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Introduction: Lateral lymph node (LLN) metastasis in rectal cancer significantly

affects patient treatment and prognosis. This study aimed to comprehensively

compare the performance of various predictive models in predicting

LLN metastasis.

Methods: In this retrospective study, data from 152 rectal cancer patients who

underwent lateral lymph node (LLN) dissection were collected. The cohort was

divided into a training set (n=86) from Tianjin Union Medical Center (TUMC), and

two testing cohorts: testing cohort (TUMC) (n=37) and testing cohort fromGansu

Provincial Hospital (GSPH) (n=29). A clinical model was established using clinical

data; deep transfer learning models and radiomics models were developed using

MRI images of the primary tumor (PT) and largest short-axis LLN (LLLN), visible

LLN (VLLN) areas, along with a fusion model that integrates features from both

deep transfer learning and radiomics. The diagnostic value of these models for

LLN metastasis was analyzed based on postoperative LLN pathology.

Results:Models based on LLLN image information generally outperformed those

based on PT image information. Rradiomics models based on LLLN

demonstrated improved robustness on external testing cohorts compared to

those based on VLLN. Specifically, the radiomics model based on LLLN imaging

achieved an AUC of 0.741 in the testing cohort (TUMC) and 0.713 in the testing

cohort (GSPH) with the extra trees algorithm.
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Conclusion: Data from LLLN is a more reliable basis for predicting LLN

metastasis in rectal cancer patients with suspicious LLN metastasis than data

from PT. Among models performing adequately on the internal test set, all

showed declines on the external test set, with LLLN_Rad_Models being less

affected by scanning parameters and data sources.
KEYWORDS

lateral lymph node metastasis, rectal cancer, radiomics, deep transfer learning,
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1 Introduction

Lateral lymph node (LLN) metastasis is a significant route of

metastasis for mid- and low rectal cancers, a 20.1% rate of metastases

(1). Current treatment strategies for suspected LLN metastasis

include: 1. total mesorectal excision (TME) after neoadjuvant

chemoradiotherapy (nCRT); 2. TME combined with lateral lymph

node dissection (LLND); and 3. TME combined with LLND after

nCRT (2, 3). Accurate diagnosis of LLN metastasis is crucial for

determining the appropriate treatment strategy. Preoperative

pathological or cytological evidence of LLNs is difficult to obtain;

hence, the diagnosis of LLN metastasis primarily relies on imaging

studies. The short-axis diameter of the lymph node is the most critical

parameter for assessing the presence of metastasis (4). Immune

responses induced by tumors can also lead to lymph node

enlargement, which does not necessarily indicate tumor cell

metastasis. In contrast, nonmetastatic lymph node enlargement is

an indicator of better long-term prognosis in colorectal cancer (CRC)

patients (5). Currently, commonly used imaging methods for

diagnosing lymph node metastasis include MRI, CT, positron

emission tomography (PET)/CT, and endorectal ultrasound. These

imaging techniques demonstrate relatively low sensitivity and

specificity in determining the nature of lymph nodes (6–8).

Over the past decade, the field of radiomics has established itself

as an important technique in quantitative image analysis.

Radiomics involves the extraction of a large number of

quantitative features from medical images using sophisticated

data characterisation algorithms (9). These features can then be

used to build predictive models of clinical outcomes, improving the

accuracy of medical diagnoses and treatment plans (10). While

radiomics focuses on pre-defined features extracted from images,

deep learning approaches, particularly deep transfer learning

models, have gained popularity for their ability to automatically

learn features from data. Deep transfer learning uses pre-trained

neural networks that can be fine-tuned to specific medical imaging

tasks, reducing the need for large labelled datasets (11). Radiomics

and deep transfer learning technologies have demonstrated

exceptional capabilities in disease diagnosis, molecular typing,

and predicting treatment responses (12). Studies have shown that

in the diagnosis of rectal cancer lymph node metastasis, radiomics
02
models exhibit greater diagnostic efficacy than traditional imaging

methods (13). This approach aimed to explore optimal methods for

constructing machine learning diagnostic models for detecting LLN

metastasis in rectal cancer patients suspected LLN metastasis.
2 Methods

2.1 Study cohort

In this study, data from 152 rectal cancer patients whose MRI-

documented LLNs exceeded 5 mm in short-axis diameter were

retrospectively collected, all of whom had undergone LLND. A

clinical diagnostic model was constructed, along with seven other

models developed specifically for LLNs and primary tumor (PT).

