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Introduction: The rapid advancement of science and technology has

significantly expanded the capabilities of artificial intelligence, enhancing

diagnostic accuracy for gastric cancer.

Methods: This research aims to utilize endoscopic images to identify various gastric

disorders using an advancedConvolutional Neural Network (CNN)model. The Kvasir

dataset, comprising images of normal Z-line, normal pylorus, ulcerative colitis, stool,

and polyps, was used. Images were pre-processed and graphically analyzed to

understand pixel intensity patterns, followed by feature extraction using adaptive

thresholding and contour analysis for morphological values. Five deep transfer

learning models—NASNetMobile, EfficientNetB5, EfficientNetB6, InceptionV3,

DenseNet169—and a hybrid model combining EfficientNetB6 and DenseNet169

were evaluated using various performance metrics.

Results & discussion: For the complete images of gastric cancer, EfficientNetB6

computed the top performance with 99.88% accuracy on a loss of 0.049.

Additionally, InceptionV3 achieved the highest testing accuracy of 97.94% for

detecting normal pylorus, while EfficientNetB6 excelled in detecting ulcerative

colitis and normal Z-line with accuracies of 98.8% and 97.85%, respectively.

EfficientNetB5 performed best for polyps and stool with accuracies of 98.40%

and 96.86%, respectively.The study demonstrates that deep transfer learning

techniques can effectively predict and classify different types of gastric cancer at

early stages, aiding experts in diagnosis and detection.
KEYWORDS

gastric cancer, medical images, deep learning, ulcerative colitis, transfer learning,
contour features
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1 Introduction

Gastric cancer, often known as stomach cancer, is the fifth most

frequent cancer worldwide. Approximately 95% of the time, this

sort of cancer begins in the stomach’s inner lining and subsequently

grows and develops deeper into the stomach walls. It generally starts

at the gastroesophageal junction, where the long tube that

transports the food, you swallow meets the stomach. Cancer does

not just affect the stomach; it also affects neighboring organs such as

the liver and pancreas. Figure 1 depicts the layered image of gastric

cancer developing in a human stomach from stage 1 to stage 4 (1).

Nonetheless, a few demographic factors, such as age above 65,

male gender, and ethnicity from East Asia, South or Central

America, or Eastern Europe, can increase the risk (2). In the early

stages, people with gastric cancer frequently report indigestion and

stomach discomfort, mild nausea, heartburn, a loss of appetite,

blood in the stool, vomiting, abrupt weight loss, jaundice, difficulty

swallowing, and ascites (3). In 2022, the American Cancer Society

predicts that around 26,380 new instances of stomach cancer will be

documented, with 15,900 males and 10,480 females. In comparison,

11090 people have died thus far, including 6,690 men and 4,400

women (4). With the devastating impact of stomach cancer on

people in mind, doctors or oncologists have recommended a variety

of treatments to treat the cancer and preserve people’s lives. Table 1

summarizes the clinical procedures used to prevent the formation of

stomach cancer cells (5, 6).

Overall, gastric or stomach cancer was generally identified at

advanced stages due to its hidden and similar symptoms, which

resulted in a miserable diagnosis. Early correct identification of

gastric cancer has been observed to raise the overall 5-year survival

rate by approximately 90% (4). However, the number of

experienced imaging experts limits early stomach cancer

diagnosis. Furthermore, diagnosis accuracy was highly dependent

on expert clinical expertise and was susceptible to various

circumstances (7).

Then came the AI era, during which artificial intelligence (AI)

got great attention in various medical sectors. AI approaches, which

used a computer to mimic human cognitive function, were applied

to process and evaluate vast volumes of data and might aid

gastroenterologists during clinical diagnosis and decision-making

(8). In fact, the relevance of AI in cancer research and therapeutic
Frontiers in Oncology 02
application is becoming well-recognized. Cancers such as gastric or

stomach cancer are suitable to test for determining whether early

efforts to apply AI to provide medicine to patients will deliver

valuable outcomes or not as researchers have used AI to help

diagnose specific endoscopic tests (9).

The proposed study leverages advanced deep learning models to

enhance the detection and classification of various stomach

conditions, marking significant contributions to the field of

medical imaging and gastrointestinal disease diagnosis. The key

contributions and novelty of the work can be outlined as follows:
• Usage of a large and diverse set of images from the KVASIR

collection which encompasses multiple conditions such as

normal pylorus, polyps, Ulcerative Colitis, normal z-line,

and stool.

• Pre-processing of images which include the creation of RGB

histograms and extraction of regions of interest, is crucial

for improving model performance. The detailed graphical

representation and contour feature extraction help in

accurately identifying the relevant features for each

condition, which is essential for the training of deep

learning models.

• Applying multiple state-of-the-art deep transfer learning

models such as NASNetMobi le , Incept ion V3,

EfficientNetB5, EfficientNetB6, and DenseNet169 allows

for a comprehensive comparison of their performance.

• The integration of EfficientNetB6 and DenseNet169 into a

hybrid model represents a novel approach. Combining

these models leverages the strengths of both architectures,

potentially leading to improved performance in terms of

accuracy, precision, recall, and F1 score. The applied novel

model has been rigorously compared with existing

techniques using both the same dataset and a different

dataset of gastric cancer. The comparative analysis

demonstrates that the hybrid approach offers a more

robust solution for detecting and classifying gastric cancer.

• The findings from this study provide a valuable benchmark

for future research in the field of medical imaging and AI-

based diagnosis of gastric cancer. The methodologies and

results can guide subsequent studies, helping to refine and

improve deep learning models for similar applications.
FIGURE 1

An overlay to indicate the stage of tumor in stomach at different layers.
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The following section presents the research conducted in the

field of detecting gastric cancer is discussed; the methodology to

conduct the research which is used to classify gastric cancer is

presented in section 3 whereas results and discussion is covered in

the section 4, and the Section 5 summarizes the paper with

challenges and its scope in future.
2 Literature work

Various researchers have worked to diagnose gastric cancer

using multiple artificial intelligence techniques.

Additionally, the work of the researchers has been also analyzed

and the challenges which they had faced are also pointed out

in Table 2.

Nadeem et al. (2018) (10) introduced a innovative ensemble

method that integrated texture features as well as deep learning

features to enhance the prediction of abnormalities in

gastrointestinal (GI) tract, such as Peptic Ulcer Disease. For

extracting data from visual information, they used multimedia

content analysis and for classification, machine learning

techniques had been applied. On combining these two

approaches, the ensemble method improved the accuracy as well

as effectiveness to detect GI tract abnormalities. Chen et al. (2022)

(11) developed a multi-scale visual transformer model also named

as GasHis-Transformer to automatically detect gastric cancer in

histopathological images collected from gastric histopathologic

image dataset. They also used a Dropconnect-based lightweight

network to facilitate clinical application as well as reduce the model

size and training time to maintain high confidence levels. Li et al.

