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Background: The prognosis for lung adenocarcinoma (LUAD) remains dismal,

with a 5-year survival rate of <20%. Therefore, the purpose of this study was to

identify potentially reliable biomarkers in LUAD bymachine learning combination

with Mendelian randomization (MR).

Methods: TCGA-LUAD, GSE40791, and GSE31210 were employed this study. Key

module differential genes were identified through differentially expressed

analysis and weighted gene co-expression network analysis (WGCNA).

Furthermore, candidate biomarkers were derived from protein–protein

interaction network (PPI) and machine learning. Ultimately, biomarkers were

confirmed using MR analysis. In addition, immunohistochemistry was used to

detect the expression levels of genes that have a causal relationship to LUAD in

the LUAD group and the control group. Cell experiments were conducted to

validate the effect of screening genes on proliferation, migration, and apoptosis

of LUAD cells. The correlation between the screened genes and immune

infiltration was determined by CIBERSORT algorithm. In the end, the gene-

related drugs were predicted through the Drug–Gene Interaction database.

Results: In total, 401 key module differential genes were obtained by intersecting of

5,702 differentially expressed genes (DEGs) and 406 key module genes. Thereafter,

GIMAP6, CAV1, PECAM1, and TGFBR2 were identified. Among them, only TGFBR2

had a significant causal relationship with LUAD (p=0.04, b=−0.06), and it is a

protective factor for LUAD. Subsequently, sensitivity analyses showed that there

were no heterogeneity and horizontal pleiotropy in the univariate MR results, and the

results were not overly sensitive to individual SNP loci, further validating the reliability

of univariate Mendelian randomization (UVMR) results. However, no causal

relationship was found between them by reverse MR analysis. Meanwhile, TGFBR2

expression was decreased in LUAD group through immunohistochemistry. TGFBR2
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can inhibit proliferation and migration of lung adenocarcinoma cell line A549 and

promote apoptosis of A549 cells. Immune infiltration analysis suggested a potential

link between TGFBR2 expression and immune infiltration. Finally, Irinotecan and

Hesperetin were predicted through DGIDB database.

Conclusion: In this study, TGFBR2 was identified as a biomarker of LUAD, which

provided a new idea for the treatment strategy of LUAD and may aid in the

development of personalized immunotherapy strategies.
KEYWORDS

lung adenocarcinoma, TGFBR2, Mendelian randomization, machine learning,
immune infiltration
1 Introduction

Lung adenocarcinoma (LUAD), which can be surgically resected

at an early stage, has become one of most common pathological

subtypes of non-small-cell lung cancer (NSCLC) (1). Unfortunately,

LUAD is usually diagnosed at an advanced stage since its rapid

progression. In clinical practice, only a minority of LUAD patients

respond to chemo- or radiotherapy effectively, whereas a majority of

them with metastasis of LUAD cells at advanced stage have high

resistance to these therapies, thereby presenting a poor prognosis and

high mortality at this stage, with a 5-year survival rate of <20% (2, 3).

Thus, it is crucial to conduct early detection, diagnosis, and treatment

in the clinical management of LUAD. Compared with other

pathological subtypes of lung cancer, the occurrence of LUAD, as a

peripheral type, is proven to be involved in multiple driver genes (4).

Hence, screening and identification of LUAD signature genes play

significant roles for these patients in early detection, personalized

treatment, and enhancement of prognosis.

In recent years, bioinformatics methods have undergone

significant advancement, and a wealth of disease databases have

become available and improved, which bring new prospects and

convenience for excavation of marker genes and further provide

substantial value and basis in the field of diagnosis and treatment of

diseases. With the boom of artificial intelligence, machine learning

algorithms have become one of the frequently utilized technologies

in bioinformatics study, including support vector machine (SVM),

k-nearest neighbor (KNN), random forest (RF), naive Bayes (NB),

convolutional neural networks (CNN), and autoencoder (AE), and

these computational approaches have been extensively applied to
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identify disease markers, construct disease models, screen drugs,

and support other medical research (5–8). Mendelian

randomization (MR) refers to an analysis method for inferring

causality based on genetic variation, mainly investigating the impact

of naturally occurring random gene allocation of phenotypes on

outcomes of diseases (9). Since these genes are allocated randomly,

MR is much less susceptible to issues of causation and confounding

bias than traditional tools. Thus, it enhances the reliability of causal

inferences. At present, MR, as a powerful tool in bioinformatics

mining, has been successfully applied across variety medical fields,

notably contributing to the identification of targets for disease

prevention and treatment (10).

In our study, machine learning algorithms in conjunction with

MR analysis were employed to more accurately identify the key

genes that have causal relationships with LUAD. Subsequently, the

effects of these ultimately screened genes were validated through

their impacts on clinical tissue samples and lung adenocarcinoma

cell lines. Meanwhile, acknowledging the crucial role of immune

infiltration in tumors, the relationship between the screened genes

and immune infiltration was analyzed. In addition, the potential

drugs that interference with these targets via molecular docking

were identified, with the expectation that our in-depth study on

gene screening for LUAD provides a theoretical foundation and

valuable insights for the early diagnosis and prevention of the

disease. Figure 1 depicts our research approach.
2 Materials and methods

2.1 Data source

In this study, TCGA-LUAD, which contained 515 LUAD and 59

control samples, was downloaded from the UCSC database for use as

the training set. GSE40791 (11) and GSE31210 were obtained from the

Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm,

nih.gov/geo) (12) for use as the validation set; GSE31210 included

226 LUAD and 20 control samples, while GSE40791 includes 94
frontiersin.org
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LUAD lung tissue samples and 100 normal control lung tissue

samples. In addition, the relevant GWASID datasets were

downloaded from Integrative Epidemiology Unit (IEU) Open

genome-wide association studies (GWAS) (https://gwas.mrcieu.

