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Purpose: This study aimed to establish and evaluate the value of integrated

models involving 18F-FDG PET/CT-based radiomics and clinicopathological

information in the prediction of pathological complete response (pCR) to

neoadjuvant therapy (NAT) for non-small cell lung cancer (NSCLC).

Methods: A total of 106 eligible NSCLC patients were included in the study. After

volume of interest (VOI) segmentation, 2,016 PET-based and 2,016 CT-based

radiomic features were extracted. To select an optimal machine learning model,

a total of 25 models were constructed based on five sets of machine learning

classifiers combined with five sets of predictive feature resources, including PET-

based alone radiomics, CT-based alone radiomics, PET/CT-based radiomics,

clinicopathological features, and PET/CT-based radiomics integrated with

clinicopathological features. Area under the curves (AUCs) of receiver operator

characteristic (ROC) curves were used as the main outcome to assess the

model performance.

Results: The hybrid PET/CT-derived radiomic model outperformed PET-alone

and CT-alone radiomic models in the prediction of pCR to NAT. Moreover,

addition of clinicopathological information further enhanced the predictive

performance of PET/CT-derived radiomic model. Ultimately, the support

vector machine (SVM)-based PET/CT radiomics combined clinicopathological

information presented an optimal predictive efficacy with an AUC of 0.925 (95%

CI 0.869–0.981) in the training cohort and an AUC of 0.863 (95% CI 0.740–

0.985) in the test cohort. The developed nomogram involving radiomics and

pathological type was suggested as a convenient tool to enable

clinical application.
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Conclusions: The 18F-FDG PET/CT-based SVM radiomics integrated with

clinicopathological information was an optimal model to non-invasively predict

pCR to NAC for NSCLC.
KEYWORDS

18F-FDG PET/CT, radiomics, NSCLC, neoadjuvant therapy, pathological
complete response
1 Introduction

Lung cancer is a significant contributor to cancer-related

mortality globally, with non-small cell lung cancer (NSCLC)

comprising approximately 85% of all lung cancer cases (1–3).

Despite the advancements in the treatment options for metastatic

NSCLC, progress in the early-stage setting is limited (4). Driven by

the necessity to enhance survival outcomes, renewed interest is

emerging in exploring neoadjuvant strategies for early-stage and

locally advanced NSCLC (5, 6).

Neoadjuvant therapy (NAT) encompasses various systemic

treatment modalities administered prior to surgery, such as

neoadjuvant chemotherapy, radiotherapy, targeted therapy, and

immunotherapy (7). These therapies aim to reduce tumor burden,

improve surgical outcomes, and ultimately enhance long-term

survival rates for cancer patients (8). In 2020, the International

Association for the Study of Lung Cancer (IASLC) released a

recommendation for the pathological evaluation of neoadjuvant

therapy, which introduced a standardized definition for major

pathological response (MPR) as less than or equal to 10% viable

tumor, whereas pathological complete response (pCR) indicated the

absence of viable tumor (5). On the one hand, by virtue of the

pathological response evaluation to neoadjuvant therapy, tumor

sensitivity to systemic therapy is assessed at an early stage, which

serves as a guide in determining the appropriate postoperative

treatment strategy (9). On the other hand, previous clinical

studies also proved that the pathological response to neoadjuvant

treatment was a strong predictor for both disease-free survival and

overall survival (10). Therefore, a noninvasive and reliable approach

was in urgent need to predict the pathologic response to

neoadjuvant therapy before treatment, which was beneficial to

select potentially responsive NSCLC patients to administrate

neoadjuvant therapy and maximize the therapeutic efficacy.

Computed tomography (CT), contrast-enhanced CT, and 18F-

fluorodeoxyglucose positron emission tomography/computed

tomography (18F-FDG PET/CT) are now commonly used

imaging modalities in the clinical management of patients with

lung cancer (11, 12). Particularly, PET/CT, as a hybrid imaging

method, which is able to simultaneously provide metabolic

information and anatomical details, is widely used in almost

every aspect of clinical practice, including diagnosis, staging,
02
treatment evaluation, and survival prognostication (13, 14).

Consistently, several traditional metabolic parameters derived

from PET images, such as maximum standardized uptake value

(SUVmax), SUVmean, SUVpeak, metabolic tumor volume (MTV),

and total lesion glycolysis (TLG), were previously identified as

potential biomarkers in molecular subtype classification,

pathological patterns determination, and outcome prediction for

patients with NSCLC (15–18). However, as semi-quantitative

parameters, especially for single-pixel value SUV, those

commonly used conventional PET metabolic parameters were not

able to reflect the complex heterogeneity existed in the images.