(2018) (12) proposed a deep learning-based framework called

GastricNet to automatically detect gastric cancer. GastricNet

employed different architectures for its shallow and deep layers to

enhance feature extraction. The performance of their framework
Frontiers in Oncology 03
was examined on using publically available BOT gastric slice

dataset. Hirasawa et al. (2018) (13) focused on applying artificial

intelligence and deep learning, specially through convolutional

neural networks, to enhance recognition of image in medical

diagnostic imaging. The CNN-based totally diagnostic system was

developed using Single Shot MultiBox Detector structure and

trained with 13,584 endoscopic snap shots of gastric cancer. Later

to evaluate its diagnostic accuracy, the overall performance of CNN

model was tested on an impartial set of 2,296 stomach snap shots

accrued. Song et al. (2020) (14) aimed to develop a clinically

applicable artificial intelligence system to early identify and

diagnose histopathological images of gastric based cancers. Their

goal became to ease the workload of pathologists and boom

diagnostic accuracy with the aid of using a deep convolutional

neural community trained on pixel-degree annotated H&E-stained

entire slide images. The system turned out to be robustly in real-

time data, and suggested its feasibility and benefits for routine

exercise in clinical settings. Mortezagholi et al. (2019) (15)

investigated the effectiveness of diverse traits of disease risk aspect

and data mining techniques to expect and diagnose gastric most

cancers. Specifically, they aimed to determine how properly distinct

machine learning models including Support Vector Machine,

Decision Tree, Naive Bayesian Model, as well as k-Nearest

Neighbors may be used for the type of people having gastric

cancers or being healthful, based on a fixed of eleven

characteristics and risk elements. Aslam et al. (2020) (16)

developed an advanced classification and prediction system for

diagnosing gastric cancer (GC) through the analysis of saliva

samples. By focusing on the early detection of gastric cancer

(EGC), the study aimed to significantly improve patient survival

rates. Utilizing high-performance liquid chromatography-mass

spectrometry (HPLC-MS), the researchers identified fourteen

amino acid biomarkers in saliva samples that could distinguish

between malignant and benign conditions. The study employed

support vector machine (SVM) models with various kernels for

binary classification, utilizing a processed Raman dataset for

training and testing. Ueyama et al. (2021) (17) developed and

evaluate an artificial intelligence (AI)-assisted computer-aided

diagnosis (CAD) system utilizing a convolutional neural network

(CNN) to enhance the diagnosis of early gastric cancer (EGC)

through magnifying endoscopy with narrow-band imaging

(ME-NBI). Given the substantial expertise required for accurate

ME-NBI diagnosis, the study aimed to leverage deep learning,

specifically the ResNet50 model, to create a reliable diagnostic tool.

Sun et al. (2020) (24) designed and evaluated a machine learning-

based clinical decision-support model to predict the extent of

lymphadenectomy (D1 vs. D2) required for patients with locally

advanced gastric cancer (GC). This aimed to address the ongoing

controversy regarding the optimal surgical resection strategy for

potentially curable GC and to limit unnecessary surgical

treatments. Utilizing clinicoradiologic features from routine

clinical assessments of 557 patients who underwent standard D2

resection, the study retrospectively interpreted these features with a

blinded expert panel. The decision models developed using logistic
TABLE 1 Traditional ways to diagnose gastric diseases.

Treatments Description

Health history
of patients

An examination of the body which includes symptoms of
health, the appearance of lumps etc.

Complete blood
count (CBC)

The quantity of white blood cells, red blood cells, and
platelets are counted including amount of hemoglobin in

the RBCs.

Upper
endoscopy

It is a thin, illuminated tube used to inspect the esophagus,
stomach, and duodenum (initial section of the small

intestine) for abnormalities.

Barium swallow
The patient is given liquid containing barium (a silver-white
metallic substance) that coats the esophagus and stomach,

and x-rays are taken.

CT scan
A computer coupled to an x-ray machine creates the images
in this method. To make the organs or tissues more visible, a

dye may be ingested or injected into a vein.

Biopsy
In this the cells or tissues are removed and examined for

signs of malignancy under powerful microscope.
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regression, support vector machine, and auto-encoder algorithms,

were trained on 371 cases and tested on 186 cases. In their study,

Yong et al. (2023) (36) improved the ability to detect stomach

cancer at an early stage by creating ensemble models. These models

aggregated the decisions of numerous deep learning models to aid

pathologists in analyzing histopathological images. The researchers

suggested combining the results of multiple deep learning models

to create ensemble models. The efficacy of these proposed models

was assessed using the publicly accessible Gastric Histopathology

Sub-size Image Database. The experimental results showed that the

top 5 ensemble models obtained the highest level of detection

accuracy among all sub-databases, with the most accurate model

obtaining a detection accuracy of 99.20% in the 160 × 160 pixels

sub-database.
3 Methodology

This section outlines the procedural steps, as shown in Figure 2,

for detecting gastric cancer in stomach medical imaging. The
Frontiers in Oncology 04
methodologies involve a structured approach, starting with data

pre-processing to improve quality, and then conducting exploratory

data analysis to gain insights into the dataset’s characteristics.

Afterwards, feature extraction is used to extract important

information that is essential for the detection task. The data is

divided into training and testing sets to ensure effective model

training and evaluation. Classifiers, crucial for identifying cancerous

patterns, are then utilized followed by a thorough performance

evaluation is carried out to measure the effectiveness of the

methodologies used.
3.1 Implementation details

The work was done in Python utilizing several libraries, such as

Tensor flow, Keras, as well as Imutlis to perform fundamental image

processing operations such as skeletonization, rotation, translation,

scaling, identifying edges along with the sorting of contours.

Python’s OS module is used to create, modify, identify, and
frontiersin.or
TABLE 2 Analysis of Previous work of the researchers to detect and classify gastric diseases.

Author’s Name Dataset Techniques Outcome Limitations

Li et al. (2018) (12)
560 gastric slices, 140

normal slices
Gastric Net

Average classification
accuracy = 97.93%

Limited dataset

Nadeem et al. (2018) (10) MediaEval 8000 images VGG-19, logistic regression Accuracy= 83% Low accuracy

Hirasawa et al. (2018) (13) 13584 endoscopic images CNN
Sensitivity = 92.2%

Positive predicted value
= 30.6%

The model was trained with the high
quality images which means it won’t work
for post-biopsy bleeding, images and less

insufflation of air.

Song et al. (2020) (14) PLAGH dataset DeepLabV3 Average specificity = 80.6% The cost of computation was high

Yuan & Meng (2017) (20) WCE image dataset stacked sparse autoencoder Accuracy= 98%
Needs improvement in
classification accuracy

Mortezagholi et al.
(2019) (15)

Samples of 405 patients KNN, Naïve Bayes, SVM
Accuracy = 90.8%
F1 score = 91.99%

class imbalance

Aslam et al. (2020) (16)
Data collected from 220
samples of cancerous and
non-cancerous stomach

Support vector machine,
linear kernel

Accuracy = 97.18%
Specificity = 97.44%
F1 score = 91.99%

SVM failed to predict 14 instances

Ueyama et al. (2021) (17)
Dataset of 5574 magnifying

narrow brand imaging
Deep learning, CAD system

Accuracy = 98.77%
Specificity = 100%
Sensitivity = 98%

Sometime it was difficult for the model to
distinguish from gastritis.

Zhou et al. (2014) (19)
359 frames of video
capsule endoscopy

Support vector
machine classifier

Accuracy= 90.77%
Some algorithms must be incorporated
for the robustness of the approach

Liu et al. (2019) (18)
557 patients of
gastric cancer

Support vector machine,
autoencoder,

logistic regression

Accuracy = 89%
Specificity = 79%
Sensitivity = 78%
F1 Score = 95%

Small dataset

Asperti & Mastronardo
(2017) (22)

Kvasir dataset Inception
Accuracy=91.55%
Precision = 91.5%

The system was required to diagnose
other GI tract-based disorders.