Three types of models were developed for both largest short-axis LLN

(LLLN)and PT: a deep transfer learning (DTL) diagnostic model, a

radiomic model, and a fusion model that integrates features from

both DTL and radiomics. Additionally, a radiomic model was

developed based on visible LLN (VLLN). Written informed consent

was waived in this retrospective study. The study protocol was

approved by the Tianjin Union Medical Center (TUMC)’s Ethics

Committee (Approval No. 2022-C23) and Gansu Provincial Hospital

(GSPH)’s Ethics Committee (Approval No. 2024-243). Clinical and

imaging data of rectal cancer patients who met the following criteria

were collected from June 2017 to May 2024. The inclusion criteria

were as follows: 1. Patients who underwent LLND surgery at the same

time as TME surgery and who had pathologically confirmed rectal

cancer; 2. Patients with pelvic MR images and LLNs with short-axis

diameters exceeding 5 mm on MRI, as assessed by the surgical team

preoperatively; The exclusion criteria were as follows: 1. Patients

without T2WI data. 2. Patients without complete clinical and

pathological information.3. Patients for which the LLNs were not

visible in horizontal T2WI images because they were outside the field

of view of the scan, even though LLNs greater than 5 mm in the short

axis could be detected in sagittal or coronal positions. 4. In those who

received nCRT, induction neoadjuvant chemotherapy or

consolidation neoadjuvant chemotherapy before surgery, those with

pathologically negative LN were excluded to account for potential

curative treatment of nCRT and the subsequent effect on modeling.
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According to the postoperative pathological results of the LLNs

in the patients, the patients were divided into two groups: the LLN

metastasis group, consisting of patients with one or more

pathologically positive LLNs, and the non-LLN metastasis group,

consisting of patients with zero pathologically positive LLNs.

Patients from TUMC were randomly divided at a 7:3 ratio into a

training cohort (TUMC) (n=86) and a testing cohort (TUMC)

(n=37). Patients from GSPH were designated as testing cohort

(GSPH) (n=29).
2.2 Region of interest segmentation

We obtained MR-T2W images of the pelvis at admission from

the image archiving and communication system at Tianjin Union

Medical Center. The horizontal MR-T2W images obtained from the

patient cohort were exported to the 3D Slicer program (v.5.2.2) for

ROI segmentation. A radiologist with more than five years of

experience in the field utilized this software to accurately

delineate the boundaries of the PT and the VLLN.
2.3 Radiomics feature extraction

In our study, we utilized PyRadiomics to extract a total of 1,198

radiomics features from the PT and the each VLLN. The extracted

features include first-order features, shape-based features, and various

texture features categorized into a gray-level co-occurrence matrix

(GLCM), gray-level dependence matrix (GLDM), gray-level run length

matrix (GLRLM), gray-level size zone matrix (GLSZM), and

neighborhood gray-tone difference matrix (NGTDM). The

proportions of each category are illustrated in Supplementary Figure

S1. The detailed parameters used for radiomic feature extraction are

described in the Supplementary Materials and can also be found on the

PyRadiomics website (https://pyradiomics.readthedocs.io/en/latest/).