More advanced methodology with enhanced predictive capability is

expected to improve the prospect of NSCLC.

With the enormous improvement in the computing techniques

in the era of big data, artificial intelligence, such as radiomics and

machine learning, is increasingly becoming prevalent in the field of

medical imaging (11, 19). In radiomics, a high throughput of

features, which reflect the intra-tumor and inter-tumor

heterogeneity are extracted, and a subset of informative radiomic

features are finally selected after using a series of mathematical

algorithms (20–22). In the end, multiple types of machine learning

models are established and used as classifiers (23, 24). It is worth

noting that these radiomic features are able to provide

comprehensive heterogeneity information, which are usually not

captured by the naked eyes. Though previous studies reported the

roles of radiomics and machine learning based on CT in predicting

pCR to NAT for NSCLC (6, 25, 26), few studies regarding PET/CT-

derived radiomics were currently available.

In the present investigation, a total of 25 machine learning models,

which involved five different combinations of predictive feature sources

(PET-based alone radiomics, CT-based alone radiomics, PET/CT-

based radiomics, clinicopathological features, and PET/CT radiomics

integrated with clinicopathological features) and five different machine

learning classifiers, were established to select the optimal model for

predicting pCR to NAT in NSCLC. Furthermore, a nomogram with a

visually straightforward representation was also constructed to detect

the potential application of the developed machine learning models in

clinical practice. This established machine learning model was

potentially predictive of pCR to NAT in NSCLC, which provided a

non-invasive approach to optimize the efficacy of NAT and improve

the personalized treatment for NSCLC.
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2 Materials and methods

2.1 Study population

A total of 188 NSCLC patients who underwent PET/CT

imaging prior to NAT and surgical resection from June, 2020 to

July, 2022 were enrolled in the retrospective study according to

inclusion and exclusion criteria (Supplementary Materials).

Ultimately, 106 NSCLC patients were included in the analysis,

which were randomly divided into a training cohort (n = 74) and

a testing cohort (n = 32) with a ratio of 7:3. This retrospective study

was approved by the Ethics Review Committee of Tianjin Medical

University Cancer Institute and Hospital, and written informed

consent was waived. All procedures performed on human

participants were conducted in compliance with the declaration

of Helsinki and relevant ethical guidelines.
2.2 NAT regimen and
pathological assessment

All the included patients underwent three to four cycles of

platinum-based neoadjuvant chemotherapy, some of which also

received concurrent immunotherapy. Then, surgery was conducted

on all patients within 4–6 weeks after NAT. The pathological

response to NAT was evaluated based on biopsy after resection

by two pathologists with over 10 years of experience. pCR was

defined as absence of residual tumor in histopathological section

after resection (27).
2.3 Image acquisition and calculation of
conventional PET metabolic parameters

Before imaging, NSCLC patients were informed to fast for at

least 6 h and maintain their blood glucose levels below 140 mg/dl.

Then, each patient received an intravenous injection of 3.7–4.44

MBq/kg (0.1–0.12 mCi/kg) of 18F-FDG. After resting for

approximately 60 min, the acquisition of images was carried out

using the GE Discovery Elite PET/CT scanner (GE Medical

Systems). A low-dose CT scan (helical pitch 0.75:1, 3.75-mm slice

thickness, 120 kV and 50–80 mAs) was first performed to provide

anatomical correlation and for attenuation correction purpose.

Then, a PET scan, consisting of eight-bed positions with each bed

position requiring a 2-min duration with increments of 16.2 cm (3D

mode), was followed from the top of the skull to the distal femur. All

PET/CT images were independently reviewed by two experienced

experts specialized in PET/CT imaging, and any disagreement in

the interpretation was resolved by consensus. To determine the

volume of interest (VOI), a commercial software (PET VCAR; GE

Healthcare, USA) on GE Advantage Workstation 4.6 (AW 4.6) was

employed by applying an isocontour threshold of 41% of the

maximum SUV (SUVmax) method (28). Within the VOI,

calculations of SUVmax, SUVmean, and SUVpeak were

automatically performed. MTV was defined as a volumetric
Frontiers in Oncology 03
measurement of a lesion exhibiting significantly high 18F-FDG

uptake (29). TLG was another volumetric index that was

calculated by multiplying MTV with SUVmean.
2.4 Image segmentation and
feature extraction