Liu et al. (2018) (21)
Dataset of Gastric
pathology images

Artificial neural network F-score = 0.96
This approach needs further improvement

of classification accuracy

Sun et al. (2020) (24)
Dataset of annotated
gastricscopic images

Deep neural network
Accuracy = 96.7%
Recall = 94.9%
F1score = 94.7%

Overfitting
g
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remove directories. Matplotlib, a Python data visualization and

graphics library, are also used. One of the essential advantages of

visualization is the ability to see vast volumes of data in simple

formats. Seaborn is used for exploratory data analysis that is merged

with matplotlib and pandas library. In addition, Scikit-learn,

NumPy, as well as the OpenCV package are also used (20–23).
3.2 Dataset

The Kvasir dataset, collected at the Vestre Viken Health Trust

(VV) in Norway, encompasses a comprehensive collection of

images acquired from endoscopic procedures. VV consists of four

hospitals i.e. the Bærum Hospital, which houses a prominent

gastroenterology department and contributes significantly to the

dataset. The images are meticulously annotated by experienced

medical experts from both the Cancer Registry of Norway (CRN)

and VV, ensuring high-quality labels. CRN, associated with Oslo

University Hospital Trust, focuses on cancer research and national

cancer screening programs. The dataset includes hundreds of

images for various classes, encompassing anatomical landmarks

such as the Z-line, pylorus, and cecum, as well as pathological

findings like esophagitis, polyps, and ulcerative colitis. The images

come in different resolutions, ranging from 720x576 to 1920x1072

pixels, and are organized into separate folders based on their

content. Some images feature a green picture-in-picture overlay

illustrating the position and configuration of the endoscope within

the bowel, using an electromagnetic imaging system. This
Frontiers in Oncology 05
additional information can support image interpretation but

requires careful handling for detecting endoscopic findings.

Overall, the Kvasir dataset is highly diverse, with a sufficient

number of images to support a wide range of applications which

includes retrieving of image retrieval, machine and deep learning

along with the transfer learning. For this paper, we took images of

only a few diseases which include 4100 images of Normal Pylorus,

5000 images of Normal Z line, 4100 images of polyps, 5000 images

of stool, and 5091 images of Ulcerative Colitis. Figure 3 shows the

sample of images taken from the dataset (25).
3.3 Pre-Processing for endoscopic images

In the pre-processing stage of image data, a critical step is

undertaken prior to any classification techniques, particularly in the

context of a dataset containing images of gastric diseases (24).

Initially, the images are loaded from the dataset into the system.

This is facilitated by the `Opencv_window` method, which creates a

new window with a specified name and flag. This window allows the

images to be displayed on the screen, enabling the user to visually

analyze and comprehend the data. As mentioned in the description

of the dataset, the images are saved in various resolutions, which can

affect the performance of the classification model. Therefore,

resizing the images to a uniform resolution is crucial. OpenCV

provides functions like `cv2.resize()` to resize the images to a

standard size, ensuring consistency across the dataset. Later, to

standardize the pixel values across the images, normalization is
FIGURE 2

Proposed gastric disease detection system.
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performed. This involves scaling the pixel values to a specific range,

usually [0, 1] or [-1, 1], to facilitate faster convergence during model

training. OpenCV can be used to normalize the images by dividing

the pixel values by the maximum pixel value (usually 255 for 8-bit

images). In addition to this, when dealing with large datasets,

managing multiple images efficiently is crucial. The Imultis

library aids in handling and organizing batches of images for

streamlined processing. This includes loading images in batches,

applying pre-processing steps, and preparing the data for

model training.
3.4 Exploratory data analysis

This section displays the information of the image graphically in

the form of RGB histograms where R stands for Red, G stands for

Green, and B stands for Blue. These histograms are useful to show

how often different pixel intensities appear in an image for every

single color channel. Figure 4 shows the dispersion of image

intensity, which is a number that illustrates how many pixels are

used to show how intense each value is. This information has been

used to figure out the image’s contrast and brightness. In fact,

histogram equalization is used to map the distribution of one

intensity to another so that the spread of intensities can be

improved. This is also useful to show details of the image that

were hidden in areas with low contrast.
3.5 Feature extraction

In this section, the main focus is on segmenting the images in

order to extract the region of interest and generate rectangular

boundary boxes. The process begins by generating contour features,
Frontiers in Oncology 06
which serve as the basis for obtaining morphological values of the

images. These values are obtained by calculating various parameters

such as aspect ratio, width, epsilon, perimeter, equivalent, height,

extent, area, and others, as detailed in Equations 1–17, presented in

Table 3. These parameters are useful as they play an important role

in characterizing the morphological aspects of the regions that have

been segmented. While computing the values of these parameters, it

provides us the information related to the structural properties of

the images which enables us to understand the region of interest of

an image deeply.

area = height*width (1)

perimeter =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
((x2 − x1)

2 + (y2 − y1   )
2

q
(2)

epsilon = 0:1*cv2*arclength   (cnt,True) (3)

width = cv2:boundingRect(cnt) (4)

height = cv2:boundingRect(cnt) (5)

Aspect  Ratio =  
width
height

(6)

Extent =  
object   area

bounding   rectangle   area
(7)

Equivalent   diameter =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4*contour   area

p

r
(8)

Minimum   value = cv2:min () (9)
FIGURE 3

Samples of gastric diseases taken from Kvasir dataset.
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TABLE 3 Morphological information of images.

Parameters Normal   Pylorus Normal   Z   line Polyps Stool
Ulcerative  

Colitis

Area 0.0 2.0 0.0 1.0 2.0

Perimeter 0.0 5.65 0.0 2.0 5.65

Epsilon 0.0 0.56 0.0 0.2 0.56

Width 1 3 1 2 3

Height 1 3 1 1 3

Aspect  Ratio 1.0 1.0 1.0 2.0 1.0

Extent 0.0 0.22 0.0 0.11 0.22

Equivalent  Diameter 0.0 1.59 0.0 0.59 1.59

Minimum  Value 128.0 127.0 129.0 136.0 123.0

Maximum  Value 128.0 144.0 129.0 137.0 138.0

Minimum  Value   Location 585,1012 583,551 527,559 147,553 272,552

Maximum  Value   Location 585,1012 584,551 527,559 148,553 271,552

Mean  Color=   Intensity 128.0 134.6 129.0 136.5 132.6

Extreme   Leftmost  Point 585,1012 582,551 527,559 147,553 271,552

Extreme  Rightmost  Point 585,1012 584,551 527,559 148,553 273,552

(Continued)
F
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FIGURE 4

RGB Histogram of medical images of gastric cancer.
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Maximum   value = cv2:max () (10)

Minimum   value   Location = cv2:minMaxLo() (11)

Maximum   value   Location = cv2:minMaxLo() (12)

Mean  Color = cv2:mean() (13)

Extreme   Leftmost   point = tuple(cnt(cnt½:, :, 0� : argmin()½0�) (14)

Extreme  Rightmost   point

= tuple(cnt(cnt½:, :, 0� : argmin()½0�) (15)

Extreme  Topmost   point = tuple(cnt(cnt½:, :, 0� : argmin()½0�) (16)

Extreme   Bottommost   point

= tuple(cnt(cnt½:, :, 0� : argmin()½0�) (17)

After computing the various parameters of the image to

understand its characteristics, the biggest contour that covers the

largest portion of the object of interest is determined. In addition to

this, the image is cropped after the extreme points of the contour are

generated in a continuous fashion. Later, the cropped image is

converted to grayscale, which is done for simplifying the image by

reducing it to a single channel and thereby facilitates subsequent

processing. By comparing the pixel intensity values of each region in

the image, the adaptive thresholding technique is used to

distinguish the foreground objects from the background. The

adaptive thresholding can be expressed as shown in Equation 18:

T(x, y) = k*m(x, y) (18)

where T(x, y) represents threshold value for the pixel at location

(x, y), k means user-defined constant, and m(x, y) defines mean or

median pixel intensity value of a local neighborhood which surrounds

the pixel at location (x, y). Later, Morphologyex() is applied to the

resultant image for extracting the morphological gradient of the

foreground object. The morphological gradient is the difference

between the dilation and erosion of the image. On the other hand,

dilation involves adding pixels to the object boundary, which

increases the size of the object. By computing the morphological

gradient, the edge of the object is detected, and the region of interest is

outlined. Overall, this process of morphological analysis and

processing helps to isolate the region of interest from the rest of

the image, making it easier to analyze and diagnose any gastric

disease present in the image. All the results are shown in Figure 5.
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3.6 Applied deep learning models

After extracting the features and splitting them in training as well

as testing dataset, various pre trained learning models such as

NASNetMobile, EfficientNetB5 and EfficientNetB6, DenseNet169,

InceptionV3, and hybrid model (EfficientNetB6 and DenseNet169)

have been used to get trained by both training as well as testing

dataset. Apart from this, Table 4 defines the chosen parameters used

for the applied models for gastric cancer detection and classification.
3.6.1 NASNet Mobile
It stands for Neural Architecture Search Network whose

architectural design consists of two pivotal components: normal

cells and reduction cells. The normal cells play a crucial role in

determining the size of the feature map, shaping the fundamental

characteristics of the network. On the other hand, reduction cells

are responsible to capture relevant features by producing a feature

map which is reduced by a factor of two in breadth as well as height

as well as manages the complexity of the computational process.

The NASNet architecture works initially on a smaller dataset

and later transfer learning technique is applied where its parameters

are fine tuned to make it effectively work on the larger dataset (26).

Additionally, the NASNet Mobile architecture incorporates a

control mechanism which is based on a Recurrent Neural Network

(RNN). This RNN is uniquely used to predict the complete network

structure. Leveraging two initial hidden states, the RNN also

provides an adaptive as well as dynamic approach that allows

NASNet Mobile for adjusting its architecture on the basis of

learned patterns and information from the data. This not only

enhances the prediction accuracy of NASNetMobile but also

showcases its adaptability for diverse datasets which makes it a

robust choice for various applications. The general structure of

NASNetMobile can be represented by the following equation:

NASNETMobile(Input)

=  Stem(Input) +  oN
i=1Celli(Inputi−1) (19)

Here, each Celli represents a cell in the neural network, and

Stem is the initial stem of the network that processes the input. The

symbol S denotes the summation over all cells, and N is the total

number of cells in the architecture. Table 5 shows the layered

architecture of NASNetMobile where the output shape of each layer

is given along with its parameters.

As shown in Table 5, The NASNetMobile architecture produces

an output shape of (None, 6, 6, 1920) and includes 15,921,984

parameters, this architecture leverages the efficiency of NASNet for
TABLE 3 Continued

Parameters Normal   Pylorus Normal   Z   line Polyps Stool
Ulcerative  

Colitis

Extreme  Topmost  Point 585,1012 583,550 527,559 147,553 272,551

Extreme  Bottommost  Point 585,1012 583,552 527,559 147,553 272,553
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feature extraction. Following this, a Global Average Pooling 2D

layer reduces the dimensionality to (None, 1920) without adding

any parameters, thus summarizing the spatial information. Next, a

dense layer with 256 units is introduced, involving 491,520

parameters, followed by batch normalization, which introduces an

additional 1,024 parameters. This batch normalization layer helps

in stabilizing and accelerating the training process by normalizing

the inputs. The subsequent activation function layer applies a non-

linear transformation to enhance the model’s learning capability,

though it does not add any parameters. To prevent overfitting, a

dropout layer is utilized, which randomly sets a fraction of input

units to zero during training. Finally, the architecture concludes

with a dense output layer comprising 5 units, corresponding to the

number of classes in the classification task. This layer includes

1,285 parameters.
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3.6.2 Efficient Network
EfficientNet has a compound coefficient for scaling the

dimensions of both width and depth within neural networks. This

unique approach has been designed for enhancing the accuracy as

well as improvises the performance efficiency of model by reducing

the number of parameters and Floating Point Operations Per

Second (FLOPS) effectively.

The models of the EfficientNet are structured in such a way so

that they can handle float tensors of pixels with values in the [0-255]

range as inputs. This characteristic makes them compatible and

versatile with standard representations of the image data. The

simplified representation of EfficientNet is depicted in the

following Equations 20–22:

Widthnew =  Widthold   x ∅
a (20)
FIGURE 5

Feature extraction in endoscopic images. (A) colored image; (B) biggest contour; (C) extreme points; (D) cropped image; (E) grayscale image;
(F) adaptive threholding; (G) morphological operation; (H) extracting ROI.
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Depthnew =  Depthold   x ∅
b (21)

Resolutionnew =  Resolutionold   x ∅
g (22)

∅ = scaling vector, a ,   b , and g = coefficients for determining

how much aspect should be scaled. In the specific research, two

variants of EfficientNet named as EfficientNet B5 and EfficientNet

B6 are being used. The selection of these particular versions reflects

a thoughtful balance between computational efficiency and model

accuracy to indicate the intent of the research for achieving the

optimal performance while conserving computational resources.

EfficientNet B5 and EfficientNet B6 are part of the EfficientNet

model family, which effectively scales the dimensions of the

network. This scaling enables the models for striking a balance

between width, depth, as well as resolution to provide a versatile

framework for handling multiple datasets and tasks.

In fact, EfficientNet B5 and EfficientNet B6 differ primarily in

their scale, as EfficientNet B6 is larger and more complex than

EfficientNet B5. This increased scale allows for a higher capacity to

capture intricate or complex patterns and nuances within the data.

The layered architecture of these models, as outlined in Table 6,
Frontiers in Oncology 10
provides a systematic representation of how various layers in the

EfficientNet are organized (27).

The EfficientNetB5 model begins with a base EfficientNetB5

layer, outputting a tensor with the shape (None, 7, 7, 1792) and

consisting of 17,268,823 parameters. This layer effectively captures

and processes complex features from the input data. Following this,

a Global Average Pooling 2D layer compresses the spatial

dimensions, resulting in an output shape of (None, 1792) without

adding any additional parameters. The subsequent dense layer, with

256 units, introduces 458,652 parameters, enabling the network to

learn intricate patterns. Batch normalization is then applied, adding

1,024 parameters to standardize the inputs and improve training

stability. An activation function layer follows, applying a non-linear

transformation to the data but not increasing the parameter count.

To mitigate overfitting, a dropout layer is included, which randomly

drops a fraction of the input units during training. Finally, a dense

output layer with 5 units, corresponding to the number of target

classes, adds 1,285 parameters, culminating in a model designed for

robust classification tasks.

Likewise, the EfficientNetB6 model follows a similar structure

but starts with a more extensive base layer, producing an output

shape of (None, 7, 7, 2048) and comprising 20,539,880 parameters.

This larger base model allows for more detailed feature extraction

and improved performance on complex tasks. A Global Average

Pooling 2D layer then reduces the spatial dimensions to (None,

2048) without increasing the parameter count. The dense layer with

256 units is more parameter-heavy compared to EfficientNetB5,

containing 5,598,288 parameters, which enhances the model’s

learning capacity. Batch normalization, adding 1,024 parameters,

follows to ensure consistent training. An activation function layer

applies the necessary non-linearity, while a dropout layer helps

prevent overfitting. The model concludes with a dense output layer

of 5 units, with 1,285 parameters, providing the final

classification output.
3.6.3 InceptionV3
It is an improvised version of the basic model of Inception

which has 42 layers as well as a low error rate than its predecessors

(28). Inception module is the primary characteristic of the

InceptionV3 architecture which consists of convolutional layers of

various types and sizes. The work of the Inception module is to

enable the model in learning a wide variety of feature

representations at various levels of abstraction without the

requirement of any substantial increase in the number of

parameters. Batch normalization and dropout regularization

techniques are also used to prevent the overfitting error and

improve the performance of the model which is an essential

aspect of the InceptionV3 architecture. In general, the

InceptionV3 architecture is a robust as well as adaptable deep

learning model that can be applied to a variety of image

recognition tasks. Mathematically, it can be shown by Equation 23:

Inception(x) =  Concatenate(tower1(x),   tower   2(x), tower   3(x),   tower   4(x))  

(23)
TABLE 4 Hyper-parameters of applied deep learning models.

