learning

mechanism for the segmentation network and the decision

network, along with the design of the corresponding loss

function. During the experiment, data were randomly sampled

for training purposes. Ultimately, the average cross-merge ratio

mIOU was determined to be 0.6051.
3 Results

This study primarily focused on the dichotomous classification

and localization of lesions (LSIL, HSIL, and cancerous lesions)

alongside normal tissue, aiming to achieve accurate classification

aligning with pathological judgment. Notably, this experimental

model exhibited a high level of agreement with pathological

assessments in classifying lesions.

To mitigate the potential bias stemming from a single center,

the study adopted two distinct datasets for experimentation and

testing, thereby bolstering the generalizability and reliability of the

findings. The incorporation of multiple datasets facilitated robust

result analysis and bolstered the credibility of the conclusions.

This study employed a five-fold cross-validation approach to

derive average results. The training and validation sets were

randomly selected five times, maintaining an 8:2 ratio for

dichotomous classification. An artificial intelligence model was

trained to differentiate between normal and lesion images.

Subsequently, the detection outcomes of the test set images were

juxtaposed with expert labeling, and the average of the five results
frontiersin.org
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was computed. Performance assessment was conducted through

ROC curves plotted at various thresholds, with the true positive rate

(TPR) on the vertical axis and the false positive rate (FPR) on the

horizontal axis. The area under the ROC curve (AUC) served as a

performance metric to evaluate the model’s efficacy.

The results, as depicted in Figure 2, elucidate the fluctuation of

the curve when the training set is partitioned into different subsets.

This sheds light on how variations in the training data influence the

classification output and the variance observed between the splits

generated by cross-validation. Furthermore, leveraging confusion

matrices enabled a deeper analysis of this model’s efficacy.

Considering lesions as positive instances, the study quantified the

true negatives (TN), false positives (FP), false negatives (FN), and

true positives (TP) as 1014, 44, 66, and 1756, respectively. These

findings underscore the model’s commendable ability to

discriminate between normal and lesion cases.

This study presents a comprehensive evaluation of the model’s

efficacy in discriminating between normal and lesion images. The

model demonstrates an impressive accuracy of 96.18%, indicating

notable levels of sensitivity, specificity, precision, and F1 score,

measuring at 96.38%, 95.84%, 97.56%, and 96.96%, respectively.

Additionally, the study conduct a thorough assessment of the

model’s performance using image-level ROC curves, illustrated in

Figure 3. The considerable area under the ROC curve yields an AUC

of 0.99, underscoring the model’s capacity to distinguish between

normal and lesion cases while exhibiting resilience to variations in the

training data. These findings affirm the model’s feasibility and its

potential to inform clinical decision-making and validation processes.

Furthermore, this study utilize pixel-level ROC curves and

actual predictions, depicted in Figure 4, to evaluate the model’s

localization capabilities. The resulting AUC of 0.76, with a standard
Frontiers in Oncology 06
deviation of 0.04, signifies the model’s efficacy on a smaller-scale

dataset in accurately localizing lesions. This aspect of the

evaluation provides valuable insights into the model ’s

performance at a granular level, contributing to a more

comprehensive understanding of its capabilities.

In accordance with recent literature outlined in Table 1, deep

learning methodologies have seen widespread application in the

recognition of colposcopic normal and lesion images. This model

exhibits an impressive accuracy of 96.18% in the multi-center

setting, effectively discerning between normal and lesion images,

with associated sensitivity, specificity, precision, and F1 score

metrics of 96.38%, 95.84%, 97.56%, and 96.96%, respectively.

As illustrated in Table 2, to assess the performance of the

proposed approach in localizing cervical lesion images, the study

conducted a comparative analysis involving the U-net++,

DeepLabv3+, and DepDec models, utilizing a dataset comprising

colposcopic acetic acid images of lesion cases. Through extensive

experimentation, the study opted to enhance the DeepLabv3+

model by augmenting the colposcopic acetic acid image data and

fine-tuning the parameters. Consequently, the DepDec model

achieved comparable accuracy in lesion area segmentation,

yielding a segmentation accuracy (mAP) of 91.85% with a

reduced sample size. This performance surpassed that of both the

U-net++ and DeepLabv3+ models.

Illustrated in Figure 5 are some examples of detection results by

different approaches. From left to right, the images depict the

vaginoscopy image from the validation set, the physician’s

annotated region serving as the ground truth label, and the

predicted region generated by deep learning models. Notably,

results from the proposed approach are more close to the ground

truth, and thus, generally performs better than others.
FIGURE 2

Confusion matrix on the multi-center data set with cross validation.
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FIGURE 4

Pixel level dichotomous ROC curves to distinguish normal from lesions.
FIGURE 3

Image level dichotomous ROC curves to distinguish normal from lesions.
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4 Discussion and conclusion

Cervical cancer screening, as advocated by the World Health

Organization, primarily involves HPV screening, cytology, and

colposcopy, with combined cytology and HPV screening

emerging as the preferred method presently (35). However,

histological examination through colposcopic cervical biopsy

remains the gold standard for diagnosing cervical disease. The

accuracy of colposcopic diagnosis significantly hinges on the

operator’s experience, highlighting the importance of enhancing

colposcopy and biopsy accuracy in managing cervical lesions (36).

Given the significance of timely diagnosis and treatment amidst

the high prevalence of cervical cancer, scholars are actively engaged

in devising accurate and cost-effective screening and diagnostic

techniques. With the evolution of AI technology, its integration into

medical diagnosis has witnessed considerable advancement,

particularly in cervical lesion detection. This study endeavors to

construct a model capable of not only identifying lesions but also

localizing and annotating lesion regions to guide clinical

colposcopy, biopsy, and localization treatment.