The configuration file for feature extraction is provided in the

Supplementary File. Radiomics features from PT were used to

construct PT_Rad_Models (radiomics models based on primary

tumor). Radiomics features from the LLLN were used to construct

LLLN_Rad_Models (radiomics models based on largest short-axis

lateral lymph node). The maximum, minimum, mean, median

value (when the number of VLLN is even, the median value is

equal to the mean), and standard deviation of each feature of all

VLLN of each participant were recorded, resulting in a total of

5990 radiomics features obtained from each patient for

VLLN_Rad_Models (radiomics models based on all visible lateral

lymph nodes).
2.4 Radiomics feature selection and
model construction

The radiomics features were standardized using z score

normalization. We also conducted Mann−Whitney U tests and

feature screening for all radiomic features. Only radiomic features

with p values < 0.05 were retained. To handle strong correlations
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between features (Spearman correlation coefficient ≥ 0.9), we employed

a greedy recursive feature deletion strategy for feature filtering. This

strategy entails iteratively removing the feature with the highest

redundancy within the current feature set until the current set no

longer contains features with a correlation coefficient greater than 0.9.

To further refine the features, multivariate least absolute shrinkage and

selection operator (LASSO) regression was employed. After LASSO

feature selection, we conducted supervised learning using eight diverse

machine learning classifiers, including random forest (RF), k-nearest

neighbor (KNN), logistic regression (LR), multilayer perceptron

(MLP), support vector machine (SVM), extreme gradient boosting

(XGBoost), light gradient boosting machine (LightGBM), and

ExtraTrees. Twenty-four models were constructed, with

eight PT_Rad_Models and eight LLLN_Rad_Models, and

eight VLLN_Rad_Models.
2.5 Clinical model construction

The clinical characteristics and radiological features in Table 1

were used to construct the clinical model. These features were

standardized using z score normalization. Next, feature selection

was performed using t tests and chi-square tests (P < 0.10) to screen

for clinical risk factors for LLN metastasis in the training set,

followed by training eight diverse machine learning classifiers.
2.6 DTL model development and
feature extraction

For PT and LLLN, the layer with the largest ROI area was

selected. In that layer, the ROI area with the smallest bounding

rectangle was saved as a PNG image. The ResNet18 network was

pretrained using the ImageNet dataset, and transfer learning was

subsequently performed on the training set. ImageNet is a large-

scale image database that contains millions of labeled images across

thousands of categories. ImageNet-based transfer learning has been

used in many medical studies. We employed a global fine-tuning

strategy to update the parameters, thereby adapting ResNet18 for

the prediction of LLN metastasis. The learning rate was set to 0.005,

the number of epochs was set to 50, and the Adam optimizer was

used to update the parameters. Two models were constructed:

PT_DTL_ResNet18 (deep transfer learning on primary tumor

using ResNet18) and LLLN_DTL_ResNet18 (deep transfer

learning on largest short-axis lateral lymph node using ResNet18).

The trained ResNet18 could be used to predict the probability of

LLN metastasis for each rectangular image.

After completing the training of ResNet18, we utilized

ResNet18 to extract 512 deep learning features of each patch

from the penultimate average pooling layer in ResNet18.
2.7 Construction of the fusion model

This study employed feature-level fusion strategies to establish a

fusion model. Feature-level fusion, also known as early fusion,

involves connecting all features from different modalities into a
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single feature vector. The radiomics features of the primary tumor

were extracted using PyRadiomics, while the deep learning (DL)

features were obtained through ResNet18, as described above. These

DL and radiomics features were standardized using z score

normalization. Subsequently, U tests, Spearman correlation
Frontiers in Oncology 04
analyses, and LASSO analyses were performed to select the

features, followed by training eight diverse machine learning

classifiers. Sixteen models were constructed, with eight

PT_Fusion_Models (the models combine radiomics and deep

transfer learning features based on the primary tumor) and eight
TABLE 1 Characteristics of patients in the training and test cohorts.