Parameters Value

Learning  Rate 0.001

Batch   Size 32

Epochs 25

Optimizer Adam

Loss   function Categorical cross entropy

Dropout   rate 0.5

Weight decay 0.0001

Activation Softmax

Rotation _ range 30

Width _ shift _ range 0.1

Height _ shift _ range 0.1

Shear _ range 0.2

Zoom _ range 0.2

Horizontal _ flip True

Vertical _ flip False
TABLE 5 Layered architecture of NASNetMobile.

Layers Output Shape Parameters

NASNetMobile
Globalaveragepooling2d

Dense layer
Batch  normalization
Activation function

Dropout
Dense layer

(None,6,6,1920)
(None,1920)
(None,256)
(None,256)
(None,256)
(None,256)
(None,5)

15921984
0

491520
1024
0
0

1285
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Each tower in the concatenation is composed of different layers

for pooling and convolution, each with its own particular kernel

sizes. The purpose of these towers is to record various levels of

spatial hierarchies present in the input data. Table 7 presents the

layered architecture of InceptionV3 and showcases the number of

parameters of each layer.

The architecture begins with the InceptionV3 base model,

which outputs a tensor with the shape (None, 5, 5, 1536) and

includes a substantial 54,386,756 parameters. This base model is

highly capable of capturing complex and detailed features from

input images due to its sophisticated inception modules. Following

this, a Global Average Pooling 2D layer is used to reduce the spatial

dimensions of the output tensor, resulting in a shape of (None,

1536). This layer does not introduce any additional parameters but

serves to summarize the spatial information across the feature

maps. Next, a dense layer with 256 units is added, involving

493,216 parameters. This layer enables the network to learn and

represent higher-level features from the pooled features. To ensure

training stability and improve convergence, a batch normalization

layer is included, adding 1,024 parameters. This layer normalizes

the inputs to the subsequent activation function, which introduces

non-linearity without increasing the parameter count with a

dropout layer as zero. The architecture concludes with a dense

output layer comprising 5 units, which corresponds to the number

of classes in the classification task. This final layer includes

1,285 parameters.

3.6.4 Densenet169
DenseNet, short for Densely Connected Convolutional

Networks, is a type of CNN architecture. This architecture is

designed to address issues like the vanishing gradient problem by
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connecting each layer to every other layer in a dense manner. One

distinctive feature of DenseNet is its use of dense blocks, where

every layer receives input from all preceding layers in the block.

This dense connectivity helps in feature reuse and encourages the

flow of gradients throughout the network during backpropagation.

This can be especially beneficial in training deep networks. In the

case of DenseNet169, the model has a total of 169 layers, and the last

fully connected layer has been omitted. Instead, there are three fully

connected layers with 256, 128, and 10 nodes respectively (29). The

softmax activation function is applied to the last layer, which is a

common choice for multi-class classification problems.

Additionally, batch normalization and a 40% dropout are applied

to the fully connected layers. Batch normalization helps in

normalizing the inputs to a layer, which can speed up training

and improve generalization. Mathematically, the output of the l-th

layer in DenseNet is computed using the Equation 24:

                           Hl(Xl) =  Hl−1(½X0,X1,X2,…… :,Xl−1�) (24)

Here, X0 = input image, Hl(Xl) = feature maps, and [] =

concatenation operation. Table 8 presents the layered architecture

of DenseNet169 and showcases the number of parameters of

each layer.

The DenseNet169 architecture starts with the DenseNet169

base, producing an output tensor with the shape (None, 7, 7,

2048) and containing 58,269,848 parameters. This base model is

composed of dense blocks and transition layers that ensure efficient

feature reuse and network depth, allowing it to capture detailed and

hierarchical features from input images. Following the

DenseNet169 layer, a Global Average Pooling 2D layer is applied,

which reduces the spatial dimensions to (None, 2048) by averaging

each feature map. This layer does not add any parameters but
TABLE 7 Layered architecture of InceptionV3.

Layers Output   Shape Parameters

InceptionV3
Globalaveragepooling2d

Dense   layer
Batch  normalization
Activation   function

Dropout
Dense   layer

(None,5,5,1536)
(None,1536)
(None,256)
(None,256)
(None,256)
(None,256)
(None,5)

54386756
0

493216
1024
0
0

1285
TABLE 8 Layered architecture of DenseNet169.

Layers Output   Shape Parameters

DenseNet169
Globalaveragepooling2d

Dense   layer
Batch   normalization
Activation   function

Dropout
Dense   layer

(None,7,7,2048)
(None,2048)
(None,256)
(None,256)
(None,256)
(None,256)
(None,5)

58269848
0

559288
1024
0
0

1285
TABLE 6 Layered architecture of EfficientNetB5 (left) and EfficientNetB6 (right).

EfficientNetB5 EfficientNetB6

EfficientNetB5 (None,7,7,1792) 17268823 EfficientNetB6 (None,7,7,2048) 20539880

Globalaveragepooling2d (None,1792) 0 Globalaveragepooling2d (None,2048) 0

Dense   layer (None,256) 458652 Dense   layer (None,256) 5598288

Batch   normalization (None,256) 1024 Batch  normalization (None,256) 1024

Activation   function (None,256) 0 Activation   function (None,256) 0

Dropout (None,256) 0 Dropout (None,256) 0

Dense   layer (None,5) 1285 Dense layer (None,5) 1285
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effectively summarizes the spatial information from the previous

layer. Subsequently, a dense layer with 256 units is introduced,

involving 559,288 parameters. This layer serves to further process

and condense the features extracted by the base model, enhancing

the ability of the network to learn difficult patterns. A batch

normalization layer follows, adding 1,024 parameters to

normalize the outputs of the dense layer. This normalization

improves training stability and accelerates convergence by

standardizing the inputs to the activation function. An activation

function layer then applies a non-linear transformation to the

normalized outputs, enhancing the model’s capacity to capture

intricate relationships in the data without increasing the

parameter count. Finally, the architecture concludes with a dense

output layer comprising 5 units, corresponding to the number of

target classes, and introducing 1,285 parameters.
3.7 Evaluative parameters

When applying deep learning techniques to gastric cancer

detect ion, var ious evaluat ion metr ics are crucia l to

comprehensively assess model performance (30–32). Accuracy

measures the proportion of correctly predicted cases (both true

positives and true negatives) against the total number of cases. It

provides an overall indication of the model’s ability to make correct

predictions. However, accuracy alone may not be sufficient,

especially in imbalanced datasets where the number of negative

cases far exceeds positive ones. Loss quantifies the error in the

model’s predictions by calculating the average squared difference

between the actual and predicted values. A lower loss indicates a

better fit of the model to the training data. Root Mean Square Error

(RMSE) also evaluates prediction quality but emphasizes larger

errors more than smaller ones, as it takes the square root of the

mean squared error. In the context of gastric cancer detection, a

lower RMSE would indicate that the model’s predictions are closer

to the actual cancer diagnoses, enhancing its reliability. Precision

focuses on the accuracy of the positive predictions made by the

model. It is particularly important in medical diagnostics to

minimize the number of false positives, ensuring that patients are

not incorrectly diagnosed with cancer. Recall, on the other hand,

measures the model’s ability to correctly identify actual positive

cases (i.e., true cancer cases). High recall is critical in gastric cancer

detection to ensure that as many true cancer cases as possible are

identified, reducing the risk of missed diagnoses. F1 score combines

both precision and recall into a single metric, providing a balanced

measure of the model’s performance. This is especially useful when

there is a need to find a compromise between precision and recall,

ensuring that the model not only identifies most of the cancer cases

but also maintains a high accuracy of positive predictions. Together,

these metrics provide a comprehensive evaluation framework,

ensuring that deep learning models for gastric cancer detection

are both accurate and reliable in clinical applications.