Semi-automatic segmentation of VOI was performed on CT

images and PET images using 3D Slicer (version: 4.11.20210226)

software by two nuclear medicine physicians with more than 5-year

experiences specialized in PET/CT imaging. Before feature

extraction, the spacing of PET and CT images and their

corresponding VOIs were resampled to 1 × 1 × 1 mm³. A total of

4,032 radiomic features were extracted for each of the included

NSCLC patients using the Pyradiomics module in Python 3.7.0,

including a set of 2,016 CT-based alone and 2,016 PET-based alone

radiomic features. To normalize the data into a standardized

intensity range, we employed Z-score normalization for each

radiomic feature.
2.5 Feature selection

For radiomic feature selection, the interclass correlation

coefficient (ICC) test was first performed to assess the intra-

observer and inter-observer repeatability in radiomic feature

extraction. Radiomic features with ICC ≥0.75 were indicative of

good reproducibility and reliability (30), whereas features with ICC

<0.75 were excluded from further analysis. Second, a Mann–

Whitney U test was used to select features highly related to

pathological response to NAT with a significance level of 0.05 (p

< 0.05). Then, Pearson’s rank correlation analysis was conducted to

eliminate or avoid feature redundancy. Features with Pearson’s

correlation coefficients above 0.90 were potentially highly related, in

which one of the paired two features with a lower AUC was

excluded. Furthermore, Minimum Redundancy Maximum

Relevance (MRMR) was also implemented to further select the

most significant and independent features. In the end, the least

absolute shrinkage and selection operator (LASSO) was employed

to select features for constructing the LASSO equation and

calculating the corresponding feature weights. By adjusting the

regularization weight l, LASSO effectively reduced the magnitude

of regression coefficients toward zero and eliminated the coefficients

of irrelevant features by setting them precisely to zero. To determine

the optimal l, 10-fold cross-validation with minimum criteria was

used. Nonzero coefficient features were selected and fitted into the

regression model forming a radiomics signature. A radiomic score

(Rad_Score) was then computed for each patient by combining the

retained features linearly weighted by their respective model

coefficients. Three distinct radiomic models were developed

depending on the source of the extracted radiomic features.

Rad_CT model was a radiomic model based on CT-derived alone

features, and Rad_PET model was a radiomic model based on PET-

derived alone features. For Rad_PET/CT model, both CT- and
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PET-based radiomic features were included to select a subset of

predictive radiomic features to establish radiomic model. For

feature selection of clinicopathological information, we followed a

two-step procedure. First, univariate logistic regression analysis was

conducted to identify significant features with a p-value <0.05.

Then, the stepwise multivariate logistic regression analysis was

performed on the aforementioned significant features to

determine the independent indicator with a p-value <0.05, which

were used as the predictive clinicopathological parameters to

establish machine learning models for prediction of pCR to NAT

for NSCLC.
2.6 Machine learning model construction

The imbalanced data between pCR and non-pCR groups (35:71)

was corrected using synthetic minority over-sampling technique

(SMOTE), in which the k-nearest neighbor algorithm was utilized

to oversample the minority sample until achieving an equal number

of cases in each group. After LASSO regression, the multiple sets of

selected features were incorporated with five different types of

machine learning classifiers, including Logistic Regression (LR),

support vector machine (SVM), K-Nearest Neighbors (KNN), Light

Gradient Boosting Machine (LightGBM), and NaiveBayes (NB), to

construct corresponding machine learning models. Apart from these

machine learning model based on radiomic features, machine

learning model based on predictive clinicopathological parameters

were also established, which were referred as Cli_Pat model in the

study. To assess the contribution of radiomics combined with

clinicopathological information to prediction of pCR to NAT for

NSCLC, an integrated model named Cli_Pat_Rad_PET/CT was also

built to determine its outperformance in contrast with Rad_PET/CT.
2.7 Statistical analysis

The IBM SPSS Statistics 27.0.1 and Python 3.7.0 software were

employed for statistical analysis. For clinical data, quantitative data

that conformed to normal distribution were expressed as mean ±

SD, and comparisons between the two groups were conducted using

the two independent-sample t-test. Non-normally distributed

quantitative information was represented as M (P25–P75), and

comparisons between two groups were performed using the Mann–

Whitney U test. Qualitative data were compared using either the c2
test or Fisher’s exact test. Univariate and multivariate logistic

regression analyses were performed to select the significant

clinicopathological parameters in the prediction of pCR to NAT

for NSCLC. A two-sided p-value below 0.05 was considered

statistically significant. The prediction results of each model were

plotted on a receiver operator characteristic (ROC) curve, and the

area under the curve (AUC), sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV) were

calculated to assess the prediction performance. Thus, a nomogram

using logistic regression algorithm involving radiomics and

significant clinicopathological indicators was developed to detect

its potential application in clinical practice.
Frontiers in Oncology 04
3 Results