Characteristic

Training cohort (TUMC, n=86) Test cohort (TUMC, n=37) Test cohort (GSPH, n=29)

Negative
for
LLN
metastasis

Positive
for
LLN
metastasis

P
value

Negative
for
LLN
metastasis

Positive
for
LLN
metastasis

P
value

Negative
for
LLN
metastasis

Positive
for
LLN
metastasis

P
value

Age, mean ±
SD, years

60.16 ± 13.30 59.55 ± 12.32 0.68 62.06 ± 8.04 56.43 ± 12.01 0.11 61.90 ± 7.36 54.74 ± 9.88 0.05

Height, mean ±
SD, cm

168.65 ± 8.11 166.55 ± 8.26 0.24 167.75 ± 6.86 166.05 ± 7.93 0.50 165.92 ± 5.98 166.85 ± 7.17 0.73

Weight, mean ±
SD, kg

69.73 ± 13.73 67.23 ± 12.37 0.38 68.25 ± 12.42 67.12 ± 11.68 0.78 63.00 ± 11.28 65.16 ± 9.32 0.59

CEA, mean ± SD,
ng/mL

14.47 ± 25.52 15.01 ± 17.49 0.15 203.55 ± 506.53 19.61 ± 29.61 0.68 9.95 ± 15.42 16.81 ± 48.06 0.57

CA19-9, mean ±
SD, ng/mL

91.12 ± 270.73 61.61 ± 156.86 0.54 32.31 ± 46.45 23.74 ± 22.42 0.88 8.92 ± 8.81
122.82
± 296.80

0.02

Distance to anal
margin, mean ±
SD, cm

4.71 ± 2.65 3.94 ± 1.86 0.09 4.67 ± 1.81 4.67 ± 2.38 1.00 5.38 ± 2.58 4.21 ± 1.84 0.17

Lesion length, mean
± SD, cm

4.25 ± 1.49 4.77 ± 2.37 0.20 4.77 ± 1.72 4.50 ± 1.40 0.60 4.83 ± 2.89 4.70 ± 2.34 0.90

NoEMLN, mean
± SD

1.59 ± 1.52 1.96 ± 1.97 0.58 1.62 ± 1.59 1.67 ± 1.59 0.92 3.20 ± 2.57 3.47 ± 2.39 0.94

NoELLN, mean
± SD

1.41 ± 0.86 1.86 ± 1.12 0.01 1.12 ± 0.34 1.67 ± 1.11 0.12 1.40 ± 0.70 1.68 ± 1.06 0.67

Gender, n (%) 0.47 0.50 1.00

female 10(27.03) 18(36.73) 5(31.25) 10(47.62) 4(40.00) 9(47.37)

male 27(72.97) 31(63.27) 11(68.75) 11(52.38) 6(60.00) 10(52.63)

T stage, n (%) 0.66 0.85 0.40

2 2(5.41) 5(10.20) 1(6.25) 2(9.52) 1(10.00) 1(5.26)

3 29(78.38) 38(77.55) 12(75.00) 14(66.67) 8(80.00) 14(73.68)

4 6(16.22) 6(12.24) 3(18.75) 5(23.81) 1(10.00) 4(21.05)

N stage, n (%) 0.53 0.29 0.74

1 23(62.16) 26(53.06) 12(75.00) 11(52.38) 4(40.00) 5(26.32)

2 14(37.84) 23(46.94) 4(25.00) 10(47.62) 6(60.00) 14(73.68)

CRM, n (%) 0.26 1.00 1.00

0 19(51.35) 18(36.73) 4(25.00) 5(23.81) 4(40.00) 7(36.84)

1 18(48.65) 31(63.27) 12(75.00) 16(76.19) 6(60.00) 12(63.16)

EMVI, n (%) 0.35 0.63 0.80

0 22(59.46) 23(46.94) 9(56.25) 9(42.86) 6(60.00) 9(47.37)

1 15(40.54) 26(53.06) 7(43.75) 12(57.14) 4(40.00) 10(52.63)
front
LLN, lateral lymph node; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; CRM, circumferential resection margin; EMVI, extramural vascular invasion; NoELLN, number of
enlarged lateral lymph nodes; NoEMLN, number of enlarged mesorectal lymph nodes; enlarged lymph nodes indicate a short-axis diameter of lateral lymph nodes ≥5 mm; TUMC, Tianjin Union
Medical Center; GSPH, Gansu Provincial Hospital.
iersin.org
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LLLN_Fusion_Models (the models combine radiomics and deep