Accuracy =  
True   Positive   +  True  Negative

True   Positive   +  True  Negative   +False   Positive   +False  Negative

(25)
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Loss =  
(Actual  Value − Predicted  Value)2

Number   of  Observatiosn
(26)

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Actual  Value − Predicted  Value)2

Number   of  Observatiosn

s
(27)

Precision =  
True   Positive

True   Positive   +False   Positive  
(28)

Recall =  
True   Positive

True   Positive + False  Negative
(29)

F1   score = 2
Precision*Recall

Recall + Precision
(30)
4 Results

The results of appl ied deep learning models l ike

NASNetMobile, InceptionV3, EfficientnetB5, EfficientNetB6,

DenseNet169, and the hybrid model (EfficientNetB6 and

DenseNet169) for various gastric diseases is being presented. We

have discussed the accuracy, loss, and RMSE of the models at the

training and testing phase for the whole dataset along with their

graphical analysis. In addition, the models have also been evaluated

for the various classes of the dataset using the same parameters

indicated in Section 3. At the end of this section, we have discussed

the overall results of their research and compared them with the

existing techniques.

Table 9 presents the performance metrics of various

Convolutional Neural Networks (CNNs) and a hybrid model

comprising EfficientNetB6 and DenseNet169 based on their

accuracy along with the loss values for both the training and

testing phases.

EfficientNetB6 stands out with an impressive testing accuracy of

99.88% and a remarkably low testing loss of 0.049, indicating its

strong generalization capability despite a lower training accuracy of

92.86%. This model’s low testing loss suggests that it effectively

minimizes errors on unseen data. EfficientNetB5 also demonstrates

high performance, with a training accuracy of 99.59% and a
TABLE 9 Evaluation of classifiers for training and testing phase.

Classifiers
Training Testing

Accuracy Loss Accuracy Loss

NASNetMobile 96.56 0.086 95.28 0.359

EfficientNetB5 99.59 0.159 98.40 0.159

EfficientNetB6 92.86 0.059 99.88 0.049

InceptionV3 97.59 0.056 98.32 0.186

DenseNet169 99.56 0.053 96.88 0.259

Hybrid Model
(EfficientNetB6
+ DenseNet169)

98.59 0.059 99.6 0.0896
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consistent testing accuracy of 98.40%, coupled with an identical

training and testing loss of 0.159. InceptionV3 and DenseNet169

both exhibit high training accuracies of 97.59% and 99.56%,

respectively, but their testing accuracies of 98.32% and 96.88%

suggest a slight overfitting, as indicated by their higher testing losses

of 0.186 and 0.259. NASNetMobile, while achieving a respectable
Frontiers in Oncology 13
training accuracy of 96.56%, shows a notable drop in testing

accuracy to 95.28% and a higher testing loss of 0.359, indicating

less robustness in handling new data. The hybrid model, combining

EfficientNetB6 and DenseNet169, achieves a strong performance

with a testing accuracy of 99.6% and a relatively low testing loss of

0.0896, highlighting the potential benefits of integrating
NASNetMobile EfficientNetB5

EfficientNetB6 InceptionV3

DenseNet169

FIGURE 6

Performance analysis of models on the basis of their learning curves.
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complementary models to enhance overall predictive power. These

results underscore the importance of balancing high accuracy with

low loss to ensure robust and reliable model performance in

practical applications.

In addition to this, the training (blue) and testing (orange)

accuracy as well as loss learning curves for the models is depicted in

Figure 6 to provide a comprehensive overview of their performance

over 25 epochs. The NASNetMobile steadily increases the training

accuracy and stabilizes around 0.96 which demonstrates its effective

learning from the training data. However, the testing accuracy

identifies overfitting despite of reaching to high accuracy because

of its significant fluctuations. This is further supported by the loss

graph, where the training loss consistently decreases and reflects

minimum errors on training data. In contrast, the testing loss

exhibits substantial spikes and variability, particularly early in the

training process, which underscores the instability in the model’s

performance on unseen data. In case of EfficientNetB5, the accuracy

graph displays a smooth and consistent increase in training

accuracy which indicates effective learning from the training data.

However, the testing accuracy shows extreme fluctuations, with

sharp drops to zero and sudden recoveries. The loss graph further

emphasizes this issue; while the training loss remains consistently

low, the testing loss spikes dramatically at around epoch 20,

suggesting a severe overfitting problem where the model performs

well on training data but poorly on testing data. For EfficientNetB6,

the accuracy graph shows that training accuracy steadily increases

and reaches around 0.75, indicating the model’s capability to learn

from the training data. However, the testing accuracy is highly

erratic, with frequent sharp declines and recoveries. The loss graph

complements this observation, with the training loss gradually

decreasing while as the testing loss (displays significant

fluctuations, particularly with notable spikes, highlighting

inconsistencies in the model’s performance on testing data. For

InceptionV3, the accuracy graph shows the training accuracy

steadily increasing and stabilizing around 0.95, indicating effective

learning from the training data. The testing accuracy also shows an

initial rise, stabilizing around epoch 5 to values close to the training

accuracy, indicating good generalization during the earlier epochs.

However, there is a notable drop around epoch 15, suggesting a

transient issue before recovery. The loss graph further elucidates

these trends, with the training loss consistently decreasing and

remaining low but the testing loss shows fluctuations, particularly a
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significant spike around epoch 15, corresponding to the drop in

testing accuracy, indicating an overfitting issue or instability during

that period. For DenseNet169, the accuracy graph demonstrates a

high and stable training accuracy close to 0.98, indicating that the

model learns effectively from the training data. However, the testing

accuracy fluctuates significantly, with sharp rises and falls

throughout the epochs, suggesting instability and poor

generalization to unseen data. Similarly, the loss graph shows the

training loss remaining consistently low, confirming that the model

minimizes errors on the training data effectively. In contrast, the

testing loss exhibits substantial volatility with frequent spikes,

indicating inconsistent performance on the testing set.

In addition, Table 10 presents the performance analysis of

various models based on their RMSE values during both training

and testing phases.

Among the individual models, InceptionV3 exhibited the lowest

RMSE values during training (0.28) and testing (0.44), which indicates

its superior performance in capturing the underlying patterns in the

data. EfficientNetB6 also demonstrated strong performance with low

RMSE values of 0.37 in training and 0.32 in testing. EfficientNetB5,

while having a slightly higher RMSE in training (0.64), displayed a

competitive performance with an RMSE of 0.62 in testing.

NASNetMobile showed a notable difference between training (0.35)

and testing (0.76) RMSE values, suggesting a potential risk of

overfitting. DenseNet169 presented balanced performance with

RMSE values of 0.39 in training and 0.57 in testing. The hybrid

model, combining EfficientNetB6 and DenseNet169, showcased a

trade-off, achieving an RMSE of 0.55 in training and 0.48 in testing.

