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The REarranged during Transfection (RET) receptor tyrosine kinase plays a crucial

role in the development of various anatomical structures during embryogenesis

and it is involved in many physiological cellular processes. This protein is also

associated with the initiation of various cancer types, such as thyroid cancer,

non-small cell lung cancer, and multiple endocrine neoplasms. In breast cancer,

and especially in the estrogen receptor-positive (ER+) subtype, the activity of RET

is of notable importance. Indeed, RET seems to be involved in tumor progression,

resistance to therapies, and cellular proliferation. Nevertheless, the ways RET

alterations could impact the prognosis of breast cancer and its response to

treatment remain only partially elucidated. Several inhibitors of RET kinase have

been developed thus far, with various degrees of selectivity toward RET

inhibition. These molecules showed notable efficacy in the treatment of RET-

driven tumors, including some breast cancer cases. Despite these encouraging

results, further investigation is needed to fully understand the potential role RET

inhibition in breast cancer. This review aims to recapitulate the existing evidence

about the role of RET oncogene in breast cancer, from its pathogenic and

potentially prognostic role, to the clinical applications of RET inhibitors.
KEYWORDS

breast cancer, RET oncogene, targeted therapy, clinical trials, TKI - tyrosine
kinase inhibitor
1 Introduction

The REarranged during Transfection (RET) oncogene was first discovered in 1980 and

subsequently identified as a pivotal cancerogenic determinant for papillary and medullary

thyroid carcinomas and other malignancies, paving the way for new diagnostic and

therapeutic strategies (1).
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The RET oncogene is involved in the regulation of cell growth and

differentiation, playing a crucial role in embryonic development and in

the maintenance of tissue homeostasis in adults (2).

RET rearrangements or mutations determine aberrant

activation of its catalytic activity, contributing to tumor formation

and progression (3). In particular, dysfunctional activation of RET

signaling induces uncontrolled activity of the MAPK and PI3K/

AKT/mTOR pathways, ultimately leading to cell proliferation (4).

Given the key role of the RET oncogene in cancer, its inhibition has

represented an attractive therapeutic strategy. Indeed, several multi-

tyrosine kinase inhibitors have been developed over the years and

primarily tested in different tumor types, including thyroid carcinoma,

renal cancer and hepatocellular carcinoma, where they currently

represent the standard of care (5–7). More recently, selective RET

inhibitors showed remarkable activity in multiple cancer types sharing

RET rearrangements (8). Hence, selective RET inhibitors currently

represent an agnostic therapeutic option for patients whose tumor

harbor a RET fusion (9, 10).

With more than 2.3 million new diagnoses and 685.000 deaths in

2020, breast cancer (BC) represents a major health concern worldwide

(11). Despite the significant advances achieved in the treatment of this

disease, new and effective therapeutic options are continuously

investigated and tested, in search for further improvement of disease

outcome (12). Indeed, RET inhibition may represent an exploitable

target across different BC subtypes.

Aim of this review is to provide an overview of the physiological

and pathological functions of the RET oncogene, focusing on its role in

BC biology.We reviewed the available pre-clinical and clinical evidence

concerning RET pharmacological inhibition in this disease, also

highlighting future challenges and perspectives for targeting this

oncogene in the era of personalized medicine.
2 RET physiological and
pathological functions

The REarranged during Transfection proto-oncogene is located on

chromosome 10q11.2 and encodes for a transmembrane tyrosine

kinase receptor (RTK) with an extracellular, a transmembrane and

an intracellular domain (13). The extracellular region has four

cadherin-like domains, a calcium binding site and a cysteine-rich

domain. The intracellular region consists of the active tyrosine kinase

domain flanked by two regulatory regions: the juxta-membrane

domain and a C-tail (13).