ac.uk/). The LUAD-related dataset (ieu-a-984) consisted 65,864

samples (11,245 LUAD vs. 54,619 control samples) and included

10,345,176 single nucleotide polymorphisms (SNPs).
2.2 Weighted gene co-expression
network analysis

The co-expression network was constructed using WGCNA

package (13) to identify the gene modules with strong association
Frontiers in Oncology 03
with LUAD. Initially, the presence of any outliers among the

samples was checked; subsequently, a soft threshold was

determined to construct an adjacency matrix, which was then

clustered to identify the central module. The module with the

strongest positive correlation with LUAD genes was selected for

further analysis, as determined by calculating the Pearson

correlation coefficients. Afterwards, gene significance (GS) and

module membership (MM) were calculated for each gene within

the central module. Eventually, genes with MM >0.6 and GS >0.6

were considered to be candidate LUAD-associated genes. Lastly,

functional enrichment analysis of the genes in the module was

performed using the online Metascape database (https://

metascape.org/gp/index.html#/main/step1), and the enrichment

results were visualized as a bar chart.
FIGURE 1

Design flowchart of research.
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2.3 Screening of candidate genes

In TCGA-LUAD, differentially expressed genes (DEGs)

between LUAD and control samples were identified using

“edgeR” (14) in R package, which adjust. P < 0.05 and |log2FC| >

1 (15). For the key module genes identified previously, thresholds of

MM > 0.6 and GS > 0.6 were also utilized as part of the differential

screening condition. Afterwards, DEGs and key module genes

intersected the key module differential genes. The associated

biological pathways and functions were then explored through

enrichment analysis. Subsequently, a protein–protein interaction

network (PPI) was constructed for key module differential genes.

Then, the MCC, MNC, and degree algorithms were applied to select

TOP20 genes, respectively, Eventually, the candidate hub genes

were identified by finding the intersection of these selections.
2.4 Machine learning

Various machine learning techniques were employed to

accurately screen candidate hub genes, specifically including

random forest (RF), least absolute shrinkage and selection

operator (LASSO), and support vector machine recursive feature

elimination (SVM-RFE). Logistic regression, a widely used linear

model for binary classification problems, outputs predictive

probabilities and helps to assess the importance of features. For

the LASSO model, the binary classification labels (LUAD/health)

were converted into numerical labels (e.g., 1 for LUAD, 0 for health)

to enable the model’s training and prediction. SVM is a powerful

classification algorithm capable of handling non-linear data

effectively, with generalization capabilities. RF is an ensemble

method based on decision trees, capable of handling high

dimensional data with strong robustness and predictive ability.

Primarily, random forest analysis was conducted using R-

package “randomForest” (16) with default parameters, and the

candidate genes were ranked based on their importance. Using

the mean decrease gini algorithm, the top 10 genes were selected as

key candidate hub genes. Second, LASSO regression analysis was

performed on the expression of candidate hub genes using R-

package “glmnet” (17), taking into account the clinical

information of the samples. Genes that were more critical to the

disease were penalized less, whereas genes that were less relevant to

the disease were penalized more, potentially reducing their

coefficients to 0, and a fivefold cross-verification was then

performed. Ultimately, the SVM-RFE method was applied to

determine the importance and rank of each gene. Fivefold cross-

validation was set, and the error rate and accuracy of each iteration

combination were obtained. The lowest error rate was selected as

the best combination, and the corresponding gene was selected as

the candidate key gene. Binary categorical variables, where disease is

represented by 1 and control by 0, were used by machine learning

algorithms to distinguish between disease and control statuses. The

candidate biomarkers were obtained by finding the intersection of

genes selected by the three machine learning algorithms.
Frontiers in Oncology 04
2.5 Expression validation and Kaplan–Meier
analysis of candidate biomarkers

The expression of candidate biomarkers was analyzed using R

package “ggplot2” (18) in TCGA-LUAD, and this analysis was

subsequently validated in GSE31210 and GSE40791. Furthermore,

to assess the predictive power of candidate biomarkers, ROC curves

of LUAD and normal samples were constructed in TCGA-LUAD,

GSE40791, and GSE31210 using R packet “pROC” (19). A higher

AUC value indicates a more accurate prediction. Subsequently, in

TCGA-LUAD, patients were divided into high and low expression

groups based on the optimal threshold of expression levels of the

candidate biomarkers’ expression levels, and the survival differences

between these groups were analyzed using K-M survival analysis.
2.6 Analysis of the causal relationship
between exposure factors and outcome
through univariate Mendelian
randomization analysis

To identify instrumental variables (SNPs) reasonably associated

with exposure factors, the extracting instruments function of the R

package TwoSampleMR (version 0.5.6) (20) was utilized, with a

threshold of p < 5×10−8 for significance. Instrumental variables

showing linkage disequilibrium (LD) were excluded using the

“clump” function with the argument “clump = TRUE.” Based on

the outcome GWAS data and instrumental variables screened in the

previous step, we then excluded instrumental variables that showed

a significant association with the outcome.

In this study, “TwoSampleMR” R package was employed to

conduct two-sample MR analysis between exposures and outcome.

The five common MR methods were applied to features with

multiple instrumental variables (IVs): MR-Egger regression (21),

inverse-variance weighted (IVW) method (22), the weighted

median test (23), the weighted mode test (24), and the simple

mode test (25). The IVW method served as the primary approach

for investigating. Subsequently, scatter plots were used to determine

the correlation between exposure factors and LUAD. Then, the

correlation between them was determined by the scatter plot. Forest

was generated to assess to the efficacy of SNP site for predicting

candidate biomarkers for LUAD diagnosis. Moreover, funnel plots

were applied to determine whether the SNPs loci was randomized.