Overall, these results generate insights into the relative strengths and

weaknesses of each model, guiding the selection of the model which is

the most suitable on the basis of specific requirements of the task at

hand. Likewise, the models have been also examined for the single

dataset on the basis of different parameters in Table 11.

Starting with NASNetMobile, it achieves a precision of 87.8%

which indicates that 87.8% of the instances predicted as positive

were actually positive. The recall is 93.76%, indicating that it

successfully identified 93.76% of the actual positive instances. The

F1 score, which considers both precision and recall, is 90.78%.

EfficientNetB5 demonstrates a higher precision of 95.16%,

suggesting a better ability to accurately predict positive instances.

The recall is 95.18%, indicating that it captured a high proportion of

actual positive instances with 92.18% of F1 score is 92.18. Likewise,
TABLE 10 Analyzing models based on their RMSE values.

Models Training Testing

NASNetMobile 0.35 0.76

EfficientNetB5 0.64 0.62

EfficientNetB6 0.37 0.32

InceptionV3 0.28 0.44

DenseNet169 0.39 0.57

Hybrid Model (EfficientNetB6
+ DenseNet169)

0.55 0.48
TABLE 11 Comparing the performance of multiple learning models.

Models Precision Recall F1 score

NASNetMobile 87.8 93.76 90.78

EfficientNetB5 95.16 95.18 92.18

EfficientNetB6 97.94 97.34 96.16

InceptionV3 94.2 95.96 95.4

DenseNet169 95 95.58 92.6

Hybrid Model
(EfficientNetB6
+ DenseNet169)

92.4 93.16 89.98
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other models such as EfficientNetB6 exhibits even higher precision

at 97.94%, recall of 97.34%, and F1 score of 96.16% which

demonstrates an overall a good performance. InceptionV3 and

DenseNet169 also computed 94.2% and 95% as precision score,

95.96% and 95.58% as recall, and 95.4% and 92.6% as F1 score

respectively which reflects a balanced performance.

The Hybrid Model, which combines EfficientNetB6 and

DenseNet169, achieves a precision of 92.4%, suggesting a slightly

lower accuracy in predicting positive instances compared to other

models. The recall is 93.16%, indicating a good ability to capture

actual positive instances. The F1 score is 89.98%, indicating a

slightly lower overall performance compared to individual

models. In a nutshell, EfficientNetB6 consistently demonstrates

high precision and recall, resulting in a strong F1 score. The

Hybrid Model shows a slightly lower F1 score and precision but

still maintains a good overall performance.

Apart from this, as shown in Figure 7, the confusion matrix has

been also generated for comparing the efficacy of the deep transfer
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learning models by calculating the actual and predicted rates for

each class of gastrointestinal disorders. Accuracy, precision, and

other evaluative parameters have been estimated based on this

confusion matrix.

After examining the models for the combined dataset, they have

been now evaluated to test how they perform for different classes of

the applied dataset i.e. gastric cancer diseases on the basis of same

parameters as shown in Table 12.

For normal pylorus, Inception v3 obtained the best accuracy by

95.43% and 97.94%, respectively, while hybridization of

EfficientNetB6 and DenseNet169 obtained the best training and

testing loss by 0.151 and 0.175. For Normal Z-line, the hybrid model

and InceptionV3 obtained the best training accuracy of 99.75% and

loss of 0.87. For the best accuracy and loss, EfficientNetB6 stood at

the top by 97.85% and 0.536, respectively. For polyps,

NASNetMobile and EfficientNetB5 obtained the highest training

and testing accuracies with 99.75% and 98.40%, respectively. On the

other hand, the best loss has been achieved by DenseNet169 and
(a) NasNetLarge                       (b) EfficientNetB5                                (c) EfficientNetB6

(d) InceptionV3                                        (e) DenseNet169
FIGURE 7

Confusion Matrix of the applied models. (A) NasNetLarge; (B) EfficientNetB5; (C) EfficientNetB6; (D) InceptionV3; (E) DenseNet169.
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InceptionV3 by 0.200 and 0.467. For stool, EfficientNetB5 and B6

obtained the best accuracy along with a loss of 96.86% and 0.085,

respectively. For the best training accuracy and loss, the hybrid

model stood at the top by 98.78% and 0.086, respectively. In the end,

for ulcerative colitis, densenet169 and efficientNetB6 obtained the

highest training and testing accuracy at 99.56% and 98.88%,
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respectively. In contrast, the best training and testing loss value

has been obtained by InceptionV3 and EfficientNetB6 by 0.468 and

0.050, respectively.

Similar to Table 11, the performance of the models have been

again assessed but for different classes of dataset using the

parameters as shown in Table 13.
TABLE 12 Examining the results of models for multi-classes of dataset.

Gastric cancer Models
Training Testing

Accuracy Loss RMSE Accuracy Loss RMSE

Normal Pylorus

NASNetMobile 98.88 0.151 0.561 93.86 0.471 0.273

EfficientNetB5 95.81 0.285 0.450 95.45 0.295 0.941

EfficientNetB6 96.94 0.595 0.628 95.85 0.176 0.159

InceptionV3 99.43 0.558 0.450 97.94 0.246 0.146

DenseNet169 97.69 0.695 0.258 90.45 0.185 0.862

Hybrid Model (EfficientNetB6
+ DenseNet169)

86.80 0.151 0.522 95.56 0.175 0.963

Normal Z-line

NASNetMobile 95.45 0.599 0.275 98.75 0.864 0.232

EfficientNetB5 95.75 0.755 0.941 94.95 0.596 0.475

EfficientNetB6 96.91 0.536 0.159 97.85 0.750 0.295

InceptionV3 96.45 0.590 0.146 96.34 0.587 0.334

DenseNet169 91.35 0.759 0.862679 91.49 0.861 0.500

Hybrid Model (EfficientNetB6
+ DenseNet169)

99.75 0.590 0.963 96.97 0.598 0.133

Polyps

NASNetMobile 99.75 0.953 0.249 86.28 0.594 0.679

EfficientNetB5 94.59 0.356 0.612 98.40 0.576 0.585

EfficientNetB6 99.56 0.259 0.488 97.88 0.560 0.426

InceptionV3 93.48 0.256 0.577 91.32 0.467 0.785

DenseNet169 91.58 0.200 0.451 90.88 0.481 0.559

Hybrid Model(EfficientNetB6
+ DenseNet169)

99.68 0.234 0.598 90.86 0.868 0.864

Stool

NASNetMobile 98.59 0.086 0.286 95.48 0.386 0.621

EfficientNetB5 93.75 0.456 0.486 96.86 0.176 0.419

EfficientNetB6 98.59 0.085 0.284 92.16 0.096 0.309

InceptionV3 98.56 0.759 0.275 95.86 0.149 0.386

DenseNet169 97.86 0.856 0.259 90.46 0.246 0.495

Hybrid Model (EfficientNetB6
+ DenseNet169)

98.78 0.095 0.156 96.59 0.086 0.293

Ulcerative Colitis

NASNetMobile 98.86 0.753 0.175 75.28 1.304 1.551

EfficientNetB5 91.46 0.955 0.495 59.40 2.146 1.382

EfficientNetB6 96.24 0.865 0.148 98.88 0.050 0.223

InceptionV3 94.26 0.468 0.136 86.32 0.127 0.356

DenseNet169 99.56 0.865 0.286 97.88 0.231 0.480

Hybrid Model (EfficientNetB6
+ DenseNet169)

99.75 0.957 0.954 97.6 0.088 0.296
fr
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As shown in the table, NASNetMobile computed the highest

precision of 99% for normal pylorus and ulcerative colitis, recall and

an F1 score of 99% for polyps and ulcerative polyps. The model has

obtained the least value of precision, recall, and F1 score for the

normal z line by 59%, 85%, and 73%. EfficientNetB5 computed the

highest precision and recall of 99.9% for ulcerative colitis and an F1

score of 99% for stool. The model has obtained the least value of

precision, F1 score, and recall for normal pylorus by 85% and 86%,
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respectively, and normal z line by 89%. EfficientNetB6 computed

the highest precision of 99% for normal z line, recall of 99% for

normal z line and stool, and F1 score of 99% for normal pylorus.