transfer learning features based on the largest short-axis lateral

lymph node).
2.8 Model validation and comparison

After construction, the prediction model was validated in the

testing cohort (TUMC) and the testing cohort (GSPH). The

sensitivity, specificity, precision, and F1 score were measured to

evaluate the diagnostic accuracy. Additionally, a confusion matrix

and a waterfall figure were used for further comparison. Receiver

operating characteristic (ROC) curves and the area under the
Frontiers in Oncology 05
curve (AUC) were generated to evaluate the discrimination

performance of the prediction model. Decision curve analysis

(DCA) was performed to assess the clinical utility and net benefit

of the model. The flowchart of the study is illustrated in Figure 1.
3 Results

3.1 Baseline characteristics and clinical
model analysis

This study involved a cohort of 152 patients with a mean age of

59.09 years ( ± 11.6 years). The sex distribution revealed that 63.8% of
FIGURE 1

The workflow of the clinical, radiomic, DTL (ResNet18), and fusion (radiomics and DTL) models. (DTL, deep transfer learning; PT, primary tumor;
LLLN, largest short-axis lateral lymph node; VLLN, visible lateral lymph nodes; PT_Rad_Models, radiomics model based on primary tumor;
PT_Fusion_Models, the models combine radiomics and deep transfer learning features based on the primary tumor; LLLN_Rad_Models, the
radiomics model based on largest short-axis lateral lymph node; VLLN_Rad_Models, the radiomics model based on all visible lateral lymph nodes;
LLLN_Fusion_Models, the models combine radiomics and deep transfer learning features based on largest short-axis lateral lymph node;
PT_DTL_ResNet18, deep transfer learning on primary tumor using ResNet18; LLLN_DTL_ResNet18, deep transfer learning on largest short-axis
lateral lymph node using ResNet18; ROC, receiver operating characteristic; DCA, decision curve analysis; HIS, Hospital Information System).
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patients were male and 36.2% were female. Among the 123 patients

from TUMC, 57% (70/123) had pathological LLN positivity, and of

these 70 patients, 24% (17/70) underwent nCRT treatment. From the

GSPH cohort of 29 patients, 66% (19/29) had pathological LLN

positivity, and of these 19 patients, 58% (11/19) underwent nCRT

treatment. (Detailed clinical information of the patient can be found in

Supplementary Materials 2). The baseline clinical characteristics are

presented in Table 1. According to the t test and chi-square test, two

characteristics had p values less than 0.1 in the training cohort

(TUMC): distance to the anal margin (p = 0.09) and the number of

enlarged mesorectal lymph nodes (NoELLNs) (p = 0.01). The clinical

models will be constructed based on these two characteristics.
3.2 Feature selection

3.2.1 Primary tumor radiomic features
We ultimately identified 8 key radiomic features of the primary

tumor (PT) of the 1,198 radiomic features (Figure 2A). These features

were selected specifically for constructing the PT_Rad_Models.
Frontiers in Oncology 06
3.2.2 Primary tumor fusion features
30 Fusion features for the primary tumor, which included 10

key radiomic features out of 1,198 radiomic features and 20 key

deep learning features out of 512 deep learning features (Figure 2B).

These features were utilized to develop the PT_Fusion_Models.

3.2.3 LLLN radiomic features
We ultimately identified 18 key radiomic features of the LLLN

out of 1,198 radiomic features (Figure 3A). These features were

selected specifically for constructing the LLLN_Rad_Models.

3.2.4 VLLN radiomic features
We ultimately identified 16 key radiomic features of the VLLN

out of 5990 radiomic features (Figure 3B). These features were

selected specifically for constructing the LLLN_Rad_Models.
3.2.5 LLLN fusion features
43 fusion features for the LLN, which included 15 key radiomic

features out of 1,198 radiomic features and 28 key deep learning
B

A

FIGURE 2

Histogram of scores based on the selected features after LASSO regression. (A) Features based on PT radiomics. (B) Features based on radiomics
and DTL (ResNet18) from PT. (PT, primary tumor; DTL, deep transfer learning; glcm, gray−level co−occurrence matrix; gldm, gray-level dependence
matrix; glrlm, gray−level run length matrix; glszm, gray−level size zone matrix; ngtdm, neighborhood gray−tone difference matrix; Imc2,
informational measure of correlation 2; DL, deep learning; HLH, high-low-high-pass filtered image; LHH, low-high-high-pass filtered image; HLL,
high-low-low-pass filtered image).
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features out of 512 deep learning features (Figure 3C). These

features were utilized to develop the LLLN_Fusion_Models.

