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Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of

breast cancer with higher rates of recurrence and distant metastasis, as well as

decreased 5-year survival rates. Racial disparities are evident in the incidence and

mortality rates of triple negative breast cancer particularly increased in young

African American women. Concurrently, young African American women have

multiple risk factors for TNBC including higher rates of premenopausal

abdominal obesity (higher waist-hip ratio) and lower rates of breastfeeding

with higher parity, implicating these factors as potentially contributors to poor

outcomes. By understanding the mechanisms of how premenopausal obesity

and lack of breastfeeding may be associated with increased risk of triple negative

breast cancer, we can determine the best strategies for intervention and

awareness to improve outcomes in TNBC.
KEYWORDS

racial disparities, triple negative breast cancer, obesity, involution, breastfeeding
1 Introduction

Breast cancer is the most commonly occurring form of cancer internationally, with more

than 1 in 8 women diagnosed in their lifetime (1, 2). The chances that a woman will die of

breast cancer is approximately 1 in 39, making it globally the second deadliest form of cancer

in women (3). In the US, incidence rates of breast cancer diagnosis grew dramatically from

the 1940s to the 1990s but have stabilized in the last two decades at approximately 130 new

cases per 100,000 people (2, 4). In 2019, there were 268,000 new cases of breast cancer and

41,000 women died as a direct result of this disease (5). Predicted numbers for 2023 are
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similar, with 297,790 estimated new cases and 34,020 deaths (5, 6).

Recent estimates suggest that nearly 4 million women with a history

of breast cancer are likely currently living in the US (7).

Triple negative breast cancer (TNBC) cases generally have worse

prognosis as they are characterized by aggressive growth and

invasiveness compared to any other subtype of breast cancer (8, 9).

This breast cancer subtype is negative for the presence of estrogen

receptor (ER), progesterone receptor (PR) and human epidermal

growth factor receptor 2 (HER2) (10) and do not have any targeted

therapy. There are numerous risk factors for TNBC including age, age

at menarche, multiparity, premenopausal obesity, lack of

breastfeeding following full-term pregnancy, and duration of

breastfeeding (11). TNBC is more common among women with

BRCA1 mutations (8). The African American Breast Cancer

Epidemiology and Risk (AMBER) consortium utilized data

collected through the Women’s Circle of Health Study, the Black

Women’s Health Study, the Carolina Breast Cancer Study, and

Multiethnic Cohort Study and found that the lack of breastfeeding

following full-term pregnancy was associated with an increased risk

of ER negative breast cancer but not ER+ breast cancer (12, 13).

Additionally, this data revealed an additional risk of ER- breast cancer

following each consecutive parity coupled with the absence of

breastfeeding (12).

While obesity is a multifaceted, complex state that has been

identified as an independent risk factor for various diseases and

cancers, its relationship with breast cancer is more controversial.

Several epidemiological studies have found no relationship or even

a beneficial effect of higher body mass index (BMI) on breast cancer

diagnosis and related outcomes (14–16). Particularly, obesity rates

(BMI > 30kg/m2) in premenopausal breast cancer have been

negatively correlated with breast cancer risk (14–16). However,

several studies have shown that BMI may not be the best

measurement of obesity in some populations. For instance,

African American women (AAW) have higher levels of

abdominal adiposity that is not accounted for in BMI

measurement (17). In the East Carolina Breast Cancer Study a

higher waist to hip ratio (WHR), a measurement focused on

abdominal adiposity, was associated with a higher risk of TNBC

in premenopausal women (18). These findings were similarly

shown in the Women’s Circle of Health Study, that AAW

premenopausal women with a higher WHR had a greater risk of

breast cancer (19, 20). Therefore, revaluation of WHR and its

association with breast cancer risk could be more appropriate in

the future.

Although there have been new insights in understanding how

the lack of breastfeeding impacts breast cancer risk (21), there has

been no research on how obesity in combination with a lack of

breastfeeding can further increase the risk of breast cancer. The lack

of breastfeeding and obesity contribute to aberration in several

common pathways for developing TNBC. It is important to

understand how these two risk factors may interact and augment

the risk. In this review, we summarize the population and biological

literature on the overlapping pathways affected by lack of

breastfeeding and premenopausal obesity that are associated with

an increased risk of TNBC.
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2 Breast Involution

Literature on the relationship between the lack of breastfeeding

and cancer risk point towards the process of involution as being the

critical window for changes increasing the risk (22). Involution of the

mammary gland or breast tissue is a post-lactation process that

remodels the tissue to its near pre-pregnancy state for subsequent

pregnancies and lactation (23). While majority of the involution

process has been elucidated using rodent models, several studies have

confirmed the process of involution in humans (23–26). The process

of involution is initiated by the absence of suckling and occurs in two

distinct phases (27). The first phase of involution that lasts over a

period of 2-3 days is reversible with re-initiation of suckling (27, 28).