The model has obtained the least value of precision, recall, and F1

score for stool, normal pylorus, and normal z line by 95%, 93%,

and 93%.

InceptionV3 computed the highest precision of 99% for

polyps, recall of 99% for stool, and F1 score (99%) for polyps.
TABLE 13 Classification of diseases by analyzing the performance of models.

Models Classes Precision Recall F1-Score

NASNetMobile

Normal Pylorous 99.0 85.0 87.0

Normal z line 59.0 92.0 73.0

Polyps 86.0 99.9 99.9

Stool 96.0 92.0 95.0

Ulcerative Colitis 99.0 99.9 99.0

EfficientNetB5

Normal Pylorous 85.0 97.0 86.0

Normal z line 99.0 89.0 87.0

Polyps 92.9 98.9 95.9

Stool 99.0 92.0 99.0

Ulcerative Colitis 99.9 99.0 93.0

EfficientNetB6

Normal Pylorous 97.0 93.0 99.0

Normal z line 99.9 99.0 93.0

Polyps 98.9 96.9 96.9

Stool 95.0 99.9 96.0

Ulcerative Colitis 98.9 97.9 95.9

InceptionV3

Normal Pylorous 92.0 87.0 92.0

Normal z line 89.0 97.0 92.0

Polyps 98.0 98.9 99.0

Stool 96.0 99.0 98.0

Ulcerative Colitis 96.0 97.9 96.0

DenseNet169

Normal Pylorous 88.0 99.0 86.0

Normal z line 99.0 88.0 86.0

Ulcerative Colitis 97.0 99.0 99.0

Polyps 92.0 93.9 99.0

Stool 99.0 98.0 93.0

Hybrid Model(EfficientNetB6
+ DenseNet169)

Normal Pylorous 96.0 95.0 93.0

Normal z line 89.0 83.0 98.0

Stool 97.0 96.0 86.0

Polyps 92.0 97.9 96.9

Ulcerative Colitis 88.0 93.9 76.0
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The model has computed the least value of precision, recall, as well

as F1 score for normal pylorus line with 92%, 87%, and 92%

respectively. DenseNet169 computed the highest precision of 99%

for normal z line and stool, recall of 99% for normal pylorus and

ulcerative polyps, and F1 score of 99% for polyps and ulcerative

polyps. The model has obtained the least value of precision and
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recall for normal pylorus by 88% each and F1 score for normal z

line by 86%. The hybrid model computed the highest precision of

97% for stool, recall of 97.9% for polyps, and F1 score of 98% for

normal z line. The model has obtained the least value of precision,

recall, and F1 score for the normal z line by 89%, 83%, and

86%, respectively.
FIGURE 8

Evaluation of models using gastric cancer dataset.
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These values of the models are also represented in the form of

bar graph so that they can be compared and make it easy to identify

which model performs better for a particular metric as shown

in Figure 8.

In addition, the proposed automated system has been

contrasted to existing techniques based on their datasets,

methods, and accuracy, as shown in Table 14.

Initially for the different dataset of gastric cancer images, it

has been found that Li et al. (2018) achieved a high accuracy of

97.93% using Gastric Net on a dataset of 560 gastric slices and

140 normal slices. Likewise, Song et al. (2020) utilized

DeepLabV3 on the PLAGH dataset, resulting in a lower

accuracy of 80.6%. Zhou et al. (2014) employed an SVM

classifier on 359 VCE frames, achieving 90.77% accuracy. Sun

et al. (2020) used a densely connected neural network on an

annotated gastroscopic image dataset, yielding an accuracy of

96.79% while as Yong et al. (2023) obtained 99.20% accuracy on

Gastric Histopathology Sub-size Image database using ensemble

deep learning techniques.

On the other hand for the Kvasir dataset which has also been

used in this paper, it has been discovered that Asperti and

Mastronardo (2017) obtained an accuracy of 91.55% with the

Inception model. Zhang et al. (2024) reported a 93.9% accuracy

using an improved Mask R-CNN, while Naz et al. (2021) achieved

86.4% accuracy with an ensemble learning classifier. Thomas

et al. (2023) and Khan et al. (2022) achieved high accuracies of

98.01% and 98.20%, respectively, using EfficientNetB0 and a

combination of MobileNetV2 with Bayesian optimization.

However, our study surpasses all these approaches, attaining

the highest accuracy of 99.75% using a hybrid model that

integrates EfficientNetB6 and DenseNet169. This comparative

analysis underscores the effectiveness of hybrid models in
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achieving superior classification performance in medical

image analysis.
5 Conclusion

The research aimed at the detection and classification of

various gastric diseases which include ulcerative colitis, normal

pylorus, polyps, normal-Z line, and stool, using endoscopic

images. Various advanced deep learning models had been used

and trained using this dataset. During experimentation, it had

been seen that Inception-V3 demonstrated the highest testing

accuracy of 97.94% for normal pylorus, while EfficientNetB6

outperformed others with a testing accuracy of 97.85% for

normal-Z line. Besides this, EfficientNetB5 excelled in detecting

polyps, achieving the highest testing accuracy of 98.40%, and also

led in stool classification with a testing accuracy of 96.86%.

Notably, EfficientNetB6 achieved the highest testing accuracy for

ulcerative colitis at 98.88%. Irrespective of this, certain challenges

had been also found such as challenges such as the variations in

the size of image and the presence of black borders which

impacted the overall accuracy of gastric disease detection and

classification. Thus, to address these challenges, our study suggests

potential avenues for improvement. Future work should focus to

enhance the quality of images by applying advanced image

processing technologies. This will be crucial to optimize the

performance of gastric disease detection and classification.

Moreover, the developed model can also be deployed at medical

centers so that the end users through an application could

empower patients in identifying their gastro-intestinal disorders

promptly. This application will also serve as a valuable tool in

facilitating early diagnosis and intervention.
TABLE 14 Analysis of current work with the existing one.

Author’s Name Dataset Technique Accuracy

Li et al. (2018) (12) 560 gastric slices, 140 normal slices Gastric Net 97.93%

Song et al. (2020) (14) PLAGH dataset DeepLabV3 80.6%

Zhou et al. (2014) (19) 359 VCE frames SVM classifier 90.77%

Sun et al. (2020) (24)
Annotated gastricscopic

image dataset
Densely connected neural network 96.79%

Yong et al. (2023) (36)
Gastric Histopathology Sub-

size Image
Ensemble deep learning methods 99.20%

Asperti & Mastronardo (2017) (22)

Images taken from Kvasir dataset

Inception 91.55%

Zhang et al. (2024) (32) Improved Mask R-CNN 93.9%

Naz et al. (2021) (33) Ensemble Learning Classifier 86.4%

Thomas et al. (2023) (34) EfficientNetB0 98.01%

Khan et al. (2022) (35) MobileNetV2+Baysian Optimization 98.20%

Our study Hybrid (EfficientNetB6+ DensenNet169) 99.75%
The bold value represents the best value computed by the model in this paper.
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