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Objective: The research aims to develop an advanced and precise lung cancer

screening model based on Convolutional Neural Networks (CNN).

Methods: Based on the healthmedical big data platformof Shandong University, we

developed a VGG16-Based CNN lung cancer screening model. This model was

trained using the Computed Tomography scans data of patients from Pingyi

Traditional Chinese Medicine Hospital in Shandong Province, from January to

February 2023. Data augmentation techniques, including random resizing,

cropping, horizontal flipping, color jitter, random rotation and normalization, were

applied to improve model generalization. We used five-fold cross-validation to

robustly assess performance. The model was fine-tuned with an SGD optimizer

(learning rate 0.001, momentum 0.9, and L2 regularization) and a learning rate

scheduler. Dropout layers were added to prevent themodel from relying too heavily

on specific neurons, enhancing its ability to generalize. Early stopping was

implemented when validation loss did not decrease over 10 epochs. In addition,

we evaluated the model’s performance with Area Under the Curve (AUC),

Classification accuracy, Positive Predictive Value (PPV), and Negative Predictive

Value (NPV), Sensitivity, Specificity and F1 score. External validation used an

independent dataset from the same hospital, covering January to February 2022.

Results: The training and validation loss and accuracy over iterations show that

both accuracy metrics peak at over 0.9 by iteration 15, prompting early stopping

to prevent overfitting. Based on five-fold cross-validation, the ROC curves for the

VGG16-Based CNN model, demonstrate an AUC of 0.963 ± 0.004, highlighting

its excellent diagnostic capability. Confusion matrices provide average metrics

with a classification accuracy of 0.917 ± 0.004, PPV of 0.868 ± 0.015, NPV of

0.931 ± 0.003, Sensitivity of 0.776 ± 0.01, Specificity of 0.962 ± 0.005 and F1

score of 0.819 ± 0.008, respectively. External validation confirmed the model’s

robustness across different patient populations and imaging conditions.
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Conclusion: The VGG16-Based CNN lung screening model constructed in this

study can effectively identify lung tumors, demonstrating reliability and

effectiveness in real-world medical settings, and providing strong theoretical

and empirical support for its use in lung cancer screening.
KEYWORDS

lung cancer screening, medical image recognition, computed tomography scans,
VGG16 architecture, convolutional neural network
1 Background

Lung cancer is one of the leading causes of cancer-related deaths

worldwide, with an estimated 1.8 million deaths, accounting for 18.7%

of the total (1–5). Moreover, both the incidence and mortality rates of

lung cancer are on the rise, particularly in developing and middle-

income countries (6, 7). Given the vast population of China, this

implies a large number of new cases and deaths annually, placing

immense strain on the healthcare system. In Taiwan, a study assessed

low-dose lung computed tomography (CT) screening criteria among

Asian ethnic groups, finding that risk-based strategies more effectively

identify high-risk non-smokers, emphasizing the need to optimize

screening criteria for better early detection (8). Currently, lung CT

scans have become a primary tool in modern medicine for early

screening of lung diseases, especially lung cancer (9–12). Henschke

et al. demonstrated that CT screening can significantly improve the

detection rate of early-stage lung cancer compared to traditional

screening methods, which is crucial for patient survival rates (13).

This further proves the significance of CT screening in the early

detection and treatment of lung cancer. However, these place

rigorous demands on a physician’s interpretive abilities. To effectively

interpret these high-resolution images, physicians must possess

extensive clinical medical knowledge and expertise in radiology.

Subjectivity and variability in interpretation can lead to inconsistent

diagnoses and even misdiagnosis. Therefore, there is a pressing need to

seek more advanced methods to assist physicians in achieving more

accurate and efficient CT screening interpretations, ultimately

enhancing diagnostic outcomes and patients’ medical experiences.

In recent years, deep learning, especially Convolutional Neural

Networks (CNN), has been proven to be an incredibly effective tool

for automating and optimizing the analysis process of medical

imaging. It has also been widely applied in various medical

imaging systems such as Magnetic Resonance Imaging (MRI),

CT, and X-rays. Litjens et al. conducted in-depth research on

how CNN can improve the accuracy of image classification,

segmentation, and disease detection (14). Rajpurkar et al. applied

a deep learning model called CheXNeXt to chest X-ray images,

demonstrating that CheXNeXt’s performance in automatic

diagnosis of various chest diseases is comparable to that of

practicing radiologists, and in some cases, it even surpasses the

performance of human experts (15). These studies provide
02
substantial evidence for the application of deep learning

techniques in clinical practice, but still face a series of challenges

in areas such as data insufficiency, model overfitting, and

interpretability of diagnostic results.