During this initial phase, epithelial cells undergo programmed cell

death (28) and alveolar cell detachment, and dead cells accumulate

in the lumen (27). Adipocytes begin to re-differentiate and re-

populate the mammary gland (28). The second irreversible phase

occurs over a 4-7-day period that is initiated by the breakdown of the

extracellular matrix and leads to a second round of programmed cell

death (27, 28). The second phase also includes collapsing of the

alveoli, tissue remodeling, and adipocyte hypertrophy to a state very

similar to pre-pregnancy state. The involution process is illustrated

in Figure 1.

Through the development and use of mouse models to study

this phenomenon, two distinct types of involution have been

conceptualized. The term “abrupt involution” has been used to

describe instances when breastfeeding is not initiated after birth or

there is a short period of lactation less than 3 months (28, 31).

Abrupt involution forces the mammary gland to undergo the

involution and remodeling process at the peak of milk production

(28, 31). On the contrary, during gradual involution when

breastfeeding is prolonged greater than 6 months, alveolar cell

death and remodeling of the mammary gland is more orchestrated

and gradual (31). The process of gradual involution leads to

remodeling of the mammary gland over a longer period of time

compared to glands forced through abrupt involution (28, 31).
3 Overlapping link between obesity
and abrupt involution on increased
risk of TNBC

There is overwhelming scientific evidence on role of obesity role

in development of TNBC (32–37). But unlike obesity, there is

limited research on abrupt involution and how lack of

breastfeeding impacts the risk of developing breast cancer.

Numerous epidemiological studies point to a link between lack of

breastfeeding following full-term pregnancy and breast cancer risk

(10–12, 21); however, majority of mechanistic studies to understand

this correlation have been conducted in rodent and bovine models.

Comparison of underlying mechanisms connecting the two

independent TNBC risk factors, lack of breastfeeding/abrupt

involution and premenopausal obesity revealed significant overlap

in processes that link each factor to higher breast cancer risk
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(Figure 2). A recent study has shown that obesity induced

inflammation resulted in premature involution and attributed it

to zinc-mediated stress on endoplasmic reticulum (32). However,

combined impacts of these two risk factors and long-term changes

within the breast tissue and breast cancer risk, specifically TNBC,

has yet to be studied.
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3.1 Mammary gland Inflammation

Both obesity and abrupt involution can lead to states of

increased inflammation in breast tissue (32). Obesity, on its own,

is characterized as a chronic state of systemic inflammation that

leads to an increase in local inflammation enhancing the risk for
FIGURE 2

Summary of effects of obesity and abrupt involution on combined contribution to breast cancer risk.
FIGURE 1

Remodeling of mammary gland during pregnancy and involution. 1) The mammary gland undergoes epithelial to alveolar differentiation during
pregnancy preparing for lactation at birth, followed by massive cell death (22, 27, 29, 30). The mammary gland undergoes massive cell death and
tissue remodeling as it transitions from a lactating state to a prepregnant state upon cessation of lactation after birth (22). 2) During pregnancy, the
mammary gland expands dramatically through extensive epithelial cell proliferation and differentiation to alveolar cells in preparation for milk
production and secretion, and this process continues throughout the period of lactation (27, 29). 3) However, upon weaning of the offspring, the
gland undergoes a reversible phase of involution, where apoptotic alveolar cells shed in the lumen (27, 30). 4) This is followed by the second phase
of involution within 48-72 hours of weaning, characterized by massive cell death, collapse of the alveolar structure, and adipocyte repopulation
when the tissue is structurally remodeled back to its prepregnant state (27, 30).
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cancer development (34–36). Abrupt involution leads to acute

inflammation in the mammary gland that sustains over time (31).

However, unpublished data from our laboratory suggests abrupt

involution may lead to systemic inflammation as well.