The complete set of feature information is available in

Supplementary Materials 2.
3.3 Radiomic models

3.3.1 PT_Rad_models
Figure 4A shows the ROC analysis of radiomic features by

different models in the training cohort and testing cohort. For the

training cohort (TUMC), the AUC values for the LR, SVM, KNN,

Random Forest, Extra Trees, XGBoost, LightGBM, and MLP models

were 0.816, 0.897, 0.803, 0.929, 0.845, 0.989, 0.859, and 0.843,

respectively. For the testing cohort (TUMC), the AUC values were

0.574, 0.670, 0.530, 0.566, 0.570, 0.564, 0.589, and 0.604, respectively.

For the testing cohort (GSPH), the AUC values were 0.532, 0.637,

0.524, 0.445, 0.521, 0.503, 0.495, and 0.642, respectively. Detailed

statistical evaluations of the PT_Rad_Models are presented in

Supplementary Table S2. For a comparison of accuracy across

different algorithms in the PT_Rad_Models, see Supplementary

Figure S6. The confusion matrices for the training and test cohorts

of the PT_Rad_Models are shown in Supplementary Figure S12.

Waterfall plots for the training and test cohorts in the

PT_Rad_Models can be found in Supplementary Figure S18. The

results of the DCA for the training and test cohorts of the

PT_Rad_Models are presented in Supplementary Figure S24.
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3.3.2 LLLN_Rad_models
Figure 5A shows the ROC analysis of radiomic features by

different models in the training cohort and testing cohort. For the

training cohort (TUMC), the AUC values for the LR, SVM, KNN,

random forest, Extra Trees, XGBoost, LightGBM, and MLP models

were 0.969, 0.976, 0.926, 0.983, 0.942, 1.000, 0.957, and 0.965,

respectively. For the testing cohort (TUMC), the AUC values were

0.744, 0.738, 0.662, 0.723, 0.741, 0.698, 0.743, and 0.807, respectively.

For the testing cohort (GSPH), the AUC values were 0.526, 0.642,

0.621, 0.629, 0.713, 0.684, 0.555, and 0.553, respectively. Detailed

statistical evaluations of the LLLN_Rad_Models are presented in

Supplementary Table S4. For a comparison of accuracy across

different algorithms in the LLLN_Rad_Models, see Supplementary

Figure S8. The confusion matrices for the training and test cohorts of

the LLLN_Rad_Models are shown in Supplementary Figure S14.

Waterfall plots for the training and test cohorts in the

LLLN_Rad_Models can be found in Supplementary Figure S20.

DCA for the training and test cohorts of the LLLN_Rad_Models is

presented in Supplementary Figure S26.
3.3.3 VLLN_Rad_models
Figure 5B shows the ROC analysis of radiomic features by

different models in the training cohort and testing cohort. For the

training cohort (TUMC), the AUC values for the LR, SVM, KNN,

random forest, Extra Trees, XGBoost, LightGBM, and MLP models

were 0.963, 0.969, 0.958, 0.975, 0.945, 1.000, 0.951, and 0.954,

respectively. For the testing cohort (TUMC), the AUC values were
frontiersin.o
B
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FIGURE 3