Motivatedby theurgentneed to improve early lung cancer detection

anddiagnosis, this studydeveloped a lung cancer screeningmodel based

on the CNN architecture. To enhance generalization and reduce

overfitting, we employed several strategies. Data augmentation

techniques, including random resizing, cropping, horizontal flipping,

color jitter, and randomrotation,were applied to increase thediversity of

the training data. We used five-fold cross-validation to robustly assess

performance by ensuring each fold maintained the same ratio of

malignant to non-malignant images. The model was fine-tuned with

an SGD optimizer (learning rate 0.001, momentum 0.9, and L2

regularization) and a learning rate scheduler. Dropout layers were

added to prevent the model from relying too heavily on specific

neurons, thus enhancing its ability to generalize. Early stopping was

implemented to halt training when validation loss did not decrease over

10 consecutive epochs. In addition, we used a comprehensive set of

evaluation metrics, including Area Under the Curve (AUC),

Classification accuracy, Positive Predictive Value (PPV), and Negative

Predictive Value (NPV), Sensitivity, Specificity and F1 score to ensure

the model’s exceptional performance across diverse criteria. Our aim is

to leverage the powerful capabilities of CNNs to provide a cutting-edge,

accurate, and effective lung cancer screening method, integrating it into

daily medical workflows to improve screening accuracy.
2 Methods

Figure 1 illustrates the comprehensive workflow of our lung

cancer screening model using the VGG16 architecture.
2.1 Study population

2.1.1 Training population
2.1.1.1 Construction of the imaging dataset for patients
with malignant lung tumors

Based on the health medical big data platform of Shandong

University, we gathered a comprehensive dataset from Pingyi
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Traditional Chinese Medicine Hospital in Shandong Province,

including lung CT scans and EHR data such as age, gender,

diagnostic variables, pathological reports, and patient identifiers,

collected over January and February 2023 (as shown in Figure 1A).

The pathological report clearly indicated whether the patient had a

malignant lung tumor. All patient data were anonymized and

collected using encrypted identification numbers to protect privacy

and comply with ethical standards. As shown in Figure 1B, the

inclusion criteria for this study were: 1) Patients with malignant lung
Frontiers in Oncology 03
tumors who had undergone procedures such as puncture,

bronchoscopy, or surgery to confirm the definitive pathological

diagnosis. 2) Patients who must have undergone CT scans prior to

percutaneous puncture, bronchoscopy biopsy or surgery. 3) Patients

who had lung nodules discovered during the CT scan examination.

The exclusion criteria were: 1) Patients with concurrent other lung

lesions. 2) Patients with a history of lung diseases. 3) Patients with

metastatic tumors. Ultimately, a total of 141 patients with malignant

lung tumors were included in this study.
FIGURE 1

Comprehensive workflow of VGG16-based convolutional neural network. (A) shows data collection, (B) indicates the process of identifying the
training population, (C) illustrates the construction of the VGG16-Based CNN lung cancer screening model, (D) depicts model evaluation and
visualization, and (E) represents external validation.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1424546
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2024.1424546
2.1.1.2 Construction of the dataset for non-malignant
lung tumor patients

For the dataset of non-malignant lung tumor patients, we

included same lung CT images and detailed metadata from

patients at Pingyi Traditional Chinese Medicine Hospital,

collected between January and February 2023. The inclusion

criteria required patients to have undergone CT scans. Exclusion

criteria (Figure 1B), consistent with those for the malignant lung

tumor datasets, included patients with concurrent lung lesions, a

history of lung diseases, or metastatic tumors. Using a random

match method at a ratio of 1:3, a total of 423 non-malignant lung

tumor patients were included.

The final dataset was composed of 4795 CT images from 141

individuals with malignant lung tumors and 14999 CT images from

423 individuals with non-malignant lung tumor.
2.1.2 External validation population
An external validation dataset was obtained from Pingyi

Traditional Chinese Medicine Hospital in Shandong Province,

comprising imaging data collected between January and February

2022 (Figure 1E). The inclusion and exclusion criteria were

consistent with those used for the primary dataset. This external

dataset included 108 patients with malignant lung tumors and 324

patients with non-malignant lung tumors, providing a robust basis

for validating the performance of the developed model.