3.1 Patient characteristics

A total of 106 patients with NSCLC were eligible and recruited

according to inclusion criteria. Based on the pathological outcome

to NAT, these included NSCLC patients were classified into two

groups: pCR and non-pCR. The differences in the clinicopathologic

characteristics between the two groups are presented in Table 1. As

shown, among all the listed clinicopathologic characteristics, only

pathological type (p = 0.012) exhibited statistical significance in

distinguishing pCR from non-pCR. With regard to traditional PET

metabolic parameters, including SUVmax, SUVpeak, SUVmean,

MTV, and TLG, none of them was suggested as potential indicator

to predict pathological outcome to NAT for NSCLC.
3.2 Radiomics for prediction of pCR to NAT

The flow chart of radiomics used in the study to predict pCR to

NAT for NSCLC is presented in Figure 1. Briefly, the radiomics

consist of VOI segmentation, feature extraction, feature selection,

model construction and performance evaluation. A total of 4,032

radiomic features (2,016 CT-based and 2,016 PET-based radiomic

features) were extracted for each lesion, including morphological,

first-order, and texture features. Based on a different combination of

selective feature source (PET-based alone radiomics, CT-based alone

radiomics, PET/CT-based radiomics, clinicopathological features,

and PET/CT radiomics integrated with clinicopathological features)

and machine learning classifier (SVM, LR, KNN, LightGBM, and

NaiveBayes), 25 machine learning models were finally constructed to

select the optimal model for prediction of pCR to NAT. Figure 2

shows all radiomic features and corresponding p-value results. After

radiomic feature extraction and reduction, LASSO regression finally

selected nine features for Rad_CT model (Figure 3A), four features

for Rad_PETmodel (Figure 3B), and seven features for Rad_PET/CT

model (Figure 3C). Rad_Score was then computed for each patient by

combining the selected features linearly, weighted by their respective

coefficients. The formulas of Rad_Score for Rad_CTmodel, Rad_PET

model, and Rad_PET/CT model are listed in Table 2.
3.3 Machine learning models based
on radiomics

Based on the aforementioned radiomics model construction after

LASSO regression, including Rad_CT model, Rad_PET model, and

Rad_PET/CT model, a total of 15 machine learning models were

developed by incorporating five different machine learning classifiers

(SVM, KNN, LR, LightGBM, and NaiveBayes). ROC analyses were

performed to evaluate the performance of these established machine

learning models in the prediction of pathological response to NAT

for NSCLC using the AUC as the main outcome. As indicated in

Figure 4, LR-Rad_CT model (Figures 4A, D) with an AUC of 0.844

(training cohort) and 0.732 (testing cohort), KNN-Rad_PET model

(Figures 4B, E) with an AUC of 0.773 (training cohort) and 0.729
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(testing cohort) and LightGBM-Rad_PET/CT model (Figures 4C, F)

with an AUC of 0.864 (training cohort) and 0.841 (testing cohort)

were considered the optimal model in Rad_CT models, Rad_PET

models, and Rad_PET/CT models, respectively. The decision curves

and calibration curves are also depicted and shown in Supplemenatry

Figure S1. Other measurements, including accuracy, sensitivity,

specificity, PPV, and NPV, in training cohort and testing cohort

are also calculated and demonstrated in Supplemenatry Tables S1–S3.
3.4 Machine learning models based on
radiomics combined with
clinicopathological information

Clinicopathological information was reported to potentially

provide complementary information to radiomic models. The

predictive clinicopathological parameters were selected based on

univariate analysis and multivariate analysis. As shown in

Supplemenatry Table S4, pathological type was found to be

significantly related to pCR (p = 0.003), which was also an

independent predictor (OR 0.786; 95% CI 0.689–0.897; p =

0.003). In the study, the clinicopathological information was also

incorporated with machine learning classifiers to construct Cli_Pat

machine learning models (Figures 5A, B). Combined

Cli_Pat_Rad_PET/CT machine learning models were built by

integrating the Rad_PET/CT radiomics with pathological type

(Figures 5C, D). As indicated in the ROC curves of Figure 5, the

combined Cli_Pat_Rad_PET/CT machine learning models

outperformed the Cli_Pat machine learning models in prediction

of pathological response to NAT for NSCLC. Among the five

constructed combined Cli_Pat_Rad_PET/CT machine learning

models, SVM-Cli_Pat_Rad_PET/CT model outperformed other

models with an AUC of 0.923 in the training cohort and an AUC

of 0.857 in the testing cohort, which further improved the predictive

performance of Rad_PET/CT models. Therefore, the SVM-

Cli_Pat_Rad_PET/CT model was selected for the following study.