RET activation is triggered by glial cell line-derived neurotrophic

factor (GDNF) family ligands (GFLs) such as GDNF, neurturin

(NRTN), artemin (ARTN), or persephin (PSPN) that bind a

glycosylphosphatidylinositol-anchored cell surface protein: GDNF

family receptor-alfa (GFR-a) 1-4 (13). In turn, the GDNF-GFR a1
complex induces RET homodimerization, leading to auto-

phosphorylation of its intracellular tyrosine residues (14, 15). These

phosphorylated residues recruit several adaptor proteins, inducing the

pleiotropic propagation of external stimuli. It has been clearly

demonstrated that different residues activate distinct downstream

pathways. For instance, RET-Y687 binds the SHP2 phosphatase,

activating the PI3K/AKT pathway, while RET-Y752 and Y928
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promote STAT3 phosphorylation, nuclear translocation and

signaling. Moreover, RET-Y905 is critical for binding adaptor

proteins Grb7/10 and RET-Y981 contributes to activation of the SRC

kinase. Additionally, RET-Y1015 recruits phospholipase C-gamma

(PLC-g) thereby activating the protein kinase C (PKC) pathway,

while RET-Y1062 recruits adaptor proteins which activate both the

PI3K/AKT and MAPK pathways. Finally, RET-Y1096 binds Grb2 and

activates the MAPK pathway (15) (Figure 1).

RET mRNA is overexpressed during the earliest phases of

embryological development declining in the later phases of

pregnancy. Indeed, a functional RET is necessary for renal

embryogenesis and for the development of the sympathetic,

parasympathetic and enteric nervous systems, allowing proper

anatomical distribution of entero-endocrine and entero-chromaffin

cells. Thus, intra-uterine RET loss may determine several

malformations, including renal agenesia, severe kidney abnormalities,

aberrant spermatogenesis or Hirschprung’s disease (16).

In adult life, high levels of RET can be found in the salivary glands,

in the dopaminergic neurons of the substantia nigra and in the smooth

muscle of the arterial wall, where they provide for proper functioning of

the sympathetic nervous system. Lower RET expression can be observed

in the heart, spleen, liver, kidneys, lungs, ovaries and testis (16).

Oncogenic RET activation mostly occurs because of chromosomal

rearrangements or gene mutations that directly or indirectly activate its

kinase domain (17).

Chromosomal rearrangements take place through the

juxtaposition of 3’ RET sequences - encoding for the catalytic

domain - with the 5’ sequences of other genes displaying a protein

dimerization domain. Indeed, most RET fusions lack the

transmembrane domain coding regions and give rise to a

constitutively active protein. The most frequent rearrangements

involve the coiled-coil domain containing 6 gene (CCDC6-RET), the

nuclear receptor co-activator 4 gene (NCOA4-RET) and the kinesin

family member 5B gene (KIF5B-RET) (15). RET fusions can be found

in approximately 20% of papillary thyroid cancers, 1-2% of non-small-

cell lung cancers (NSCLCs) and <1% of many other solid tumors,

including ovarian, pancreatic, salivary and colorectal malignancies (18).

Single nucleotide variants in the RET sequence can be either

inherited or somatic (Figure 2).

Germline missense mutations are linked to autosomal dominant

multiple endocrine neoplasia type 2 (MEN2), which is associated with

an increased risk of medullary thyroid carcinoma (MTC),

pheochromocytoma and other tumors (18). More than 95% of

individuals with MEN2A display a germline mutation in RET exons

10 or 11, involving the cysteine-rich area of the extracellular domain.

Indeed, these regions are prone to mutations which cause cysteine

replacement with other amino acids. These modifications reduce the

likelihood of generating intra-molecular disulphide-bonds, promoting

instead inter-molecular covalent disulphide bonds between free

cysteine residues of RET monomers, thereby increasing receptor

dimerization and activation (19). Unlike MEN2A, MEN2B is

associated with germline mutations in the kinase domain, such as

the commonly reported substitutions M918T or A883F. Interestingly,

the protein encoded by the RET-M918T variant can signal as a

monomer, owing to increased ATP-binding affinity and altered

protein conformation, leading to loss of kinase autoinhibition (20).
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Somatic RETmutations are found in 65% of all sporadic MTCs.

The majority of these tumors present the RET M918T mutation,

although additional somatic substitutions, such as E768D and

A883F, have also been described. Less frequently, RET mutations

can be found in sporadic pheochromocytoma (15%) (20).