3.1.1 Upregulation of cytokines and macrophage
population in obesity

Multiple studies using mouse models and human tissues have

shown increased inflammation, in particular macrophage

infiltration, in the mammary gland of obese mice and individuals

(28, 33, 35, 38). What is the link between adiposity and

inflammation? In both humans and mice, as adipocytes expand in

number and size, blood vessel development lags leading to a

hypoxic environment (39). The lack of oxygen and over-crowding

of the adipocytes causes the adipocytes to produce cytokines that

increase the inflammatory state within the tissue and circulation

(39). Lack of oxygen and nutrients during aberrant expansion of

adipose tissue leads to adipocyte death (38, 40, 41). Infiltration of

macrophages within adipose tissue, and the mammary gland, have

the ability to gather around dying adipocytes (38). Increased

macrophage populations may lead to a self-sustaining immune

response, as macrophage infiltration leads to increased production

and secretion of pro-inflammatory cytokines, such as tumor

necrosis factor a (TNFa), interleukin 6 (IL-6), and interleukin 1b
(IL-1b) (38). When encircling necrotic adipocytes, the macrophages

form what is called a crown-like structure (CLS) (38, 40, 41).

Increased inflammation, infiltration of macrophages, and

formation of CLS can lead to dysregulation of adipokines,

disruption of adipocyte differentiation, and changes in estrogen

signaling, which are associated with increased TNBC risk (38).

Murine models of obesity have refined our understanding of

cytokines in the mammary gland. In a diet-induced obesity study,

C57BL/6J ovariectomized mice consuming a high-fat diet for 10 and

24 weeks showed increased levels of NFkB, IL-1b, TNFa, and COX-
2 in the mammary gland compared to low-fat non-ovariectomized

controls (33). This effect was further explored using a diet-induced

obesity mouse model where mice were injected with E0771 cells

which caused accelerated rates of TNBC development correlated

with high IL-6 levels within the adipose tissue and tumor (36).

Additionally, the TNBC tumors displayed increased infiltration of

cancer associated adipocytes (36).

Studies have found increased CLS in the mammary gland of mice

on high-fat diets (33), demonstrating an association between obesity

and macrophage infiltration. In addition to an increase in the

macrophage population, macrophage phenotype changes have been

reported in the mammary glands of obese mice. These adipose tissue

macrophages (ATM) shift to metabolically active macrophages

(MMe), which are proinflammatory. MMe have been found to

overexpress GPR130 ligands and produce cytokines, like IL-6, to

promote stemness in cells that promote the development of TNBC.

Increased concentration of MMe has been reported in breast tissues

collected from obese women and was positively correlated to BMI.

When cultured in vitro, MMe were able to activate signal transducer

and activator of transcription 3 (STAT3) signaling (42), which is a

pathway of interest in the development of breast cancer.
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In women with TNBC, visceral adipose tissue size positively

correlated with tumor size and inversely correlated with blood

vessel density within the tumor (36). Additionally, pro-

inflammatory cytokine IL-6 produced by the adipose tissue was

higher correlated to levels within circulation and the tumor (36). In

women diagnosed with breast cancer, there was a positive

correlation for the presence of CLS in the breast tissue with

obesity, insulin resistance, and poor prognosis (38, 40). A

comparative study of breast cancer patients found that AAW had

more CLS in the breast tissue than non-Hispanic black and

Caucasian women (41). The macrophages surrounding adipocytes

in the AAW population were shown to be highly proliferative (41).

3.1.2 Upregulation of cytokines and macrophage
population in abrupt involution

The inflammatory effects associated with obesity are similar to

what was observed in the mammary gland following abrupt

involution (31). Mouse models of involution provide evidence of

an acute inflammatory response during and shortly after involution

that sustains to long-term time points. For example, to understand

the inflammatory process during abrupt involution of mammary

gland, Stein et al. used female Balb/C mice that were forced to

undergo involution on day 7 of lactation (43). During the involution

process, mice displayed activation of B-cell lymphocytes and

STAT3 pathways followed by increased infiltration of neutrophils

and F4/80 positive macrophages in mammary gland (43). Similarly,

a model using C57bl/6 andMafia transgenic mice that forced abrupt

involution at day 10 postpartum, found an increase in macrophage

infiltration in wild-type mammary glands and depletion of

macrophages in the transgenic mice inhibited the involution

process (44). In our lab, a similar mouse model of abrupt

involution was developed using FVB/n mice where forced

involution was induced by removal of pups on day 7 of lactation

(31). The mammary glands of these mice showed sustained

activation of STAT3 pathway at day 28 postpartum and increased

F4/80 macrophage infiltration even at day 56 postpartum that

continued long-term to 120 days postpartum (31). In a mouse

obesity model, C57bl/6 female mice on high-fat diets were found to

have a higher number of macrophages in the mammary glands and

this accumulation was partially responsible for induction of early

involution (32).