In clinical research, especially with smaller sample sizes, sparse

data bias can significantly affect the reliability of statistical estimates.

By using a 1:3 random matching design, we increased the sample

size of the malignant group, thus reducing the impact of sparse data

bias and ensuring more stable and reliable estimates of effect sizes

and other statistical parameters (16). In addition, random matching

helps to minimize the potential biases that can arise from non-

random selection processes. By randomly selecting non-malignant

cases at a 1:3 ratio, we aimed to ensure a representative sample of

the broader population, thus enhancing the generalizability of our

results (17).

Our study utilized both plain and contrast-enhanced CT scans.

The choice between these two techniques was based on specific

clinical indications and the patient’s condition at the time of

imaging, ensuring that the most appropriate diagnostic approach

was utilized for each case. The imaging was performed using three

different models of CT scanners, including a Philips 256-slice CT, a

64-slice CT, and a 16-slice CT. This diverse array of scanning

equipment enabled a comprehensive assessment of the conditions

under study, ensuring a robust analysis through varied

imaging capabilities.

This study was approved by the Institutional Review Board of

Pingyi Traditional Chinese Medicine Hospital in Shandong

Province, China. The ethical approval number for our study is

PYX2YYYLLWYh2023030602. It is important to note that no

informed consent was required from the participants for this

study, as only anonymized lung CT images and detailed metadata

were used. The anonymization process was rigorously conducted

before the data was accessed for research purposes, ensuring that all

personal identifiers were removed to protect patient confidentiality.
Frontiers in Oncology 04
2.2 VGG16-based CNN lung cancer
screening model

The Convolutional Neural Network (CNN) is a cornerstone

algorithm in deep learning, especially adept at image processing

tasks. Since the advent of LeNet in 1998, CNN has become

mainstream in computer vision tasks (18). This study attempts to

use the VGG16 model to construct a lung cancer screening model.

The choice of the VGG16 architecture for lung cancer screening is

driven by its distinguished capabilities in handling complex image

data and its historical success in diverse image recognition tasks

(18). VGG16’s architectural depth and uniformity are ideal for

medical imaging, where precision and reliability are paramount.

The architecture features 13 convolutional layers that are

exceptionally effective at extracting multi-scale features, a

fundamental requirement for identifying subtle and critical

anomalies in medical images (19, 20). Moreover, VGG16’s

robustness and adaptability in processing new and varying

datasets make it an exemplary choice for the dynamic

requirements of medical diagnostics, as demonstrated by its

proven efficacy in diagnosing conditions such as pneumonia from

chest X-rays, papillary thyroid carcinomas from cytological images,

and brain tumors from MRI scans (15, 21, 22). This combination of

deep learning efficiency and versatility underscores why VGG16 is

uniquely suited for developing a lung cancer screening

model (Figure 1C).

2.2.1 Data preparation
2.2.1.1 Image normalization and format conversion

We use pydicom to extract DICOM images and normalize their

intensity values to a range of 0 to 1, which is essential for consistent

CNN performance. Subsequently, we utilize the Figure module

from matplotlib to display and manipulate image plots, aiding in

converting these images to JPG format (23, 24).

2.2.2 Image pre-processing
2.2.2.1 Resizing and normalization

All images were resized to 224x224 pixels to meet the input

requirements of the VGG16 model and were normalized to a range

of 0 to 1 to standardize the input (19).

2.2.2.2 Data augmentation

To enhance the model’s generalization capabilities and prevent

overfitting, data augmentation techniques were applied using the

torchvision.transforms library. The techniques used included 1)

Random Resizing and Cropping: Images were randomly resized

and cropped to provide a variety of image sizes and perspectives to

the model. 2) Random Horizontal Flipping: Images were randomly

flipped horizontally to make the model invariant to left-right

orientation. 3) Color Jitter: Random adjustments to brightness,

contrast, saturation, and hue to introduce variability. 4) Random

Rotation: Images were randomly rotated to make the model

invariant to orientation. 5) Normalization: Pixel values were

normalized to ensure consistent intensity values across all images

(19). By applying these augmentations, we increased the diversity of
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our training data, prevented overfitting, and ensured that the model

could generalize well to unseen data.