The increasing use of NGS platforms has uncovered both classical

and novel RET mutations in other cancers, including RET-C634R in

breast carcinoma, RET-E511K in endometrial and Merkel-cell

carcinomas, RET-M918T in a paraganglioma and atypical lung

carcinoid and RET-V804M in colorectal carcinoma, meningioma,

gastrointestinal stromal tumors (GIST) and hepatoma (9) (Figure 2).
3 RET as an oncogene in
breast cancer

In the last years, the potential role of RET in BC development

and progression has been extensively investigated (Figure 3).
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In BC, RET is more frequently overexpressed than rearranged

or mutated. Indeed, high levels of RET RNA, with or without gene

amplification, can be found in up to 40-60% of breast tumors,

usually correlating with increased protein expression (21–25).

More in detail, in ER positive (ER+) BC, RET overexpression

seems to be involved in tumorigenesis and resistance to endocrine

therapy (26–30). In a study by Gattelli et al., chronic overexpression

of wild-type RET (isoform 51) in the mammary gland promoted the

development of ER+ BC in a transgenic mouse model (22). These

tumors harbored intense MAPK and PI3K/AKT/mTOR signaling,

underlying the relevance of these pathways in RET-driven BC, as

reported in additional studies (24, 27, 30, 31). According to Wang

et al., exposure of BC cells to estrogen enhances RET expression

through ER and FOXA1 transcriptional activity, leading to the

activation of downstream pathways and eventually promoting cell

proliferation (32).

RET hyperexpression may also determine estrogen-

independent activation of the estrogen receptor (ER)-a, leading to
FIGURE 1

RET receptor structure, co-receptors, corresponding ligands and intracellular signaling pathway. RET activation is mediated by indirect interaction
with one of four ligands: GDNF, ARTN, NRTN and PSPN linked to one of four GFRa1-4 co-receptors. The formation of the ligand/co-receptor/RET
complex induces RET dimerization and triggers autophosphorylation at intracellular tyrosine residues leading the activation of downstream signaling
pathways essential for cell growth, proliferation, survival, differentiation, or appetite control. The orange, light blue, blue and green arrows indicate
the binding of adapter proteins. The light blue, blue, red, orange, green and violet lines indicate the activation of downstream signaling pathways.
ARTN, Artemin; GDNF, glial cel-linederived neurotrophic factor; GFRa, GDNF family receptor-alfa; NRTN, Neurturin; PSPN, Persephin; RET,
Rearranged during Transfection.
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an endocrine resistant phenotype (26, 27, 33). Moreover, autocrine

production of RET ligands, such as GDNF, by ER+ BC cells may be

responsible for RET-mediated endocrine resistance, rather than

RET overexpression itself (34). However, high levels of RET and

GDNF in ER+ BC cells seem to be associated with estrogen-

independent signaling activation via NTRK, KRAS and PI3K, and

these features seemingly correlate with inferior survival outcomes

(35). In turn, ER activation can upregulate both RET and GFR-a1,
due to the presence of estrogen-responsive elements (EREs) in their

promoters (36, 37). Other evidence supports a role for RET in the

development of endocrine resistance. In an in-vitro endocrine

resistant BC model, the GDNF/RET axis was strongly active and

promoted cell survival (33, 38). Hyperactivation of this pathway

may determine estrogen-independent ER functioning and promote

the transcription of genes related to the immune response, such as

STAT1 and STAT3 (22). Additionally, GDNF/RET signaling seems

to induce a positive feedback loop with early growth response-1

(EGR1) that can cause endocrine resistance through the activation

of cyclin D1 (39).

Zheng and colleagues described another positive feedback loop

involving BRD4/ER-a-RET-ER-a in ER+ BC cell lines (40). In detail,

estrogen receptor super-enhancers (ERSEs) seem to promote ER-a-
induced carcinogenesis, regulating transcription of ER target genes,

such as RET. Moreover, the bromodomain protein BRD4, which is a

massive regulator of ERSEs, controls RET activation through ERSEs

itself. On the other hand, RET activation induces the up-regulation of

the RAS/RAF/MEK2/ERK/p90RSK/ER-a cascade, leading to a loop

activation of ER-a, a crucial event for ER-a-induced gene transcription
and development of a malignant phenotype (40).
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On a different note, in ER+ BC cells endocrine therapy may

exert a paradoxical effect on the GDNF/RET axis, increasing RET

expression at both the RNA and protein level, a mechanism that

seemingly relies on pro-inflammatory mediators (24, 41). Indeed, it

has been reported that both fulvestrant and aromatase inhibitors

can increase inflammatory cytokines levels (e.g. IL-6) (24, 41).