Histogram of the scores based on the selected features after LASSO regression. (A) Features based on radiomics from LLLN. (B) Features based on
radiomics from VLLN (C) Features based on radiomics and DTL (ResNet18) from LLLN. (LLLN, largest short-axis lateral lymph node; VLLN, visible
lateral lymph nodes; PT, primary tumor; DTL, deep transfer learning; glcm, gray−level co−occurrence matrix; gldm, gray-level dependence matrix;
glrlm, gray−level run length matrix; glszm, gray−level size zone matrix; ngtdm, neighborhood gray−tone difference matrix, Imc2, informational
measure of correlation 2; DL, deep learning; LLH, low-low-high-pass filtered image; LHL, low-high-low-pass filtered image; LLL, low-low-low-pass
filtered image; LHH, low-high-high-pass filtered image; HLH, high-low-high-pass filtered image; HLL, high-low-low-pass filtered image; HHL, high-
high- low-pass filtered image; HHL, high-high-low-pass filtered image).
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0.792, 0.762, 0.766, 0.740, 0.793, 0.728, 0.753, and 0.801, respectively.

For the testing cohort (GSPH), the AUC values were 0.516, 0.589,

0.505, 0.463, 0.445, 0.566, 0.584, and 0.505, respectively. Detailed

statistical evaluations of the VLLN_Rad_Models are presented in

Supplementary Table S5. For a comparison of accuracy across

different algorithms in the VLLN_Rad_Models, see Supplementary

Figure S9. The confusion matrices for the training and test cohorts of

the VLLN_Rad_Models are shown in Supplementary Figure S15.

Waterfall plots for the training and test cohorts in the

VLLN_Rad_Models can be found in Supplementary Figure S21.

DCA for the training and test cohorts of the LLLN_Rad_Models is

presented in Supplementary Figure S27.

In terms of AUC, the LLLN_Rad_Models or VLLN_Rad_Models

consistently performed better in the testing cohort (TUMC) than

did the PT_Rad_Models across all models. In the testing

cohort (GSPH), the classification ability of the VLLN_Rad_Models
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substantially decreased in terms of AUC, and the LLLN_Rad_Models

also decreased, but to a lesser extent compared to the

VLLN_Rad_Models. (Figure 6, Supplementary Figure S29).
3.4 Fusion models

3.4.1 PT_Fusion_Models
Figure 4B shows the ROC analysis of radiomic features by

different models in the training cohort and testing cohort. For the

training cohort (TUMC), the AUC values for the LR, SVM, KNN,

random forest, Extra Trees, XGBoost, LightGBM, and MLP models

were 0.991, 0.999, 0.961, 0.991, 0.976, 1.000, 0.973, and 0.992,

respectively. For the testing cohort (TUMC), the AUC values were

0.557, 0.601, 0.565, 0.545, 0.574, 0.536, 0.574, and 0.565, respectively.

For the testing cohort (GSPH), the AUC values were 0.495, 0.505,
B

A

FIGURE 4

ROC curves for the ability of the radiomics models and fusion (radiomics and DTL) models to predict LLN metastasis in the training and validation
cohorts. (A) Radiomics models based on PT. (B) Fusion models based on PT. (PT, primary tumor; PT_Rad_Models, radiomics models based on
primary tumor; PT_Fusion_Models, the models combine radiomics and deep transfer learning features based on the primary tumor; ROC, receiver
operating characteristic; RF, random forest; KNN, k-nearest neighbor; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector
machine; XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine; TUMC, Tianjin Union Medical Center; GSPH, Gansu
Provincial Hospital).
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FIGURE 5

ROC curve for the radiomics models and fusion (radiomics and DTL) models to predict LLN metastasis in the training and validation cohorts.
(A) Radiomics models based on LLLN. (B) Radiomics models based on VLLN. (C) Fusion models based on LLLN. (LLLN, largest short-axis lateral
lymph node; VLLN, visible lateral lymph nodes; LLLN_Rad_Models, radiomics models based on largest short-axis lateral lymph node;
LLLN_Fusion_Models, the models combine radiomics and deep transfer learning features based on largest short-axis lateral lymph node; ROC,
receiver operating characteristic; RF, random forest; KNN, k-nearest neighbor; LR, logistic regression; MLP, multilayer perceptron; SVM, support
vector machine; XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine; TUMC, Tianjin Union Medical Center; GSPH,
Gansu Provincial Hospital).
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0.526, 0.521, 0.568, 0.574, 0.476, and 0.458, respectively. Detailed

statistical evaluations of the PT_Fusion_Models are presented in

Supplementary Table S3. For a comparison of accuracy across

different algorithms in the PT_Fusion_Models, see Supplementary

Figure S7. The confusion matrices for the training and test cohorts of

the PT_Fusion_Models are shown in Supplementary Figure S13.