Meanwhile, the study evaluated the heterogeneity, pleiotropy, and

sensitivity of univariate MR analysis results. Lastly, to rule out the

potential for reverse causality, reverse MR analysis was performed

on key genes that were causally related to LUAD.
2.7 Analysis of the correlation between
TGFBR2 gene and clinical features of LUAD

TCGA-LUAD data were used to explore the relationship

between the expression of the TGFBR2 gene and various clinical
frontiersin.org
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factors such as age, gender, clinical staging, and tumor classification

in LUAD.
2.8 Immune cell infiltration analysis

The Estimate software package was employed to analyze

immune infiltration parameters in groups characterized by high

and low TGFBR2 expression, specifically assessing matrix score,

immune score, and composite score. The CIBERSORT (26)

deconvolution algorithm was used to examine and depict the

immune cell infiltration in these groups. A p < 0.05 denotes a

significant difference in immune cell infiltration between the

groups, which was further analyzed for Pearson correlation with

TGFBR2 expression.
2.9 Immunohistochemical analysis

In order to examine the expression level of the gene found to have a

causal relationship with LUAD, the expression of this gene was

analyzed by immunohistochemistry (IHC). We obtained a total of

five lung adenocarcinoma tissues and three normal lung tissues from

the Pathology Department at Guang’anmen Hospital, China Academy

of Chinese Medical Science. Suitable tissue samples were then prepared

for paraffin embedding and section. First, the tissues were washed with

phosphate-buffered saline (PBS) and then immersed in 4%

paraformaldehyde for 48 h. Next, they were dehydrated through

sequential immersion in ethanol of increasing concentrations.

Following dehydration, the tissues were cleared in xylene before

being infiltrated with paraffin. Finally, the tissues were placed in a

mold containing paraffin, and the paraffin was removed after cooling

and sliced for paraffin removal. In summary, the sections underwent

deparaffinization and were then rehydrated before being incubated

with primary antibodies (1:100 dilution, Proteintech,Wuhan, China) at

4°C overnight after rehydration. Subsequently, the sections were

processed for detection with an anti-biotin system, followed by color

development with 3,3′-diaminobenzidine (DAB) and counterstaining

with hematoxylin. Ultimately, the sections were dehydrated, cleared,

and coverslipped before being imaged using a scanner (SQS-12P,

Shenzhen, China) at ×200 magnification. The images were then

analyzed using ImageJ software.
2.10 Impact of TGF-b receptor 2 on
phenotypic change in A549 cells

2.10.1 Cell culture
Human lung cancer cells A549 were acquired from Procell (CL-

0016). These cells were cultured in Ham’s F-12K medium (21127-

022, Gibco, USA) supplemented with 10% FBS (10099-141C, Gibco,

USA) and 1% antibody for both penicillin and streptomycin in a cell

incubator (HF90, Heal Force, China) maintained at a temperature

of 37°C and 5% CO2 atmosphere. Subsequently, the cells underwent

trypsinization using 0.25% trypsin (25200072, Gibco, USA), and
Frontiers in Oncology 05
cells in the logarithmic growth phase were chosen for

subsequent experiments.

2.10.2 Cell transfection
Well-grown cells were seeded into six-well plates at a density of

70%–80% per well to ensure attachment to the bottom of the plates.

After adhesion to the wells, the cells were randomly assigned to

control group, si-NC group, and TGFBR2 siRNA (si-TGFBR2)

group. Cells were transfected with jetPRIME transfection reagents

(PT-114-75, Polyplus, France) as follows: 200 µL of jetPRIME buffer

was added to an EP tube, to which siRNA at a final concentration of

15 nM was added. The contents were mixed by vortexing, and an

additional 4 µL jetPRIME reagent was additional added. The

resulting mixture was swirled and mixed thoroughly before being

incubated at room temperature for 10 min. Finally, a 10-µL mixture

was added to the culture fluid and were transferred into a fresh

medium with 5% CO2 at 37°C, replacing the old media

approximately 4–6 h later. Total RNA and total protein were

extracted from LUAD cells 48 h after transfection, and

transfection efficiency of cells was assessed using qPCR and

Western blotting. To ensure efficient gene interference, two

interference sequences targeting the TGFBR2 gene were designed,

and the optimal sequence was selected for conducting subsequent

assays. The sequences information of NC siRNA, TGFBR2 SIRNA-

1, TGFBR2 SIRNA-2, TGFBR2, and GAPDH are shown in Table 1.

Primers were synthesized by Beijing Tsingke Biotech Co., Ltd.

2.10.3 Cell growth inhibition detected by cell
counting Kit-8 assay

After 48 h of transfection, cells from each group were

trypsinized to prepare a single-cell suspension, and the cell count

was determined. Subsequently, the cells were seeded in a 5% CO2

atmosphere at 37°C for 0 h, 24 h, 48 h, and 72 h, respectively, with

triplicate wells set up for each time point. A volume of 10 mL of

CCK8 reagent (CK04, DOJINDO, Japan) was added to each well at

each time point and incubated for another 3 h. Finally, the optical

density (OD) at 450 nm was measured for each well using a

microplate reader.
TABLE 1 Sequence information.