Furthermore, the RET promoter displays binding sites for STAT

and NFKB, that can stimulate IL-6 expression. In line with these

observations, adding an anti-IL-6 antibody in BC cell culture

reduces RET expression. These data reinforce the hypothesis that

RET signaling can mediate endocrine resistance through

inflammation mechanisms (31, 33).

Given its involvement in endocrine resistance, RET overexpression

has controversially been proposed as a negative prognostic biomarker

in ER+ BC. In a cohort of 93 ER+ BC patients, individuals carrying a

RET polymorphism associated with lower RET expression

(rs2435357C>T) displayed longer survival (42). Consistently, several

reports have described an association between RET overexpression and

a worse prognosis (31, 32). However, RET hyperexpression by

immunohistochemistry did not predict inferior survival in two large

cohorts of ER+ BC (32, 43).

RET overexpression can also be present in HER2-enriched

(HER2+ve) and triple negative (TN) BC (6, 38). In HER2+

tumors, RET can cause resistance to anti-HER2 therapies, such as

trastuzumab. Indeed, GDNF/RET signaling can reduce

trastuzumab-induced apoptosis, eventually promoting cell survival

and treatment resistance. In a xenograft model, the addition of

recombinant GDNF (rGDNF) in cultures stimulates tumor growth

in both trastuzumab-sensitive and -resistant cell lines (38). This
A B

FIGURE 2

Schematic representation of recurrent RET mutations and rearrangements in cancer. (A) Structure of the RET protein reporting the most common
mutations identified in cadherin-like repeats domains (CLDs), cystein-rich domain (CRD), transmembrane domain (TM) and tyrosine kinase domain
(TKD). (B) RET fusions containing the most common upstream gene partners characterized by an oligomerization domain (OD) and different break-
point regions dependent on the exon (E) involved in the generation of the chimeric junction.
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effect is reversible upon SRC inhibition, suggesting a potential role

for SRC in RET-driven resistance to trastuzumab (38).

The role of RET hyperexpression in TNBC is not fully

elucidated. However, RET-directed TKIs seem to inhibit TNBC

growth, providing preclinical evidence for the use of RET inhibitors

in this subtype of breast carcinomas (6).

Besides RET overexpression, other genomic aberrations have been

reported in BC. RET fusions are exceedingly rare (0.1%) but represent a

potential therapeutic target for BC patients (44). The most common

rearrangements are CCDC6-RET, NCOA4-RET and RasGEF domain

family member 1A (RASFGEF1A)-RET (45). Additionally, new fusion

partners have been recently identified, such as ELKS/RAB6-interacting/

CAST family member 1 (ERC1)-RET, zinc finger protein 485 (ZNF485)-

RET and Sperm Antigen with Calponin Homology and Coiled-Coil

Domains 1 Like (SPECC1L)-RET (45, 46). Similarly, RET SNVs have

been anecdotally described in breast tumors (0.2%) (17). They are

usually missense mutations, such as C634R and M918T (responsible

for MEN2A and MEN2B, respectively). Other substitutions, such as

E511K, C611R, C620F, L633V, C634F and T636M, involve the

extracellular domain, while V804M occurs in the kinase domain

(45). These SNVs have been found more frequently in metastatic

sites, rather than in primary tumors. Several in vitro studies have

defined the pathways activated by these alterations that includeMAPK,

PI3K/AKT, mTOR, FAK and JAK/STAT (47). Other mutations, such

as M918T, can maintain STAT3 constitutively active (48). Lastly,

alterations involving non-coding RET sequences (e.g., promoter

regions) that may influence the expression of TK domain coding

exons have also been reported in BC (49–51), but their biological

significance is still uncertain.
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4 Targeting RET in breast cancer

4.1 Pre-clinical evidence

According to preclinical evidence, RET represents an actionable

target in many solid tumors, including BC, and different RET

inhibitors have been tested both in vitro and in xenograft models.