High levels of macrophages within the mammary gland during

involution has been thought to be related to upregulation of

glycoprotein semaphorin A (SEMA7A) that is found on T

lymphocytes (45). In C57bl/6 undergoing abrupt involution,

podoplanin (PDPN), a lymphatic system marker, and marker of

macrophages CD68+, were associated with SEMA7A (45). The co-

expression of these gene markers is associated with increased risk

and poor prognosis of breast cancer (45). This gene signature has

been confirmed in breast biopsies of women undergoing involution

(45). The infiltration of immune cells during abrupt involution

mimics the wound healing process and promote tumor progression

in D2A1 injected mice (46). Characterization of the immune

environment and wound healing-like process in breast tissue was

confirmed in women undergoing involution (26). Alterations of the
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immune environment were consistent with pro-tumorigenic

conditions (26).
3.2 STAT3 pathway activation

STAT3 signaling pathway is an important pathway during the

involution process necessary to facilitate programmed cell death.

Stein et al. and Basree et al. found upregulation of STAT3 pathway

activation during and after abrupt mammary gland involution (31,

43). In Balb/c mice, STAT3 mRNA levels doubled one day following

forced involution and continued to be upregulated until day 3 of

involution before returning towards pre-pregnancy levels (43). This

early upregulation of STAT3 during involution was associated with

increases in acute phase response genes such as lipopolysaccharide as

well as its receptor CD14, a monocyte marker, in the luminal

epithelial population (43). While STAT3 signaling was not explored

during the involution process in FVB/n mice, STAT3 and

phosphorylated STAT3 (pSTAT3) were found to be highly

expressed in abruptly involuted mammary glands 28 days

postpartum that continued to be elevated through day 56

postpartum (31). Combined, these studies suggest an early increase

in STAT3 activation that helps mammary glands to return to pre-

pregnancy state is re-activated when investigated after up to 120 days

postpartum, demonstrating sustained inflammation.

STAT3 signaling pathway has been shown to be elevated in breast

cancer, particularly TNBC (47). Cytokine IL-6 is a known transporter

of STAT3 into the nucleus, showcasing a role of inflammation on the

STAT3 pathway (48). In a mouse xenograft model of TNBC, blocking

of STAT3 signaling was found to reduce STAT3 translocation into

the nucleus, reduction of the epithelial mesenchymal transition, and

promoted apoptosis of TNBC cells (48). As STAT3 has been

indicated in both obesity and involution, further exploration of the

combined effect of these two independent variables is warranted.
3.3 Adipokine alterations

In obesity, or under positive energy balance, adipocytes

continuously take up free fatty acids from circulation (49). This

leads to an increase in adipocyte size and crowding of adipocytes

within tissues (49). As adipocytes expand, there is a decrease in

oxygen availability for normal metabolic processes, which leads to

hypoxia (49). Depletion or lack of oxygen available to adipose tissue

has been shown to increase the development of insulin resistance

and extra cellular matrix remodeling through increased secretion of

leptin and decreased adiponectin gene expression (50). All these

changes contribute to a pro-tumorigenic environment.

Mammary glands are composed predominantly of adipose

tissue (28). In individuals who are considered overweight or

obese, there is increased adiposity in the mammary glands (51).

Adipose tissue secretes hormones and cytokines called adipokines

(51). These hormones are a relatively new discovery with the first

adipokine, leptin, being identified in the 1990s (52). While several

adipokines and cytokines are released from the adipose tissue in the
Frontiers in Oncology 05
mammary gland, breast cancer research has focused predominantly

on the effects of leptin and adiponectin, with new research emerging

on the role of resistin (37, 53, 54). The role these adipokines play

during and after involution has not been studied.

Leptin: It has been shown that pre-adipocytes and mature

adipocytes secrete leptin (53). Secretion of leptin triggered by

excess energy binds to the leptin receptor on the cell membrane

(53) and signals the brain to reduce energy intake (55). However,

overexpression of the leptin receptor and overstimulation of leptin

secretion has been linked to the development of breast cancer,

which could be related to higher calorie intake leading to increased

adiposity (54). In addition, in postmenopausal breast cancer

patients (n=42) there was increased leptin secretion compared to

healthy controls (53). This increased leptin secretion was positively

correlated to faster cancer progression, metastasis, and poor

survival rates (53). Leptin-deficient mouse models have

demonstrated reduced tumor growth rates and decrease in tumor

size (56). Binding of leptin to its receptor activates multiple

signaling pathways such as PI3K/AKT, MAPK/ERK1/2 and JAK/

STAT, the key signaling pathways in TNBC leading to cell

proliferation, migration, differentiation, anti-apoptosis, and

stemness (54), connecting obesity, specifically leptin to

increased tumorigenesis.