2.2.3 Five-fold cross-validation
We implemented the five-fold cross-validation method to

reduce the risk of overfitting to a particular subset of the data.

This method involved splitting the dataset into five parts, ensuring

each fold maintained the same ratio of malignant to non-malignant

images. Each fold served as a validation set once, while the

remaining four folds constituted the training set (25).

2.2.4 Model establishment and adjustment
We used the VGG16 architecture, which is a well-known deep

CNN model pre-trained on the ImageNet dataset. VGG16 consists

of 16 layers, including 13 convolutional layers and 3 fully connected

layers. Given our task of binary classification (malignant lung

tumors vs. non-malignant lung tumors), we modified the final

fully connected layer of the VGG16 model to output two classes

(19). Specific layers of the pre-trained model were unfrozen to allow

fine-tuning during training (26).

2.2.5 Model training
During each iteration, the model underwent forward and

backward propagation on the training data. The SGD optimizer,

with a learning rate of 0.001 and momentum of 0.9, and weight

decay of 0.0005 (L2 regularization), was used to update the model

weights. The binary cross-entropy loss function was employed to

calculate the loss and both training and validation losses and

accuracies were recorded for performance evaluation (27).

2.2.6 Preventing overfitting
Several strategies were employed to prevent overfitting,

including: 1) Dropout layers were added to the model to

randomly drop neurons during training, which helps in

preventing overfitting. 2) A learning rate scheduler was used to

dynamically adjust the learning rate during training, helping to fine-

tune the model and avoid overfitting. 3) Early stopping was

implemented, terminating training if there was no significant

decrease in validation loss over 10 consecutive epochs (28).

2.2.7 Performance evaluation and
results visualization

Training and validation loss and accuracy were recorded at the

end of each epoch. These metrics were plotted to visualize the

learning progress and identify potential overfitting or underfitting

issues (27). As shown in Figure 1D, the ROC curve was plotted to

evaluate the trade-off between sensitivity and specificity at various

threshold settings (29). The area under the ROC curve (AUC) was

calculated to quantify the overall ability of the model to

discriminate between positive and negative cases (29). A

confusion matrix was generated to provide a detailed breakdown

of the model’s predictions and their alignment with the actual

outcomes. This matrix helped in understanding the distribution of

true positives, true negatives, false positives, and false negatives,

which is crucial for evaluating the performance of the classification
Frontiers in Oncology 05
model (29, 30). At the end of Area Under the Curve (AUC),

classification accuracy, Positive Predictive Value (PPV), and

Negative Predictive Value (NPV), Sensitivity, Specificity and F1

score were calculated as evaluation metrics (30).

2.2.8 External validation
To ensure the model’s generalizability and robustness, the

trained model was further evaluated on the external validation

dataset obtained from Pingyi Traditional Chinese Medicine

Hospital in Shandong Province (Figure 1E). The AUC was

computed, and results were visualized using ROC curves to

provide a comprehensive evaluation of the model’s performance

on an independent dataset.
2.3 Software details

The code was written in Python, and executed on the Jupyter

server at the Health and Medical Big Data Research Institute of

Shandong University.
3 Result

3.1 General characteristics of patients with
malignant lung tumors

A total of 141 patients with malignant lung tumors were

included, consisting of 97 males and 44 females. Their ages ranged

from 44 years old to 89 years, with a median age of 69 years and an

interquartile range (IQR) of 63 to 74 years. Additionally, 423

individuals with no-lung tumors were included, comprising 225

males and 198 females. The age of those without lung tumors

ranged from 20 to 95 years, with a median age of 67 years and an

IQR of 54.5 to 76.6 years. The frequency distribution of ages for both

groups is detailed in Supplementary Material Tables 1 and 2.
3.2 Results for pulmonary imaging based
on CNN