However, most of the evidence available so far, regards mainly

multi-kinase inhibitors, whose anti-RET activity cannot be

easily assessed.

Among these, sunitinib (N-[2-(diethylamino)ethyl]-5-[(Z)-(5-

fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-

pyrrole-3-carboxamide) reduced MAPK/ERK pathway activity in

RET-expressing BC cell lines (7). Similarly, treatment with

vandetanib reduced RET phosphorylation and activation,

promoting tumor regression in BC patient-derived xenografts

(PDXs) (6).

More recently, cabozantinib (1-N-[4-(6,7-dimethoxyquinolin-

4-yl)oxyphenyl]-1-N ’-(4-fluorophenyl)cyclopropane-1,1-

dicarboxamide) has been tested in RET overexpressing cell cultures

and PDXs from resected brain metastases, determining a reduction

of RET phosphorylation and inhibiting tumor growth (52).

RET inhibitors have also been tested in association with

endocrine therapy in ER+ BC, with controversial results. The

combination of both sunitinib or vandetanib and tamoxifen

significantly reduced tumor growth in vivo (28, 30, 53). On the

other hand, the addition of tamoxifen, letrozole or fulvestrant to

NVP-AST487 (a multi-kinase RET-targeting inhibitor) did not

show an additional benefit in xenograft models (24). However,
FIGURE 3

Schematic representation of RET oncogene role in Breast Cancer (Created with BioRender.com). RET, Rearranged during Transfection; ER, estrogen
receptor; AI, aromatase inhibitor.
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these combinations seem to decrease disease metastatic index and

tumor dissemination (24).

Limited preclinical evidence has been generated in BC models

harboring RET rearrangements with the available evidence

indicating that cabozantinib reduces the proliferative potential of

breast cancer cells displaying the NCOA4-RET fusion (52).

Finally, an antibody-drug conjugate (ADC) encompassing a

fully human anti-RET antibody (Y087) and the microtubule

inhibitor maytansine (DM1) has been developed and tested both

in vitro and in vivo. The compound showed signs of activity in BC

xenograft models, with preliminary safety studies in primates

suggesting neuropathy as the main on-target toxicity (54).
4.2 Clinical evidence

Given the encouraging preclinical results, RET inhibitors have

been tested in BC patients, mostly in early phase trials (Table 1).

Results are already available from studies with either multi-kinase

inhibitors (anlotinib, cabozantinib, lenvatinib, vandetanib) or RET-

specific inhibitors (selpercatinib), with several other trials still

ongoing (Table 2).

4.2.1 Non-selective multi-kinase inhibitors
Anlotinib (1-[[4-[(4-fluoro-2-methyl-1H-indol-5-yl)oxy]-6-

methoxyquinolin-7-yl]oxymethyl]cyclopropan-1-amine) is a tyrosine

kinase inhibitor with several targets, including RET, FGFR, c-KIT,

PDGFR, and VEGFR (55, 56). The efficacy and safety of this inhibitor

has been evaluated in a Chinese population with advanced solid tumors

(55). In a single-arm phase II trial, 26 HER2- metastatic BC patients,

unselected for the presence of RET alterations, received anlotinib after

failing standard treatment options (56). Objective response rate (ORR),

the primary endpoint, was 15.4%, while median PFS was 5.22 months.

Overall, anlotinib activity was superimposable in ER+ and TNBC
Frontiers in Oncology 06
patients. Treatment was well tolerated with grade 3-4 adverse events

(AEs) mostly ascribed to hypertension (26.9%) and hand-foot

syndrome (3.8%) (56).

The multi-kinase inhibitor cabozantinib targets RET, MET,

VEGFR2 and other receptor tyrosine kinases such as FLT3 and c-

KIT (5). In a single-arm phase II trial, cabozantinib, at the dose of 100

mg or 60 mg once daily, showed clinical activity in 52 ER+ metastatic

pre-treaded BC patients with bone metastases (with or without extra-

osseous metastases) (57). Bone scan response rate, the primary

endpoint, was 38.5%, while disease control rate (DCR) was 50%.