Utilizing a diverse range of cervical epithelial and vascular

signatures in internationally standardized colposcopy terminology,
Frontiers in Oncology 08
this study semantically annotates images at the pixel level. Leveraging

a pre-trained network based on transfer learning as a feature extractor,

this study develop a multi-scale deep decoding feature-based decision

network model with a two-stage architecture incorporating image

segmentation and classification methods. Through interdisciplinary

collaboration, the study synthetically compare and optimize DL

network architectures of multiple classical semantic segmentation

models, focusing on aspects such as data preprocessing,

enhancement, backbone network selection, training, hyperparameter

optimization, and algorithm enhancement to outperform traditional

single classification or segmentation models.

The primary objective of this model is to effectively differentiate

between normal and pathological cases. Normal cases, ascertainable

by physicians without biopsy, warrant close follow-up and are suitable

for clinical screening. The model facilitates clinical triage, reducing

unnecessary patient biopsies and averting excessive medical

interventions. In instances of diseased cases, upon identifying

pathological instances and automatically delineating suspicious

diseased areas, this model aids physicians in precisely locating

recommended diseased areas and determining lesion grades through

biopsy combined with their clinical judgment. Furthermore, it

provides guidance for subsequent localization treatments.

Comparison between Tables 1 and 2 underscores the

commendable performance of the research model in colposcopic

image classification and lesion localization, surpassing comparison

models in accuracy and segmentation accuracy.

This study presents several notable contributions. Firstly, in

terms of experimental validation, the model integrates deep

decoding features and residual information, resulting in a pixel-

based model with enhanced discriminative power for distinguishing

between normal and abnormal images compared to others.

Secondly, the model effectively captures rich contextual

information by employing pooling features at various resolutions

to delineate clear objects, while utilizing deep decoding features to
TABLE 2 Comparison of lesion area localization based on DL
colposcopic acetate images.

Method Data set Research
objective

Segmentation
accuracy

U-net++ 1837 acetic acid
images of lesion cases

Lesion area
localization

86.00%

DeepLabv3+ 1837 acetic acid
images of lesion cases

Lesion area
localization

86.76%

DepDec
model

1837 acetic acid
images of lesion cases

Lesion area
localization

91.85%
TABLE 1 Summary of literature on colposcopic lesion recognition based on AI methods.

Method Year Data set Research objectives Accuracy rate %

Asiedu (37)

Support vector machines

2018 Acetic acid and iodine images CIN (Cervical Intraepithelial Neoplasia)
and non-CIN

80.0%

Yuan, Chun-Nan (38)

Multimodal
Resnet Model

2020 10365 normal, 6357 LSIL, 5608 HSIL cases.(Each
data item includes One saline image, one cetate

image,one iodine image)

Normal and lesions 84.10%

Yinuo Fan (39)

CMF-CNN

2022 3093 normal,2794 LSIL, and 1219 HSIL + cases. Normal and lesions 92.70%

Zhen Li (40)

Deeplabv3+

2023 339 high-level cervical lesions and 313
microinvasive or invasive

cervical cancer.

HSIL and Cancer 93.29%

Yung-Taek Ouh (41)

CerviCARE AI

2024 11,500 Negative images and 11,225 Positive images Negative and Positive 84.3%

Ours

DepDec model

– 1070 normal and 1837 lesioned case acetate images Normal and lesions 96.18%
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augment classification accuracy through the addition of

considerable depth via residual layers. In a multi-center setting,

this model achieves an accuracy of 96.18%, with notable sensitivity

(96.38%), specificity (95.84%), precision (97.56%), and F1 score

(96.96%). These findings demonstrate the model’s capability to

discern differences between normal and lesioned cases, aligning

closely with pathological judgment. Additionally, the model

accurately estimates and delineates lesion areas, thereby aiding

physicians in classification judgment and guiding biopsy and

subsequent localization treatment. Notably, the model’s

performance surpasses that of experienced colposcopy specialists

trained in IFCPC terminology, suggesting its potential to enhance

diagnostic accuracy and guide treatment decisions.

This study, while yielding relatively high classification accuracy

through the use of colposcopic images from different instruments

across two hospitals to mitigate bias, reveals certain limitations. Firstly,

the generalizability of the findings may be constrained despite efforts to
Frontiers in Oncology 09
diversify sources. Future endeavors could enhance model performance

through the inclusion of samples from a wider array of centers, thereby

broadening sample diversity and size, as well as refiningmodel training.

Secondly, the current model does not differentiate among lesion

severities such as LSIL, HSIL, and cancerous lesions. Prospective

studies could benefit from integrating multiple clinical indicators,

including TCT/HPV data, and employing multimodal features for a

more precise prediction. Additionally, by engaging physicians in

annotating lesions with finer segmentation categories, more nuanced

segmentation and interpretations can be achieved based on this model,

offering improved diagnostic guidance. Developing techniques for

better handling intra-class variability could improve model accuracy

and clinical applicability.

In summary, this model effectively distinguishes between

normal and lesioned cases, aiding in lesion localization and

guiding treatment decisions. Future efforts will focus on refining

classification training and developing a comprehensive AI-aided
FIGURE 5

Example of model output comparison on the validation set. Lesion image: pink masked area indicates lesion area. (A): colposcopic acetate image.
(B): physician-labeled lesion area. (C): lesion areas identified by the proposed approach. (D): those by U-net++. (E): those by DeepLabv3+ respectively.
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diagnosis system for colposcopy, which holds promise for

improving diagnostic accuracy and guiding treatment strategies,

particularly for inexperienced practitioners.
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