Figure 2 shows the loss and accuracy of the training and

validation sets during each iteration. As can be seen from

Figure 2A, the accuracy of both the training and validation sets

generally increases with the number of iterations. By the time the

number of iterations reaches 10, the accuracy of both the training and

validation sets is at its highest, with both achieving an accuracy of

over 90%. As shown in Figure 2B, when the number of iterations

reaches 15, the program determines that the validation error has not

improved for 10 consecutive epochs. Therefore, we chose an iteration

count of 15 for early stopping. This early stopping strategy helps

prevent overfitting and ensures the model’s robustness by

terminating training when no significant improvement in

validation loss is observed over 10 consecutive epochs.
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Figure 3- displays the ROC curves for the five-fold cross-

validation and the external dataset, while Table 1 lists the

evaluation indices along with their 95% Confidence Intervals

(CIs) for five-fold cross-validation. The CNN-based pulmonary

imaging diagnostic model consistently demonstrated high

diagnostic accuracy, evidenced by an average AUC of 0.963 ±

0.004 across five-fold cross-validation, as depicted in Figures 3A–

E. This robust performance is presented in the first row of Table 1,

where each fold’s AUC score approximates 0.96, with narrow 95%

confidence intervals. Such consistently high AUC values across

multiple validation folds attest to the model’s reliable capability to

differentiate between malignant and non-malignant cases.

Additionally, the confusion matrices for all 5 runs are provided

in the Supplementary Material Figures 1-5. Based on the confusion

matrix, the classification accuracy, PPV and NPV were 0.917 ±

0.004, 0.868 ± 0.015, and 0.931 ± 0.003, respectively, with each fold’s

accuracy, PPV, and NPV along with their 95% CIs, detailed in lines

two to four of Table 1. Classification accuracy measures the overall

effectiveness of the model in correctly identifying both positive and

negative cases, with a reported accuracy of approximately 91.1%.

PPV specifically assesses the accuracy of the model’s positive

predictions, indicating that approximately 86.6% of the lung

cancer diagnoses made by the model are accurate. An NPV of

93.1% ensures a high probability that negative diagnoses are correct,

minimizing the risk of missed diagnoses. Together, high PPV and

NPV highlight the model’s reliability, making it suitable for clinical

lung cancer screening. According to the confusion matrix of the

five-fold cross-validation, the Sensitivity, Specificity and F1 score

were 0.776 ± 0.01, 0.962 ± 0.005 and 0.819 ± 0.008, respectively,

with these results for each fold shown in lines five to seven of

Table 1. The sensitivity of 77.6% indicates a robust capability to

detect true cases of lung cancer, effectively minimizing the risk of

missing diagnoses (false negatives). The specificity of 96.2%

demonstrates the model’s precision in identifying individuals who

do not have lung cancer, significantly reducing the occurrence of

false positives. Additionally, an F1 score of 81.9% reflects a well-

balanced trade-off between precision and sensitivity, ensuring the

model’s overall accuracy and reliability in medical diagnostics. This
Frontiers in Oncology 06
comprehensive validation across multiple metrics confirms the

model’s effectiveness in lung cancer detection.

The external validation showed that our model maintained

robust performance (Figure 3F), with an AUC and 95%CI of

0.7564 [0.7563, 0.7564]. The result confirms the model’s ability to

generalize well across different patient populations and

imaging conditions.
4 Discussion

Lung cancer has become a significant public health problem in

China, with rising incidence and mortality rates as highlighted in

the “Cancer incidence and mortality in China, 2016” report and

recent data from the American Cancer Society (ACS) (31, 32). With

the advancement of technology and medicine, radiological lung

screening has become a pivotal means for early detection and

evaluation of pulmonary diseases, especially lung cancer. Despite

extensive research and practice, existing methods still have

limitations. The survival rate for patients with advanced lung

cancer remains low (33, 34), and early diagnosis and treatment

are becoming increasingly important (35–37). Aberle et al. have

pointed out that compared to traditional chest X-rays, lung cancer

screenings using low-dose CT can significantly reduce lung cancer

mortality rates (38). This pivotal discovery laid a solid scientific

foundation for the promotion and application of low-dose CT

screening (39–41). However, traditional imaging analysis methods

have certain limitations, such as high missed diagnosis rate,

misdiagnosis rate, and limited ability to interpret intricate images

(42, 43). Therefore, with the increasing complexity and resolution of

medical imaging, there’s a growing reliance on advanced computer-

aided diagnostic systems to assist in understanding and interpreting

these images (44–46). Deep learning techniques, especially CNNs,

have revolutionized medical imaging analysis (47).

Our study constructed a precise lung cancer screening model

based on CNN. Initial preprocessing and data augmentation

ensured the quality and consistency of lung cancer imaging data.