Median PFS and OS were 4.3 and 19.6 months, respectively. No

difference emerged between patients with bone-only and extra-osseous

disease. Approximately 80% of patients receiving cabozantinib at 100

mg required a dose reduction. Most common adverse events were

fatigue, hypertension, diarrhea and nausea (57). In another phase II

trial conducted in different tumor types, cabozantinib was administered

for a 12-week, open-label lead-in period. Patients with partial response

at week 12 were kept on open label cabozantinib, while those with

stable disease were randomized to cabozantinib or placebo. At the time

of disease progression, treatment was unblinded and patients on

cabozantinib discontinued it, while those on placebo resumed the

TKI until a new progression occurred. Objective response rate (ORR)

for the 12-week lead-in stage and PFS after randomization were the co-

primary endpoints. Among the 45, heavily pretreated, BC patients

enrolled (43 ER+ve, 2 TN) ORR at 12 weeks was 13.6% and DCR

46.7%. Median PFS was 4.3 months and median OS was 11.4 months.

Most frequent adverse events of all grades were fatigue, palmar-plantar

erythrodysesthesia, nausea and diarrhea (58). A published report

describes the case of a 63-year-old woman with recurrent ER+/HER2

+ BC and a NCOA4-RET rearrangement that achieved a clinical and

radiological response to the combination of cabozantinib, trastuzumab

and exemestane (45).

The multi-kinase inhibitor foretinib (1-N’-[3-fluoro-4-[6-

methoxy-7-(3-morpholin-4-ylpropoxy)quinolin-4-yl]oxyphenyl]-
TABLE 1 Published clinical trials with RET-inhibitors including breast cancer patients.

Disease
Trial

Identifier
Pts

Receptors
status

Intervention Phase
Endpoints
and Results

Advanced
Solid Tumors

NCT00940225 45

ER+/HER2- n=35
ER+/HER2+ n= 7
ER+/HER2u n=1
TN n=2

Cabozantinib II
ORR (13.6%)
PFS (4.3 m)
OS (11.4 m)

Breast cancer NCT01441947 52

ER+/PgR+ n=40
ER+/PgR- n=12

Cabozantinib II

Bone scan RR (38.5%)
DCR (50%)
OS (19.6 m)
PFS (4.3 m)

Breast cancer NCT02562118 47
ER+/PgR+ n=40
ER+/PgR- n=6

Lenvatinib + Letrozole Ib/II ORR (23.3%)

Breast cancer NCT00811369 129
HR+ n=123
HER2+ n= 6

Vandetanib
+ Fulvestrant

II
uNTx

PFS (5.8 m)
OS

Breast cancer NCT04002284 26
HR+ n=16
HR- n= 10 Anlotinib II

ORR (15.3%)
PFS (5.22 m)
DCR (80.7%)
Pts, number of patients; HER2u, HER2 unknown; PFS, progression-free survival; ORR, overall response rate; DFS, disease-free survival; OS, overall survival; uNTx, urinary N-telopeptide; Bone
scan RR, Bone scan response rate.
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1-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide) has been

tested, in combination with lapatinib, in a phase Ib trial that

enrolled 19 patients with advanced HER2+ BC. However, the TKI

association showed limited activity (median PFS 3.2 months), and

foretinib development has been halted (59).

Lenvatinib (4-[3-chloro-4-(cyclopropylcarbamoylamino)

phenoxy]-7-methoxyquinoline-6-carboxamide) is another multi-

kinase inhibitor with several targets, such as RET, FGFR, c-KIT,

PDGFR, and VEGFR (60–62). In a phase Ib/II trial the combination

of lenvatinib with letrozole was evaluated in 47 post-menopausal

women with pre-treated advanced ER+/HER2- BC (63). Twenty-

three percent of patients presented an objective response, with a

median duration of 6.9 months and a median time-to-progression of

6.2 months. The potential correlation between RET expression by

immunohistochemistry and clinical benefit was investigated. Despite a

trend toward an increased efficacy in patients with higher RET

expression, the association was not statistically significant.