Name Sequence(5′–3′) Size

NC siRNA
UUCUCCGAACGUGUCACGUTT

TACGUGACACGUUCGGAGAATT

TGFBR2 siRNA-1
GCAGAACACUUCAGAGCAGUUTT

AACUGCUCUGAAGUGUUCUGCTT

TGFBR2 siRNA-2
CCUGUGUCGAAAGCAUGAAGGTT

CCUUCAUGCUUUCGACACAGGTT

TGFBR2
AGCAGACCGATGTCTACTCCA 233 bp

GCACTCAGTCAACGTCTCACA

GAPDH
TCAAGAAGGTGGTGAAGCAGG 115 bp

TCAAAGGTGGAGGAGTGGGT
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2.10.4 Cell migration detected by Transwell assay
After transfection for 48 h, single-cell suspension was prepared

through trypsinization, followed by cell counting to determine the

cell number. The cell density of cells was adjusted to 1.5×105/mL. A

volume of 200 µL of the cell suspension was added to the Transwell

chamber, while the lower chambers of the 24-well plates received

600 µL of cell medium supplemented with 10% FBS. Subsequently,

the cells were incubated at 37°C for 24 h. Afterwards, the Transwell

chamber was removed, and culture medium was discarded. The

chamber was then washed twice with phosphate-buffered saline

(PBS). Subsequently, the cells were fixed with 4% paraformaldehyde

(PFA) for 10 min, stained with crystal violet, and washed twice in

PBS after each step. A cotton swab was used to remove residual cells

from the upper chambers. Cell migration was evaluated by counting

the number of migrated tumor cells under a microscope in three

random fields.

2.10.5 Apoptosis detected by flow cytometry
At 48 h after transfection, the cells were digested with 0.25%

trypsin, and all cells were collected for centrifugation at 200 g for

5 min at 4°C. The processed cells were collected for further use.

These centrifuged cells were washed twice with pre-chilled PBS and

centrifuged at 200 g each time for 5 min at 4°C. The obtained cells

were resuspended in 100 mL 1× binding buffer after discarding the

PBS, and 5 mL Annexin FITC and 2 mL PI (C035, GeneCodex,

China) were added, and the mixture was gently mixed to ensure

uniformity. Afterwards, the sample was incubated at room

temperature, protected from light, for 15 min. Next, the sample

was then placed on ice and analyzed by mixing the incubated

solution with 400 mL 1× binding buffer and was placed on the ice for

detection by a flow cytometer within 1 h.
2.11 Drug prediction and
molecular docking

To identify potential small molecule drugs for treating LUAD,

we predicted interactions between drugs and key genes associated

with LUAD based on the Drug–Gene Interaction database

(DGIDB). The predicted interactions were further analyzed using

molecular docking techniques. Initially, we obtained the protein

structure of the target genes from the Protein Data Bank (PDB) (27)

and removed any small molecules and water molecules that were

originally bound to the proteins. Protein hydrogenation and charge

calculations were performed using the AutoDock tools. The drug

structure was retrieved from PubChem database (28) and carried

out charge-balanced, rotatable bond checks on small molecules

using AutoDock Tools. Then, according to the receptor active

center, the range of docking boxes was selected. AutoDock Vina

was then used to calculate the receptor–ligand docking, and we

selected the structure with the lowest binding free energy from the

initial results for better sentence structure and clarity. Finally,

PyMol software was employed for visualizing and enhancing the

aesthetics of the docked structures.
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3 Results

3.1 A total of 401 key module differential
genes were associated with LUAD

In TCGA-LUAD, all samples were subjected to clustering

analysis, which revealed no significant outliers (Supplementary

Figure S1), R2 was set to 0.85, and the soft threshold b was

determined to be 4 (Figure 2A) to build a scale-free network.

Through WGCNA analysis, a total of 12 co-expression modules

were identified (Figure 2B). Among these modules, the MEblue

module exhibited the strongest negative correlation with LUAD

(cor=−0.85, p=1×10–164) (Figure 2C).

Through analyzing the differential genes between LUAD and

normal samples in TCGA dataset by the R package edgeR (version

3.36.0), 5,702 DEGs were identified, among which 3,785 were

upregulated genes and 1,917 downregulated (Figures 2D, E).

Then, the intersection between the 5702 DEGs and 406 key

module genes was determined, resulting in 401 key module

differential genes (Figure 2F).

3.2 Totally four candidate biomarkers were
obtained through machine learning

PPI network was constructed based on 401 key module differential

genes (Figure 3A). Thereafter, an intersection analysis of the network’s

topological parameters—MCC, MNC, and Degree—yielded 15

candidate genes (Figure 3B). The 15 candidate genes were then

ranked, and the top 10 were selected as key candidate hub genes

based on the Gini coefficient algorithm (mean decrease gini)

(Figures 3C, D). The genes were analyzed through the application of

the machine learning LASSO regression algorithm to screen five key

candidate hub genes (Figures 3E, F). A total of 12 candidate hub genes

were obtained using the SVM-RFE method (Figures 3G, H). Finally,

the intersection of the genes obtained from the three machine learning

algorithms was taken to obtain four hub genes (GIMAP6, CAV1,

PECAM1, and TGFBR2) (Figure 3I).

3.3 All four candidate biomarkers had
extremely strong predictive power

In TCGA-LUAD, GSE40791, and GSE31210, it was observed that

the expression levels of four candidate biomarkers were significantly

lower in LUAD patients compared to controls (Figures 4A–C).