Overfitting was mitigated through multiple strategies including data
FIGURE 2

Training and validation metrics over iterations. (A) displays the accuracy metrics for both training and validation sets across epochs. The blue line
represents the training accuracy, while the orange line represents the validation accuracy. (B) shows the loss values for both the training and
validation datasets over each training epoch. The blue line represents the training loss, while the orange line represents the validation loss.
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augmentation techniques such as random resizing and cropping,

random horizontal flipping, color jitter, and random rotation. L2

regularization was applied via weight decay in the optimizer, and a

learning rate scheduler dynamically adjusted the learning rate

during training. Dropout layers were added to the model to

prevent reliance on specific neurons, and early stopping was

implemented to halt training if validation loss did not decrease

over 10 consecutive epochs. Five-fold cross-validation

demonstrated the model’s robustness. Our study achieved an
Frontiers in Oncology 07
AUC of 0.963 ± 0.004 on the validation set, indicative of excellent

diagnostic capability. This high AUC value demonstrated the

model’s robust capacity to distinguish accurately between lung

cancer and those without, minimizing both false positives and

false negatives. These performances are consistent with a

classification accuracy of 0.917 ± 0.004. Additionally, the PPV,

NPV, Sensitivity, Specificity, and F1 score were 0.868 ± 0.015, 0.931

± 0.003, 0.776 ± 0.01, 0.962 ± 0.005, and 0.819 ± 0.008, respectively.

These performance metrics collectively demonstrate the model’s
FIGURE 3

ROC curves for five-fold cross-validation and external validation. (A–E) display the ROC curves for each fold of the five-fold cross-validation. (F)
shows the ROC curve for the external validation dataset.
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high degree of diagnostic accuracy and reliability in identifying lung

cancer. The classification accuracy of 91.7% indicates a strong

overall ability to correctly classify cases as either having lung

cancer or not, supported by a high PPV (86.8%) and NPV

(93.1%), which ensure that the positive and negative diagnoses

made by the model are likely correct. The sensitivity of 77.6% shows

that the model is capable of identifying a substantial majority of true

positive cases, critical for early and accurate disease detection.

Furthermore, the specificity of 96.2% underscores the model’s

effectiveness in correctly ruling out disease in healthy individuals,

reducing the likelihood of unnecessary treatments. Finally, an F1

score of 81.9% reflects a balanced trade-off between precision and

recall, validating the model’s utility in clinical settings where both

detecting cases and avoiding false alarms are equally important.

Together, these metrics not only underline the model’s capability

but also highlight its potential to significantly enhance patient

management and treatment outcomes in clinical practice.

Lu et al. created a CNN model for predicting the long-term

incidence of lung cancer, achieving an AUC of 74.9% (48). Ardila

et al. reached an AUC of 94.4% using a 3D CNN model for lung

nodule detection (49). Cellina et al. reviewed numerous studies on AI

applications in lung cancer imaging and diagnosis, reporting AUC

values ranging from 87% to 95% (50, 51). This is slightly lower than

the AUC of 96.3% achieved by our model, indicating superior

performance in distinguishing between lung cancer and non-cancer

cases. Additionally, different models reported classification accuracies

typically around 90% to 97%, with sensitivity and specificity values

ranging from 75% to 95%. Our model’s classification accuracy of

91.7% and sensitivity of 77.6% fall within this range. However, our

model’s sensitivity is slightly lower, suggesting a need for

improvement in detecting true positive cases. In contrast, our

model’s specificity of 96.2% is significantly higher than other

studies, indicating its superior ability to correctly identify

individuals without lung cancer, minimizing false positives.

Comparing positive predictive value (PPV), Hsu et al. achieved

15.0%, whereas our study reported a much higher PPV of 86.8%,

reflecting greater accuracy in positive predictions and ensuring fewer

false positives. Both studies demonstrated high negative predictive
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values (NPV), with Hsu et al. at 99.0% and our study at 93.1%,

highlighting effectiveness in correctly predicting negative cases (51).

Overall, our model’s robust performance metrics indicate its potential

to significantly enhance lung cancer screening and diagnostic

accuracy in clinical settings.

The data collection period from January to February 2023 at

Pingyi Traditional Chinese Medicine Hospital was relatively short,

which may limit the diversity of our dataset and affect the

generalizability of our model. To address this issue, we employed

extensive data augmentation techniques, such as random resizing,

cropping, horizontal flipping, color jitter, random rotation, and

normalization. Despite these efforts, it remains essential to increase

the sample size to enhance the model’s generalizability. We have

planned additional data collection efforts and propose

implementing a continuous learning framework to periodically

retrain the model with updated data from our hospital and

datasets from various regions and medical institutions, ranging

from community clinics to large tertiary hospitals. This approach

aims to enhance the model’s adaptability to variations in clinical

practice and its generalizability.