Adiponectin: Adiponectin is produced and secreted by adipose

tissue, and an inverse correlation between adiponectin and breast

cancer risk has been shown (57). It is known for its insulin-

sensitizing properties, as well as regulating immune responses

(56). Adiponectin was shown to prevent cell proliferation and

promote apoptosis through inhibiting the AKT pathway as well

as promoting increased reliance on fatty acids for energy in TNBC

cell lines (57). While adiponectin can promote TNBC cell death, the

role of adiponectin in breast cancer is still controversial and

warrants further investigation. One study of breast cancer patients

in Germany a positive correlation of adiponectin levels and

increased breast cancer related mortality (58).

Resistin: Resistin is a relatively newer adipokine that has been

investigated in connection to breast cancer risk (53). Resistin is

secreted by peripheral blood mononuclear cells and macrophages in

humans (53). It plays a role in the inflammatory process by

targeting immune cells to increase proinflammatory cytokine

production (59, 60). Studies have shown increased levels of

resistin in obese humans and rodents (59). Based on the role of

resistin in inflammation, a link has been proposed between resistin

and insulin resistance, although overall data is inconclusive (61, 62).

Resistin has been shown to increase stemness in TNBC cell

populations through activation of STAT3 (59, 60). In adipocyte

stem cells, resistin enhanced properties of invasion, proliferation,

and mesenchymal transition when co-cultured with a TNBC cell

line (60).
4 Discussion

Short-term breastfeeding (abrupt mammary gland involution)

and obesity are highly metabolic processes that have been
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independently associated with increased breast cancer risk (10, 12,

21, 35, 36). In this review, we sought to provide a comparison of the

mechanisms underlying these two independent risk factors,

revealing numerous overlapping impacts within the breast tissue.

Obesity and lack of breastfeeding following full-term pregnancy

both appear lead to greater acute and chronic localized

inflammation within the mammary gland related to macrophage

infiltration, changes in epithelial cell population, and STAT3

activation. This supports the need to consider these two separate

processes in concert and, further, whether the inflammatory effects

are overlapping, additive, or synergistic.

In the US, racial disparities in mortality rates are significant

after breast cancer diagnosis (8). Even with similar rates of

incidence between non-Hispanic White women (NHW) and

AAW, the latter face 40% higher death rates (6). This can be

attributed to multiple factors, including higher poverty rates and

pervasive systemic racism that undermines access to screenings and

superior treatment options (6). Further incidences for high

mortality rates for AAW include lack of medical coverage,

barriers in accessibility to early detection and screening, more

advanced stage when diagnosed, and unequal access to

improvements in treatment (63).

A biological reason that contributes to the higher mortality seen

in AAW is the higher incidence of the aggressive TNBC (64). While

48% of patients diagnosed with TNBC were found to have BRCA1

mutation, the frequency of BRCA1 mutations in AAW with TNBC

is 27.9% compared to 46.2% in NHW women (65–68). AAW have

multiple overlapping modifiable behavioral risk factors that

contribute to increased risk of TNBC and worse outcomes,

including: lack of breastfeeding, shorter duration of breastfeeding,

as well as higher rates of premenopausal obesity (BMI ≥ 30 kg/m2)

(11). Breastfeeding rates amongst AAW are far below the

recommendation from pediatric health experts (69). There are

many factors that lead to this disparity, such as a lack of

breastfeeding education and social and familial breastfeeding

support (69). The AMBER consortium was a large collaborative

initiative funded by the National Cancer Institute (NCI) to

understand lifestyle and genetic risk factors of breast cancer in

the AAW population (13). Studies have shown that among AAW

increases number of parities led to reduction of breastfeeding

initiation and shorter duration of breastfeeding (70). Interestingly,

the heightened risk of TNBC due to multiparity in AAW is reversed

if individuals chose to breastfeed (18, 71).

While more research needs to be conducted on the lasting

effects of abrupt involution, research on the combination of these

two independent risk factors is imperative. By understanding the

individual and combination effects of obesity and abrupt involution,

intervention strategies against the detrimental effects can be

developed for women who cannot or chose not to breastfeed.

Research at the intersection of these two independent risk factors

can impact all women who cannot or choose not to breastfeed and

particularly impact AAW who have higher rates of pre-menopausal

obesity, lower rates of breastfeeding, and higher incidence and

mortality associated with TNBC (12). Ultimately, understanding

of the combinatorial effect and development of an intervention may

help to reduce racial disparities in breast cancer.
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