Furthermore, both the decision curve (Figure 5E) and the

calibration curve (Figure 5F) analysis confirmed that the SVM-

Cli_Pat_Rad_PET/CT exhibited the highest net benefit and the best

calibration in predicting pCR status. Detailed information
TABLE 1 Demographic information and clinicopathological
characteristics of patients.

Characteristics
Non-PCR
(n = 71)

PCR
(n = 35)

p-
Value

Gender 0.999

Male 62 (87.3%) 31 (88.6%)

Female 9 (12.7%) 4 (11.4%)

Age 60.29 ± 8.07 62.57 ± 6.76 0.138

Smoking status 0.708

Current or former 57 (80.3%) 27 (77.1%)

Never 14 (19.7%) 8 (22.9%)

BMI 24.89 ± 3.11 25.13 ± 3.15 0.696

NLR 2.37 (1.71–2.99) 2.57 (1.79–3.19) 0.904

PLR 134.71
(104.98–176.10)

150.33
(113.11–182.03)

0.550

Tumor size 4.60 (3.75–6.15) 4.70 (3.05–6.40) 0.407

Tumor location 0.352

Superior lobe of
left lung

22 (31.0%) 8 (22.9%)

Inferior lobe of
left lung

11 (15.5%) 4 (11.4%)

Superior lobe of
right lung

15 (21.1%) 14 (40.0%)

Middle lobe of
right lung

7 (9.9%) 2 (5.7%)

Inferior lobe of
right lung

16 (22.5%) 7 (20.0%)

Pathological type 0.012*

Adenocarcinoma 20 (28.2%) 3 (8.6%)

Squamous carcinoma 46 (64.8%) 32 (91.4%)

Large cell carcinoma 5 (7.0%) 0 (0.0%)

Pathological stage 0.449

I 5 (7.0%) 5 (14.3%)

II 18 (25.4%) 7 (20.0%)

III 48 (67.6%) 23 (65.7%)

PD-L1 0.845

Negative 25 (35.2%) 13 (37.1%)

Positive 46 (64.8%) 22 (62.9%)

Nodal metastasis 0.707

Negative 27 (38%) 12 (34.3%)

Positive 44 (62%) 23 (65.7%)

SUVmax 15.54
(11.90–21.13)

18.58
(12.55–23.04)

0.530

SUVpeak 13.10
(10.02–18.09)

15.97
(10.87–20.35)

0.631

(Continued)
TABLE 1 Continued

Characteristics
Non-PCR
(n = 71)

PCR
(n = 35)

p-
Value

SUVmean 9.31 (7.54–12.54) 11.04 (7.51–14.94) 0.321

MTV 21.91
(12.58–41.66)

19.41 (6.59–38.84) 0.721

TLG 205.26
(114.83–444.61)

220.92
(57.12–550.29)

0.938
fron
A t-test was used for age and BMI; a Mann–Whitney U test was used for NLR, PLR, tumor
size, SUVmax, SUVpeak, SUVmean, MTV, and TLG. A c2 test or Fisher’s exact test was used
for the rest. *p < 0.05.
BMI, body mass index; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte
ratio; PD-L1, programmed death protein ligand 1; SUV, standardized uptake value; MTV,
metabolic tumor volume; TLG, total lesion glycolysis.
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regarding the performance of all the constructed Cli_Pat machine

learning models and Cli_Pat_Rad_PET/CT models were calculated

and presented in Table 3 and Supplementary Table S5.
3.5 Nomogram construction

To detect the potential application of the developed PET/CT-

derived radiomic models in predicting pCR to NAT for NSCLC, a
Frontiers in Oncology 06
nomogram using logistic regression algorithm was developed. As

shown in Figure 6, both Rad_Score and clinicopathological

predictor pathological type were involved in nomogram with a

visually straightforward representation. In other words, the

respective eligible point was endowed to Rad_Score and

pathological type based on their different status, and the point for

Rad_Score plus the point for pathological type was the total point.