Interestingly, ROC analysis revealed that these biomarkers had AUC

values >0.9 across all datasets (TCGA-LUAD: GIMAP6, AUC=0.9831;

CAV1, AUC=0.9953; PECAM1, AUC=0.9945; TGFBR2,

AUC=0.9884; GSE31210: GIMAP6, AUC=0.9633; CAV1,

AUC=0.9794; PECAM1, AUC=0.9763; TGFBR2, AUC=0.9082;

GSE40791: GIMAP6, AUC= 0.9704;CAV1, AUC= 0.9890; PECAM1,

AUC= 0.9927; TGFBR2, AUC= 0.9922), indicating their strong

predictive power for LUAD (Figures 4D–F). Furthermore, K-M

survival analysis demonstrated a significant association between the

expression of these four biomarkers and patient prognosis (Figure 4G).
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FIGURE 2

A total of 401 key module differential genes associated with LUAD were screened. (A) Selection of power values. (B) Module cluster tree diagram;
the upper part is a hierarchical clustering tree diagram of genes, and the lower part is a gene module. (C) Heat map of the relationship between
gene modules and traits based on LUAD. The darker the color, the higher the correlation, with red indicating a positive correlation and blue
indicating a negative correlation. Numbers within cells indicate correlation and significance (correlations in the top row, p-values in the bottom row).
(D) Volcano plot of differentially expressed genes between LUAD and normal groups. (E) Heat map of differentially expressed genes between LUAD
and normal groups. Each row represents the relative expression level of a gene in all samples, each column represents the relative expression level
of all genes in a sample, and the color of each square represents the relative expression level of the gene in the sample, with low expression in blue
and high expression in red. (F) Venn diagram of differentially expressed genes in key modules.
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3.4 There was a causal relationship
between TGFBR2 and LUAD in forward
MR analysis

In assessing whether there is a causal relationship between gene

expression and disease state, we used expression quantitative trait loci
Frontiers in Oncology 08
(eQTLs) as instrumental variables to infer causal associations

between changes in gene expression and disease state. TGFBR2,

GIMAP6, and CAV1 were considered as exposure factors, while

LUAD was regarded as outcome. The TGFBR2-related dataset (eqtl-

a-ENSG00000163513) included 31,470 samples and 19,824 SNPs.

The GIMAP6-associated dataset (eqtl-a-ENSG00000133561)
FIGURE 3

Four candidate biomarkers were obtained through machine learning. (A) PPI network diagram of key differentially expressed genes. (B) Venn diagram of
candidate hub gene screened by three algorithms. (C, D) Identifying key candidate hub base maps through the random forest algorithm [(C) random forest
error rate and number of classification trees; D ranking of gene importance]. (E, F) Screening key candidate hub genes through LASSO regression analysis.
(G, H) Screening key genes through SVM-RFE [(G) Relationship diagram between prediction accuracy and feature number; (H) relationship diagram between
generalization error and feature number]. (I) Venn diagram of candidate hub gene screened by three machine learning algorithms.
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contained 31,684 samples and 20,006 SNPs, CAV1-related dataset

(eqtl-a-ENSG00000105974) had 31,470 samples and 16,582 SNPs.

Based on IVW results, only the relationship between eqtl-a-

ENSG00000163513 (p=0.04, b=−0.06) and ieu-a-984 satisfied p <

0.05; however, the effect between eqtl-a-ENSG00000133561 (p=0.35)

and ieu-a-984 satisfied p > 0.05, indicating that TGFBR2 has a

significant causal relationship with LUAD, and it was a safe factor

for LUAD.

In GWAS, we screened for SNPs significantly associated with

LUAD (5×10−8, r2 = 0.001; kb=10,000) for IVW analysis. No causal
Frontiers in Oncology 09
effect was found for GIMAP6 and LUAD (Supplementary Table S1).

Due to having fewer than three SNPs, the association between CAV1

and LUAD could not be evaluated using the IVW method.

Subsequently, the scatter plot showed that the slope of IVW was

negative and the intercept was negligible (Figure 5A). The further forest

plot showed that the overall effect of IVW was <0 (Figure 5B).

Therefore, TGFBR2 was the safety factor of LUAD. Afterwards, the

reliability of MR analysis results was verified by sensitivity analysis.

First, the Q_pval of the heterogeneity test was 0.949, indicating that

there was no heterogeneity. Next, the p-value of the horizontal
FIGURE 4

Expression, diagnosis, and survival analysis of four candidate biomarkers. (A) Expression of four hub genes in TCGA database. (B) Expression of four
hub genes in GSE31210 database. (C) Expression of four hub genes in GSE40791 database. (Rank sum test was used for statistical analysis,
***p<0.001). (D) ROC curve chart of four hub genes in TGGA database. (E) ROC curve chart of four hub genes in GSE31210 database. (F) ROC curve
chart of four hub genes in GSE40791 database. (G) K-M survival curves were plotted by log-rank test to investigate the effects of TGFBR2, CAV1,
GIMAP6, and PECAM1 on the prognosis of LUAD patients.
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pleotropy test was 0.673, suggesting that no horizontal pleotropy

(Supplementary Table S2). Finally, the residual SNPs had little effect

on the whole after the single SNP was removed by the leave-one-out

test, certificating that the MR results were reliable (Figure 5C).