Vandetanib (N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-

methylpiperidin-4-yl)methoxy]quinazolin-4-amine) is a multi-

kinase inhibitor with activity against and RET, EGFR1 and

VEGFR2. A randomized phase II trial investigated the use of

vandetanib or placebo with fulvestrant in 129 postmenopausal ER

+ metastatic BC patients, with bone only or bone-predominant

disease (64). Reduction of urinary N-telopeptide of type 1 collagen

(uNTx) was the primary outcome of this study. Secondary

outcomes included PFS, OS, pain response and number of

skeletal-related events (SREs). The trial failed to show any

statistically significant difference between treatment arms for both

the primary and secondary endpoints, indicating no advantage of

adding vandetanib to fulvestrant in this population (64).

4.2.2 Selective inhibitors
Selpercatinib (6-(2-hydroxy-2-methylpropoxy)-4-[6-[6-[(6-

methoxypyridin-3-yl)methyl]-3,6-diazabicyclo[3.1.1]heptan-3-yl]

pyridin-3-yl]pyrazolo[1,5-a]pyridine-3-carbonitrile) is a selective

inhibitor of wild-type, mutant and re-arranged RET. The efficacy

of this drug has been explored in a phase I/II, multicenter, open-
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label, multicohort clinical trial (LIBRETTO-001) in patients with

tumors harboring RET alterations (65, 66). Two patients with BC

and RET fusions were enrolled in this trial, experiencing a partial

and a complete response, respectively. The patient achieving a

complete response was a 46-year-old pre-menopausal Japanese

woman, with multiple nodal and lung metastases from ER+ BC at

baseline, progressing to first line therapy with tamoxifen and

goserelin (67). Next generation sequencing analysis performed on

tumor tissue detected the CCDC6-RET fusion. Upon selpercatinib

initiation, the patient experienced a rapid clinical improvement,

along with a partial response, followed by a complete response after

3 months of treatment (67).

Another report described the case of a 36 years-old Chinese

woman with heavily pretreated TNBC, displaying a CCDC6-RET

fusion and achieving a partial response with the RET selective

inhibitor pralsetinib (N-[(1S)-1-[6-(4-fluoropyrazol-1-yl)pyridin-

3-yl]ethyl]-1-methoxy-4-[4-methyl-6-[(5-methyl-1H-pyrazol-3-yl)

amino]pyrimidin-2-yl]cyclohexane-1-carboxamide) (68).

Several clinical trials are evaluating the efficacy of RET

inhibitors in monotherapy or in combination with other agents in

BC patients. Most of these early phase trials are testing a

combination of multi-kinase inhibitors and hormonal therapy in

patients with metastatic ER+/HER2- BC, progressing after a

previous line of endocrine therapy.
5 Conclusions and future perspectives

The intricate role of the RET oncogene in BC biology has been

extensively explored since the early nineties, with most findings

generated in the ER+ subtype (3, 33, 34). As this body of evidence

shows, in BC RET is frequently overexpressed rather than

rearranged or mutated (21, 35, 69). Still, thus far a prognostic or

predictive role for RET hyperexpression in breast malignancies has

not been demonstrated.

In ER+ BC patients, alterations of RET signaling contribute to

the onset and maintenance of endocrine resistance (29, 34, 39).
TABLE 2 Ongoing clinical trials with RET-inhibitors enrolling breast cancer patients.

Disease Trial Identifier Intervention Regimens Phase Endpoints

HR+/HER2-
breast cancer

NCT05181033
Lenvatinib + Letrozole
vs
Fulvestrant

14 mg daily + 2.5 mg daily vs 500 mg day 1
every 4-weekly cycle II PFS, ORR, CBS, OS

HR+/HER2-
breast cancer

NCT05286437
Lenvatinib + Letrozole
+ Pembrolizumab

14 mg daily + 2.5 mg daily + 400 mg day 1
every 6-weekly cycle

II
ORR, PFS, DOR,
CBR, OD

HR+/HER2-
breast cancer

NCT05075512
Anlotinib
+ Fulvestrant

12 mg once daily on days 1-14, every 21 days
+ 500 mg day 1 every 4-weekly cycle

II
PFS, ORR, CBR,
OS, AE

Advanced solid
tumors
RET fusion + solid
tumors
MTC

NCT03157128 Selpercatinib

20 mg once daily or 20-240 mg twice/
160 twice

I/II ORR, OS, PFS, DOR
PFS, progression-free survival; ORR, overall response rate; DFS, disease-free survival; OS, overall survival; CBR, clinical benefit rate; DOR, duration of response; AE, adverse event.
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Whether these alterations are also implicated in lack of response to

other therapies, such as cyclin dependent kinase 4/6 (CDK4/6)

inhibitors or ADCs, is unknown, and could represent a field for

future investigations.