Ultimately, the risk of being predicted as pCR to NAT for individual

NSCLC was deduced based on the obtained total point.
FIGURE 1

The workflow of radiomic and clinical analysis for image acquisition, segmentation, feature extraction and selection, and model and
nomogram construction.
A B C

FIGURE 2

Distribution of radiomic features extracted from CT images only (A), PET images only (B) and combined PET/CT images (C), and corresponding p-
value results in distinguishing PCR from non-PCR. glcm, gray-level co-occurrence matrix; gldm, gray-level dependence matrix; glrlm, gray-level run
length matrix; glszm, gray level size zone matrix; ngtdm, neighborhood gray-tone difference matrix.
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4 Discussion

In the present study, a comprehensive radiomic analysis was

performed to determine the role of PET/CT-derived machine

learning models in the prediction of pathological response to

NAT for NSCLC. To select an optimal model, a total of 25

machine learning models were established based on multiple
Frontiers in Oncology 07
combinations of different machine learning algorithms and

different radiomic feature sources or clinicopathological

indicators. Generally, PET/CT-derived radiomic models exhibited

improved predictive performance than PET-based alone and CT-

based alone radiomic models. The SVM-Rad_PET/CT model

outperformed other machine learning models based on radiomic

features. Furthermore, the SVM-Cli_Pat_Rad_PET/CT model was
A

B

C

FIGURE 3

Radiomic feature selection used a LASSO algorithm, which was adjusted by a super parameter (l), to achieve the purpose of screening the optimal
features. The coefficients and mean standard error (MSE) of 10-fold cross validation and the histogram of coefficients of Rad_CT (A), Rad_PET (B),
and Rad_PET/CT (C) models, respectively. (A) The vertical dashed line showed that the corresponding optimal l value when obtaining the minimum
deviation value was l = 0.0083. Features with non-zero coefficients were screened out corresponding to the vertical lines in the plot, with a total of
nine best features selected for Rad_CT model. Correspondingly, (B) the optimal l value was 0.0450, and a total of four optimal features were
selected for Rad_PET model. (C) The optimal l value was 0.0339, and a total of seven optimal features were selected for Rad_PET/CT model.
TABLE 2 The establishment of Rad_Score formulas using selected radiomic features based on LASSO algorithm of the three Rad models.

Model Name Formulas

Rad_CT Rad_Score = 0.3314405037744722 + 0.070663 × wavelet_LLL_glszm_ZoneEntropy_CT + 0.165537 × original_shape_Elongation_CT -
0.062359 × wavelet_HHH_glrlm_ShortRunLowGrayLevelEmphasis_CT + 0.084869 × exponential_gldm_LargeDependenceLowGrayLevel
Emphasis_CT + 0.156102 × gradient_ngtdm_Strength_CT − 0.067547 × lbp_3D_m1_glcm_ClusterShade_CT − 0.118425 ×
wavelet_LLH_firstorder_Range_CT − 0.125792 × log_sigma_4_0_mm_3D_glszm_GrayLevelNonUniformityNormalized_CT − 0.005096 ×
log_sigma_3_0_mm_3D_glcm_Correlation_CT

Rad_PET Rad_Score = 0.3584026346819105 + 0.072922 × wavelet_LHL_ngtdm_Complexity_PET + 0.021449 × wavelet_HLH_ngtdm_Contrast_PET +
0.000527 × lbp_3D_m2_firstorder_Minimum_PET + 0.009493 × wavelet_LHL_firstorder_Range_PET

Rad_PET/CT Rad_Score = 0.3638561342659228 + 0.154468 × original_shape_Elongation_CT + 0.109735 × wavelet_LHL_ngtdm_Complexity_PET −

0.025411 × lbp_3D_k_glszm_SmallAreaLowGrayLevelEmphasis_PET + 0.023428 × wavelet_LLL_glszm_SmallAreaLowGrayLevelEmphasis_CT
− 0.002115 × logarithm_glszm_GrayLevelNonUniformity_CT + 0.063967 × exponential_gldm_LargeDependenceLowGrayLevelEmphasis_CT -
0.025217 × lbp_3D_m2_firstorder_Range_PET
CT, computed tomography; PET, positron emission tomography; PET/CT, positron emission tomography/computed tomography; GLSZM, gray-level size zone matrix; GLRLM, gray-level run
length matrix; GLDM, gray-level dependence matrix; GLCM, gray-level co-occurrence matrix.
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finally selected as the optimal model, which enhanced the predictive

efficacy of the SVM-Rad_PET/CT model suggesting a

complementary role provided by clinicopathological information.

Accurate prediction of pCR to NAT prior treatment was of

significance in treatment decision making and survival

prognostication for NSCLC (31). Though tremendous efforts were

paid to identify potential biomarkers for predicting pCR to NAT,

divergences remained to be resolved. Khorrami et al. assessed the

role of clinicopathological variables in discerning pathological

responses following NAT in NSCLC (25). Among all the

variables, only lymphatic invasion exhibited statistical significance

in distinguishing (MPR) from non-MPR (OR 0.052; 95% CI 0.007–

0.23; p = 0.0006), while none of age, sex, pathological type, vascular

infiltration, or tumor volume was found to be without significant

differences between the MPR and non-MPR groups. Lin et al.

revealed that gender was capable of predicting a good

pathological response (GPR) to NAT (p = 0.019) (26). In our

study, pathological type was significantly related to pCR (p < 0.05),

which was also an independent predictor. The inconsistences in the

determination of potential indicators were attributed to different

pathological outcome settings and different patient cohorts with

various clinical characteristics included in an individual study.