Subsequently, we used lung adenocarcinoma as the exposure

factor and TGFBR2 as the outcome. Screening of instrumental

variables using 5×10−8, r2 = 0.001; kb=10,000 conditions yielded five

instrumental variables associated with lung adenocarcinoma but

not with TGFBR2 (Supplementary Table S3), IVW analysis revealed

no significant causal effect of LUAD on TGFBR2 expression levels

(p > 0.05) (Supplementary Table S4). Meanwhile, the p-value of

horizontal pleiotropy was 0.494, indicating that there was no

horizontal pleiotropy (Supplementary Table S5), and the leave-

one-out test also indicated that the residual SNPs after removing a

SNP had little effect on the overall effect (Figure 5D), which

comprehensively indicated that the reverse MR analysis results

were reliable. Finally, reverse MR analysis showed that LUAD did

not lead to changes in TGFBR2 expression.
3.5 Relationship between TGFBR2 and
clinical features of LUAD

To further explore the relationship between clinical features and

TGFBR2 expression, we used data from LUAD samples from the
Frontiers in Oncology 10
TCGA-LUAD database to validate our findings. The results showed

the TGFBR2 expression in relation to t-phase (T1, T2) and age in

LUAD patients (Figure 6). The specific data and p-values for

TGFBR2 across various clinical characteristics are presented in

Supplementary Figure S2.
3.6 TGFBR2 and immune cell infiltration
in LUAD

Utilizing the Estimate program to assess the immune

microenvironment, the results indicate that the immune score is

significantly higher in the high TGFBR2 expression group

compared to the low expression group (Figure 7A). Analysis

using the CIBERSORT algorithm reveals discrepancies in the

proportion of 15 immune cell types, between high and low

TGFBR2 expression groups (Figure 7B). Further correlation

analysis shows that TGFBR2 expression is positively associated

with the presence of dendritic cells, eosinophils, macrophages M2,

mast cells, monocytes, neutrophils, and resting CD4 memory T

cells, and negatively correlated with macrophages M0, plasma cells,

T cells CD4 memory activated, T cells CD8, T cells follicular helper,

and T cells regulatory (Tregs) (Figure 7C). The p-value = 0.047

between TGFBR2 and mast cells indicates that although this

correlation is statistically significant, it is marginally close to the
FIGURE 5

MR analysis of the causal relationship between TGFBR2 and LUAD. (A) Scatter plot of TGFBR2 SNP effect. (B) Forest map of TGFBR2 SNP. (C) Validation of
TGFBR2 with leave-one-sensitivity analysis. (D) Reverse MR analysis of causal relationship between TGFBR2 and LUAD, validation of LUAD with leave-one-
out sensitivity analysis.
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conventional threshold. These observations suggest a plausible

connection link between TGFBR2 expression and immune

infiltration in LUAD.
3.7 The expression of TGFBR2 was
increased in LUAD tissue

The expression level of the TGFBR2 in LUAD patients was

measured by immunohistochemistry. The results showed that

compared with normal lung tissues, TGFBR2 expression was

decreased in LUAD tissues (Figure 8).
3.8 TGFBR2 siRNA promotes proliferation,
migration, and invasion of lung cancer cell
A549 and inhibits their apoptosis

3.8.1 Expression of silenced TGFBR2
To further verify the function of TGFBR2, we designed two

siRNAs targeting TGFBR2 in this study and aimed to induce a

quiescent or dormant state of the TGFBR2 gene in lung cancer cells.

The transfection efficiency was assessed by qRT-PCR and Western

blotting. The results showed that TGFBR2 expressions at both mRNA

and protein levels in the siTGFBR2-1 and siTGFBR2-2 groups were

decreased compared with the control group and the NC-siRNA group;

this confirmed the success of the transfection assay, and the siTGFBR2-

2 had better interference effect, making it suitable for use in subsequent

experiments (Figures 9A, B).

3.8.2 TGFBR2 siRNA promotes the proliferation
of A549 cells

CCK8 assay was used to evaluate the effect of TGFBR2 siRNA

on the proliferation of A549 cells. It revealed that A549 cells were

increased in proliferation after siTGFBR2 transfection in a time-

dependent manner. The siTGFBR2 group showed a significant

increase in proliferation rate at the same time points when

compared to the control group and the NC-siRNA group

(p<0.01) (Figure 9C), suggesting that the TGFBR2 gene plays a

role in inhibiting the proliferation of A549 cells.
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3.8.3 TGFBR2 siRNA promotes the migration of
A549 cells

Transwell assay were performed to evaluate the effectiveness of

TGFBR2 siRNA on the migration of A549 cells. The results showed

that compared with the control group and the NC-siRNA group,

the number of migrating cells in the siTGFBR2 group was notably

increased (p<0.01) (Figures 9D, E). This finding suggests that the

TGFBR2 gene plays a role in inhibiting the migration of A549 cells.

3.8.4 TGFBR2 siRNA inhibits the apoptosis of
A549 cells

Flow cytometry was used to evaluate the effect of TGFBR2

siRNA on the apoptosis of A549 cells. The results demonstrated that

compared with the control group and the NC-siRNA group, the

siTGFBR2 group showed a significantly decreased apoptosis rate

(p<0.01) (Figures 9F, G), revealing that the TGFBR2 gene

contributes to promoting apoptosis of A549 cells.

3.9 Molecular docking analyzes binding
between drugs and protein

In DGIDB database, two potential drugs targeting TGFBR2

were identified, Irinotecan and Hesperetin (Table 2). Then, the

binding affinity between the drug and protein was analyzed by

molecular docking. It was found that the binding affinity between

Irinotecan and TGFBR2 was −8.7 kcal/mol, indicating that they had

strong binding activity, while the binding affinity between

Hesperetin and TGFBR2 was −6.2 kcal/mol, suggesting that they

had graceful binding activity (Figure 10).
4 Discussion

LUAD is one of the most commonly occurring life-threatening

malignancies, comprising roughly 40% of all lung cancer cases, and it

has the highest incidence rate among all lung cancer subtypes (1). It has

been elucidated that LUAD is involved in multi-gene process in its

occurrence and development, and personalized or targeted therapy

guided by these genetic testing results has emerged as primary

treatment strategies for LUAD (29). Certain genes have been shown
FIGURE 6

Relationship between TGFBR2 and clinical features of LUAD. (Rank-sum test was used for statistical analysis, *p<0.05).
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to exhibit strong associations with LUAD, and these discoveries have