In addition, using data from the same institution collected at

different times for external validation may not be ideal. However,

existing literature supports the effectiveness of temporal external

validation (52, 53), which led us to choose this approach for our

study. In addition, the external validation confirmed an AUC of

0.7564 across various patient populations and imaging conditions,

which is significantly lower than the training model’s AUC of 0.963.

The two cohorts, although originating from the same institution,

represent different time periods. This temporal difference could

potentially affect the model’s performance, influenced by changes in

patient demographics, CT scanning protocols, or other clinical

practices over time. Despite implementing several strategies

during model training, such as dropout and L2 regularization, the

generalizability of our model across different geographical regions

and medical institutions remains a significant challenge. To address

this, we outline planned future studies intended to apply our model

to datasets collected from different regions, including both urban

and rural settings, and from various types of medical institutions
TABLE 1 The evaluation index and it’s 95% confidence interval for five-fold cross-validation.

Evaluation index[95%CI] Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

AUC
0.9643

[0.9642, 0.9643]
0.9628

[0.9628, 0.9629]
0.9640[0.9639, 0.9640] 0.9566[0.9565, 0.9567] 0.9690[0.9690, 0.9691]

Classification accuracy
0.9179

[0.9089, 0.9261]
0.9179

[0.9089, 0.9261]
0.9154[0.9063, 0.9237] 0.9113[0.9021, 0.9198] 0.9222[0.9134, 0.9301]

PPV 0.8819[0.8582, 0.9021] 0.8747[0.8507,0.8953] 0.8537[0.8289,0.8755] 0.8486[0.8233,0.8709] 0.8798[0.8563,0.8999]

NPV 0.9275[0.9178,0.936] 0.9296[0.9201,0.9381] 0.9331[0.9237,0.9414] 0.9291[0.9195,0.9376] 0.9339[0.9246,0.9421]

Sensitivity 0.7633[0.7354, 0.7891]
0.7716

[0.7440, 0.7971]
0.7852[0.7581, 0.8100]

0.7716
[0.7440, 0.7971]

0.7862[0.7592, 0.8110]

Specificity 0.9673[0.9604, 0.9731]
0.9647

[0.9574, 0.9707]
0.9570[0.9491, 0.9637] 0.9560[0.9481, 0.9628]

0.9657
[0.9585, 0.9716]

F1 score 0.8183[0.8058, 0.8298]
0.8199

[0.8076, 0.8316]
0.8180

[0.8056, 0.8296]
0.8083[0.7957, 0.8202] 0.8304[0.8182, 0.8416]
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ranging from community clinics to large tertiary hospitals. This will

allow us to assess its performance and adaptability in diverse

healthcare environments.

We observed an increase in validation loss after the 7th epoch,

as shown in Figure 2. To enhance the model’s generalization and

prevent overfitting, we have implemented various measures,

including data augmentation, dynamic adjustment of learning

rates, integration of dropout layers and L2 regularization and so

on. However, the behavior of machine learning models often

remains influenced by inherent characteristics of the training

data, such as latent noise and complex nonlinear relationships.

These factors may cause the model to quickly adapt to these

characteristics in the early stages of training, which could pose

challenges as training progresses. Despite extensive efforts to

prevent overfitting, the model may still exhibit heightened

sensitivity to certain specific features of the training data,

especially after prolonged training periods. Looking forward, we

plan to further enhance our model’s performance by expanding our

dataset and exploring the use of updated and more sophisticated

model architectures.

In practical clinical applications, deep learning models, including

ours, have shown remarkable potential for improving the accuracy and

speed of medical diagnoses, as supported by research from Erickson

et al. and others (54). Our CNN-based model demonstrates high

accuracy in the early detection and diagnosis of lung cancer, offering

the potential for continuous improvement through updates and

retraining with new data. In addition, challenges such as data

privacy, model interpretability, and acceptance within the medical

community remain. Therefore, therefore, future work will also need

to focus on strengthening data privacy measures and enhancing the

interpretability of the model. Addressing these challenges

comprehensively will be key to fully integrating advanced diagnostic

tools like ours into clinical practice, ultimately improving early lung

cancer diagnosis and patient outcomes.
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