Besides clinical parameters, radiological indicator was also

accepted as a non-invasive approach to predict pathological

response to NAT for NSCLC. Particularly, several metabolic

parameters based on PET/CT images were employed as potential
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radiological indicator to evaluate the response to NAT. Cui et al.

revealed that SUVmax, SUVpeak, and peak SUV corrected for lean

body mass (SULpeak) were significantly associated with pCR in

patients with stage III NSCLC undergoing neoadjuvant

immunochemotherapy therapy followed by surgery (32). Tao

et al. discovered a negative correlation between the degree of

pathological regression and the SULmax, SULpeak, MTV, and

TLG of the preoperative PET/CT (33). Thus, the predictive

capability of SUV parameters in determining pathological

responses to NAT was verified in several studies for patients with

a few types of tumors (34, 35), whereas our study proved that

traditional PET/CT parameters (such as SUVmax, SUVmean,

SUVpeak, MTV, and TLG) were unable to predict the

pathological response to NAT (p > 0.05). Consistent with our

results, Antunovic et al. also confirmed that SUVmax and TLG

was not suggested as effective predictors of pCR to NAC for breast

cancer patients (27). Among these PET metabolic semi-quantitative

parameters, choosing a single-pixel value, such as SUV, is not able

to comprehensively reflect the intra- and inter-tumoral

heterogeneity (36–38).

Radiomics is an emerging hot topic in medical imaging, which

is actually a high throughput of feature extraction to reflect the

complex heterogeneity existing in the medical images, which is

commonly not observed by the naked eye (39–42). Though Lin et al.

established a combined radiomic model involving clinical features,

radiomic features, and deep learning features for prediction of GPR
A B

D E F

C

FIGURE 4

Comparison of ROC curves for the training cohorts of Rad_CT (A), Rad_PET (B), and Rad_PET/CT (C) models and testing cohorts of Rad_CT (D),
Rad_PET (E), and Rad_PET/CT (F) models of five machine learning models. As indicated, the LR-Rad_CT model, KNN-Rad_PET model, and
LightGBM-Rad_PET/CT model were the best predicting models, respectively. Among them, the LightGBM-Rad_PET/CT model with an AUC of 0.864
in the training cohort and 0.841 in the testing cohort were considered the optimal model for further analysis.
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to immunotherapy-based NAT for NSCLC, there is only a limited

amount of radiomic features based on single-mode CT images (26).

Despite prior research indicating the improvement of radiomics

based on CT in predicting pCR to NAT for NSCLC, few studies

involving PET/CT-derived radiomics were currently accessible.
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While PET/CT, as a dual-modality imaging technique, being

capable of providing both anatomical and metabolic information,

is expected to improve the performance of CT-based radiomic

model in the prediction of pathological response to NAT for

NSCLC (43–47). Thus, PET/CT-derived radiomics were
A B

D E F

C

FIGURE 5

Comparison of ROC curves of five machine learning models for the training cohorts of Cli_Pat (A), testing cohorts of Cli_Pat (B), training cohorts of
Cli_Pat_Rad_PET/CT (C), and testing cohorts of Cli_Pat_Rad_PET/CT (D) models. The SVM-Cli_Pat_Rad_PET/CT model with an AUC of 0.923 in the
training cohort and 0.857 in the testing cohort outperformed other Rad_PET/CT and Cli_Pat_Rad_PET/CT machine learning models. (E) The
decision curve analysis of the Cli_Pat_Rad_PET/CT models. The SVM-Cli_Pat_Rad_PET/CT model had a higher net benefit in predicting pCR
compared to the other four machine learning models. (F) The calibration curve of the Cli_Pat_Rad_PET/CT models. The 45° black dashed line
represents the ideal prediction performance. The colorful lines of five machine learning models in which closer to the black dashed line represented
the higher prediction accuracy. The SVM-Cli_Pat_Rad_PET/CT exhibited the best calibration in predicting pCR status.
TABLE 3 Each evaluation index of Cli_Pat_Rad_PETCT model in five machine learning algorithms.