provided a basis for the development of chemotherapy and targeted

drugs specific to LUAD, which have played an important role in

delaying the progress of LUAD. In spite of these advances, there is still

vast exploration for marker genes of the disease, and it is necessary to

continue to further identify novel genes that affect the occurrence and

development of LUAD, which is not only crucial for enhancing
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symptom management and extending patient survival but also of

great significance for early screening, diagnosis, and treatment. As

common approaches applied in bioinformatics, machine learning

algorithms and Mendelian randomization technology provide

convenience for the screening of disease markers at the technical

level. In our study, we gathered data on LUAD patients from the

TCGA and GEO databases, and employed the WGCNA algorithm to
FIGURE 7

The correlation between TGFBR2 and immune infiltration. (A) Utilization estimates program assessment, immune infiltration parameters in groups
with high and low TGFBR2 expression. (B) Immune cell infiltration analysis CIBERSORT deconvolution algorithm. (Rank-sum test was used for
statistical analysis in (Panel A, B), *p<0.05, **p<0.01, ***p<0.001). (C) Scatter plot of the correlation between TGFBR2 expression and abundance of
immune cell infiltration.
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FIGURE 8

The expression of TGFBR2 in LUAD tissue. (A) Immunohistochemical staining of TGFBR2 in normal and LUAD tissues; scale bar=50 mm. (B) Analyzed
in bar chart (mean ± SM, n=3 in control group, n=5 in LUAD group, t-test was used for statistical analysis, *p<0.05).
FIGURE 9

The effect of TGFBR2 on proliferation, migration, and apoptosis of A549 cells. (A, B) The transfection efficiency of siTGFBR2 was assessed by qRT-
PCR and Western blotting. (C) The proliferation bar chart and proliferation curve of siTGFBR2 on A549 cells at three time points were detected by
CCK8 assay. (D) Microscopic images of siTGFBR2 on A549 cells migration. (E) The bar chart of siTGFBR2 on A549 cells migration. (F) Flow cytometry
analysis of siTGFBR2 on apoptosis of A549 cells. (G) The bar chart of siTGFBR2 on apoptosis of A549 cells. In bar charts, all values are represented
by mean ± SM, and one-way ANOVA was used for statistical analysis, *p<0.05, **p<0.01.
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pinpoint 406 genes with significant associations with LUAD. We then

utilized PPI networks and the algorithms MCC, MNC, and Degree, in

conjunction with machine learning algorithms like random forest,

LASSO regression, and SVM-RFE, to identify four hub genes:

GIMAP6, CAV1, PECAM1, and TGFBR2. In the Kaplan–Meier

analysis of four hub genes, CAV1 demonstrated a survival

correlation that was opposite to that of GIMAP6, PECAM1, and

TGFBR2. In LUAD, CAV1’s expression level and functional status

are linked to various biological behaviors, such as the aggressiveness

and metastatic capabilities of tumor cells. Higher expression levels of

CAV1 may increase the invasiveness and migration of tumor cells,

accelerating tumor progression and worsening patient outcomes (30).

This observation aligns with previous studies, which have shown that

high CAV1 expression correlates with a poorer prognosis in LUAD

patients, as evidenced by significantly lower overall survival rates in the

high-risk group compared to the low-risk group with low CAV1

expression. These findings collectively suggest an oncogenic role for

CAV1 in LUAD progression.

Next, we conducted a single-variable MR analysis using these

four genes as exposure variables and LUAD as an outcome. As a

result, a causal relationship between TGFBR2 (cause) and lung

adenocarcinoma (consequence) was found. Subsequently,

immunohistochemical and cell experiments confirmed that

TGFBR2 is a potential marker gene for LUAD. TGFBR2 serves as
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a pivotal component in the regulation of TGF-b pathway, and it

encodes a transmembrane protein with a protein kinase domain

that has the function of forming a heterodimeric complex with type

1 transforming growth factor b receptor and binds to TGF-b. The
complex, upon receptor–ligand binding, phosphorylates proteins,

which then enter the nucleus to regulate gene transcription

associated with cell proliferation, cell cycle arrest, wound healing,

immune suppression, and tumorigenesis (31). The previous studies

revealed that TGF-b pathway has been shown to play a bidirectional

adjusting effect in tumor progression: in the early stages of cancer,

TGF-b exhibits tumor-suppressing effects by inhibiting cell cycle

progression and promoting apoptosis; in advanced stage, TGF-b
enables to promote tumor progression via accelerating tumor

invasion and metastasis (32, 33). The role of TGFBR2 in tumors

varies across various cancer types; for example, the expression of

TGFBR2 increases in lung metastasis of osteosarcoma (34). Another

study found that the expression levels of TGFBR2 gradually

increased with the progression of hepatocarcinogenesis (35). It is

believed that TGFBR2 plays a role involved in the occurrence and

development of tumors, including NSCLC (36), pancreatic cancer

(37), colorectal cancer (38), and liver cancer (39). At present, it is

more widely recognized that TGFBR2 expression decreases in most

NSCLC patients, and increasing TGFBR2 expression suppresses the

proliferation and invasion of NSCLC (40, 41). Additionally, a study

showed that the absence of TGFBR2 promotes the progression of

lung squamous cell carcinoma (LUSC), which is also a common

type of NSCLC (42). It is demonstrated that TGFBR2 is a key target

for regulating NSCLC. However, some studies have proved that the

mice with mutations in TGFBR2 have enhanced potential in tumor

metastasis (43), and TGFBR2 receptor inhibitors enable reduced

lung metastasis in squamous cell carcinoma (44). High expression
FIGURE 10

Prediction of small molecule drugs in TGFBR2. (A) Molecular docking of Irinotecan and TGFBR2. (B) Molecular docking of Hesperetin and TGFBR2.
TABLE 2 Potential drug prediction targeting TGFBR2.