Data from clinical trials testing non-selective RET inhibitors in

BC, either as monotherapy or in combination with endocrine

therapy, are conflicting and results from ongoing trials are

awaited (57, 60, 64, 70).. Among these, a phase II study is

comparing the combination of lenvatinib and letrozole to

fulvestrant in advanced ER+ BC patients who progressed to first

line endocrine therapy plus a CDK4/6 inhibitor (NCT05181033).

Another phase II trial is testing lenvatinib, pembrolizumab and

letrozole in endocrine-resistant advanced BC (NCT05286437). The

association of lenvatinib and pembrolizumab has proven effective in

multiple cancer types, including some scarcely sensitive to immune-

checkpoint inhibitors monotherapy (e.g., mismatch repair-

proficient endometrial cancer) (71). Hence, a rationale exists to

test this combination in ER+ BC. In general, a major pitfall of past

and ongoing studies of non-selective RET inhibitors in BC is the

lack of a predictive biomarker that could inform patient selection.

In the last years, the search for actionable molecular drivers has

led to major breakthroughs in the treatment of several malignancies

and to the definition of so-called agnostic targets, which offer the

opportunity to tailor patient treatment to the disease molecular

profile rather than to the tumor site of origin (72, 73). This is the

case for NTRK rearrangements that can be addressed by specific

inhibitors, and for tumor mutational burden (TMB) or mismatch

repair deficiency (MMRd), that are predictive of immunotherapy

efficacy (74–76). More recently, RET rearrangements have also been

claimed as agnostic biomarkers and in 2022 the Food and Drug

Administration approved the selective RET inhibitor selpercatinib

for the treatment of patients with advanced solid tumors with RET

gene fusions after the results of the phase I/II LIBRETTO trial (10).

Moreover, ADCs targeting RET or GFRA1, may represent

another innovative approach in the future, although only

preclinical evidence is available so far (54, 77).

Despite being exceedingly rare, RET rearrangements represent

an invaluable therapeutic possibility for BC patients. Published

reports confirm the activity of selective RET inhibitors across

different BC subtypes in patients with advanced disease,

progressing to several lines of standard treatments (9, 10). RET

point mutations may also predict response to selective inhibitors, as

already demonstrated in medullar and papillary thyroid cancer (65).

However, whether the same activity is retained in BC displaying

RET mutations has yet to be demonstrated.

Importantly, RET inhibitors, especially multi-kinase

compounds, may induce different and potentially severe toxicities,

such as hypertension and hemorrhagic or thrombotic events (7, 9,

10, 55, 56, 58, 59, 63, 64). Future studies evaluating these drugs must

take into account strategies to mitigate and manage toxicity,

including dose reduction or intermittent schedules, cardiological

monitoring, evaluation of concurrent medications and comorbidity.

Overall, clinical application of RET inhibitors in BC is still in an

early stage of development. Most of the existing evidence derive

from small studies, and no recommendation exists about the RET

testing and its timing in BC patients. Since RET inhibitors represent
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an off-label option for BC patients in most countries, with the

exception of the United States where selpercatinib has received an

agnostic indication, RET alterations could be tested in patients with

advanced BC after progression to standard options, to check for

potential eligibility in clinical trials.

Future researches should focus on: i) mechanistic studies

elucidating the precise molecular mechanisms by which RET

alterations drive BC progression and therapy resistance; ii)

combinations between RET inhibitors and other compounds such

as hormonal treatments and immunotherapies; iii) identification of

reliable predictive biomarkers,to select patients who are most likely

to benefit from RET-targeted therapies.

Understanding the role of the RET oncogene in BC biology may

increase our ability to exploit its therapeutic potential in the era of

personalized medicine. Future studies should elucidate the

prognostic and predictive role of RET alterations in BC, with the

aim of expanding the proportion of patients who may benefit from

RET inhibition, eventually integrating them into the therapeutic

armamentarium for BC patients.
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