Model
name

AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

SVM 0.923 0.8704–0.9762 0.894 1.000 0.787 0.825 1.000 Train

SVM 0.857 0.7473–0.9664 0.896 1.000 0.826 0.828 1.000 Test

KNN 0.905 0.8504–0.9603 0.830 0.894 0.766 0.792 0.878 Train

KNN 0.724 0.6762–0.8723 0.792 1.000 0.636 0.706 0.878 Test

LR 0.828 0.7442–0.9131 0.787 0.830 0.745 0.765 0.814 Train

LR 0.807 0.6711–0.9420 0.833 0.958 0.708 0.767 0.944 Test

LightGBM 0.875 0.8062–0.9443 0.819 0.830 0.809 0.812 0.826 Train

LightGBM 0.801 0.6673–0.9354 0.833 0.833 0.870 0.833 0.833 Test

NaiveBayes 0.807 0.7223–0.8934 0.766 0.809 0.723 0.745 0.826 Train

NaiveBayes 0.776 0.6312–0.9213 0.833 0.792 0.875 0.864 0.833 Test
AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; SVM, support vector machine; KNN, K-nearest neighbors; LR logistic
regression; LightGBM, light gradient boosting machine.
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increasingly performed to evaluate its power in the prediction of

pCR to NAT for NSCLC. As expected, the PET/CT-derived

radiomic models were superior to PET-based alone and CT-based

alone radiomic models in our study (48, 49). Moreover, five

machine learning classifiers were employed and compared to

improve the prediction efficiency of the radiomic models. Among

the five classifiers used in the present investigation, including LR,

SVM, KNN, LightGBM, and NaiveBayes, SVM was found to be the

optimal classifier, which was recommended to deal with nonlinear

and high-dimensional classification issue with a small-to-medium

sample size. Consistently, SVM was proven to be the optimal

machine learning algorithm in various studies with respect

to radiomics.

Nomogramwas commonly used to detect potential application of

a model involving multiple predictive indicators in clinical practice

(50–52). As indicated in the results, the Cli_Pat_Rad_PET/CT model

was proven to be the optimal model with an accuracy of 0.894 in the

training cohort and an accuracy of 0.896 in the test cohort,

respectively. Thus, a nomogram based on the Cli_Pat_Rad_PET/

CT model was depicted in our study. The probability of being

predicted as pCR was calculated based on both point of Rad_Score

and point of pathological type, which were endowed according to

their status. The developed nomogram simplified the procedure of

prediction process with a straightforward visualization, which

remarkably enhanced its feasibility to be conveniently applied in

clinical practice (53, 54). In other words, NSCLC patients with a

higher probability of being predicted as pCR to NAT, intensive

administration is expected to maximize the therapeutic efficacy. In

contrast, for NSCLC patients with a lower probability of being

predicted as pCR to NAT, modified NAT or other effective

treatment choice should be suggested in early stage of therapy
Frontiers in Oncology 10
process. Accurate prediction of pCR to NAT for NSCLC before

treatment significantly contributing to therapeutic decision making

promisingly improves the clinical outcome of NSCLC.

Although promising findings were obtained in this study,

several limitations remained to be addressed. First, this was a

retrospective study with a relatively small sample size, which was

performed in one institution. A multi-center prospective study with

an adequate sample size is warranted in the future to further verify

the conclusion. Then, a subgroup analysis according to the type of

NAT was not conducted due to the limited number of included

NSCLC patients. Therefore, the status of PD-L1 was not involved to

construct the combined machine learning model with

clinicopathological information in the study because PD-L1 was

usually assessed for NSCLC with immune checkpoint inhibitor

treatment-based NAT. In the end, to improve the performance of

artificial intelligence models based on radiological images in the

prediction of pathological response to NAT, deep learning models

involving VOI of both tumor lesion itself and peri-tumor region are

considered a promising choice.
5 Conclusion

Machine learning models constructed based on PET/CT-derived

radiomics were able to effectively predict pathological response to

NAT prior treatment for NSCLC, and their predictive performances

were further enhanced by the developed combined model involving

PET/CT-derived radiomics and clinicopathological information.

Therefore, the SVM-Cli_Pat_Rad_PET/CT model was potentially

used a non-invasive tool to optimize personalized treatment and

improve the clinical prospect of NAT for NSCLC.
FIGURE 6

Clinical application of the nomogram in the differentiation of pCR and non-pCR in NSCLC patients. Locate on the pathology and Rad_Score
coordinate axis. Calculate and sum the scores corresponding to each point; locate on the total point coordinate axis. The corresponding value on
the bottom line is the probability of pathological response to pCR in patients with NSCLC after NAT.
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