Gene Drug Sources pmids

TGFBR2 IRINOTECAN PharmGKB 27160286

TGFBR2 HESPERETIN DTC 23153811
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of TGFBR2 in dominant NK cells of SCLC impairs their cytotoxic

activity, leading to tumor growth and metastasis (45). In the study,

we analyzed the expression of TGFBR2 in LUAD using the R

graphics package, ggplot2, in the TCGA and GSE31210 datasets.

The results showed that LUAD patients had decreased TGFBR2

expression, and MR analysis suggested that TGFBR2 is a protective

factor for LUAD. The area under the ROC curve analysis for

TGFBR2 in the TCGA and GSE31210 datasets was 0.9884 and

0.9084, respectively, suggesting that TGFBR2 possesses diagnostic

value. Additionally, Kaplan–Meier analysis indicates that LUAD

patients with high TGFBR2 expression experienced significantly

prolonged overall survival. Immunohistochemical analysis of

clinical tissue samples revealed that TGFBR2 expression was

significantly lower in LUAD cancer tissues compared to controls.

Functional validation of TGFBR2 demonstrated its capacity to

inhibit proliferation and migration of A549 cells and to promote

apoptosis. These findings align with both bioinformatics results and

existing literature.

The tumor microenvironment (TME) is critical in the initiation

and progression of cancer, with immune cells playing a vital role

within this environment. In the TME, immune cell infiltration can

act both as an immune surveillance mechanism to hinder tumor

progression and as a promoter of tumor-favorable phenotypes,

facilitating immune escape and further tumor development.

Consequently, targeting immune cells has become a pivotal

approach in tumor immunotherapy. In this study, analysis of

immune cell infiltration algorithms revealed that levels of

infiltration by dendritic cells, eosinophils, macrophages,

neutrophils, CD4+ T cells, and Treg cells correlate with TGFBR2

expression. Notably, positive correlations were found with dendritic

cells, CD4+ T cells, and neutrophils, suggesting that TGFBR2 may

play a significant role in enhancing the immune regulatory network

within the LUAD tumor microenvironment. Research suggested

that as a molecule with immune-regulatory functions, high

expression of TGFBR2 can trigger innate immune responses and

mitigate immune suppression, facilitating T-cell activation and

infiltration, and thereby curbing tumor growth (46). However,

further studies are necessary to confirm the link between

TGFBR2 expression and immune infiltration in LUAD. The

outcomes of this study offer valuable insights into the potential

role of TGFBR2 in immunotherapy for LUAD and may aid in the

development of personalized immunotherapy strategies.

In our study, two drugs (Irinotecan and Hesperetin) targeting

TGFBR2 through molecular docking were predicted after

determining correlation between TGFBR2 and LUAD. Irinotecan,

an anti-tumor enzyme inhibitor, is widely used in treating colorectal

cancer and is also approved for application in treatment of pancreatic

cancer, lung cancer, and other cancers (47). A series of studies have

shown that SCLC patients receiving Irinotecan for maintenance

chemotherapy have a longer survival (48). Additionally, it is also

used in chemotherapy regimens for advanced non-small-cell lung

cancer and recurrent NSCLC (49). The results of this study suggested
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that Irinotecan has potential advantages in treating LUAD patients

with abnormal TGFBR2 expression. Hesperetin, a naturally active

bio-compound, belongs to one of flavanones. A series of studies have

shown that Hesperetin is functioning in inhibiting the proliferation

and migration of LUAD cells and is capable of restraining tumor

growth in LUAD mouse models combining with use of carboplatin

(50). Therefore, Hesperetin is of important value in research and

application for treating lung cancer, especially for LUAD patients

with abnormal TGFBR2 expressions.

Although this study highlights the potential of TGFBR2 as a

protective biomarker in lung adenocarcinoma (LUAD), it does have

certain limitations. First, the reliance primarily on the TCGA-

LUAD, GSE31210, and GSE40791 datasets may compromise the

universality and representativeness of the results. Future research

should utilize larger-scale, multi-center data to increase the

reliability of these findings. Second, the research validated the

function of TGFBR2 using the A549 cell line, but it is important

to note that cell characteristics and experimental conditions in vitro

can differ from those in vivo. Additionally, the drugs Irinotecan and

Hesperetin, which were identified as potentially related to TGFBR2

through the DGIDB, require validation for safety and efficacy in

preclinical and clinical trials. In conclusion, while this study

provides initial evidence supporting TGFBR2’s role in LUAD,

addressing these limitations is essential for its effective application

as a biomarker and therapeutic target. Future research should

concentrate on expanding sample sizes, exploring mechanisms in

greater depth, and validating drug predictions to advance the use of

TGFBR2 in treating LUAD.
5 Conclusions

In this study, we tried to accurately screen genes closely relating

to diagnosis and prognosis of LUAD based on the WGCNA and

bioinformatic methods including machine learning algorithms and

MR. In addition, TGFBR2 is verified as a potential diagnostic and

prognostic marker for LUAD via immunohistochemistry and cell

experiments. It is related to LUAD immune cell infiltration, which

can be a potential target for LUAD immunotherapy. Furthermore,

Irinotecan and Hesperetin are predicted as potential drugs targeting

LUAD, but further experiments and clinical trials are needed for

verification. The study provides some insights for the diagnosis and

treatment of LUAD. In the future study, we will continue to focus

on the role of this gene in LUAD and conduct more studies on

LUAD-related markers.
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