Waterfall plots for the training and test cohorts in the

PT_Fusion_Models can be found in Supplementary Figure S19.

The results of the DCA for the training and test cohorts of the

PT_Fusion_Models are presented in Supplementary Figure S25.
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3.4.2 LLLN_Fusion_Models
Figure 5C shows the ROC analysis of radiomic features by different

models in the training cohort and testing cohort. For the training

cohort (TUMC), the AUC values for the LR, SVM, KNN, random

forest, Extra Trees, XGBoost, LightGBM, and MLP models were 1.000,

1.000, 0.987, 0.993, 0.996, 1.000, 0.985, and 0.999, respectively. For the

testing cohort (TUMC), the AUC values were 0.637, 0.634, 0.609,

0.658, 0.690, 0.586, 0.655, and 0.693, respectively. For the testing cohort

(GSPH, Gansu Provincial Hospital), the AUC values were 0.579, 0.584,

0.503, 0.479, 0.726, 0.611, 0.568, and 0.516, respectively. Detailed
BA

FIGURE 6

Radar chart of the accuracy and AUC of the models. (A) Accuracy. (B) AUC. (PT, primary tumor; LLLN, largest short-axis lateral lymph node; VLLN,
visible lateral lymph nodes; PT_Rad_Models, radiomics models based on primary tumor; PT_Fusion_Models, the models combine radiomics and
deep transfer learning features based on the primary tumor; LLLN_Rad_Models, radiomics models based on largest short-axis lateral lymph node;
VLLN_Rad_Models, radiomics models based on all visible lateral lymph nodes; LLLN_Fusion_Models, the models combine radiomics and deep
transfer learning features based on largest short-axis lateral lymph node; AUC, area under the curve; RF, random forest; KNN, k-nearest neighbor;
LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; XGBoost, extreme gradient boosting; LightGBM, light gradient
boosting machine; TUMC, Tianjin Union Medical Center; GSPH, Gansu Provincial Hospital).
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statistical evaluations of the LLLN_Fusion_Models are presented in

Supplementary Table S6. For a comparison of accuracy across different

algorithms in the LLLN_Fusion_Models, see Supplementary Figure

S10. The confusion matrices for the training and test cohorts of the

LLLN_Fusion_Models are shown in Supplementary Figure S16.

Waterfall plots for the training and test cohorts in the

LLLN_Fusion_Models can be found in Supplementary Figure S22.

DCA for the training and test cohorts of the LLLN_Fusion_Models is

presented in Supplementary Figure S28.

In the testing cohort (TUMC), LLLN_Fusion_Models

outperformed the PT_Fusion_Models in terms of AUC for all

algorithms. (Figure 6, Supplementary Figure S30).
3.5 Clinical models

Clinical models: Figure 7 shows the ROC analysis of clinical risk

factors by different models in the training cohort and testing cohort.

For the training cohort (TUMC), the AUC values for the LR, SVM,

KNN, Random Forest, Extra Trees, XGBoost, LightGBM, and MLP

models were 0.700, 0.754, 0.791, 0.810, 0.800, 0.820, 0.726, and

0.724, respectively. For the testing cohort (TUMC), the AUC values

were 0.653, 0.579, 0.496, 0.685, 0.574, 0.504, 0.679, and 0.652,

respectively. For the testing cohort (GSPH), the AUC values

were 0.663, 0.658, 0.750, 0.632, 0.571, 0.618, 0.558, and

0.647, respectively.

Detailed statistical evaluations of the clinical models are

presented in Supplementary Table S1. For a comparison of

accuracy across different algorithms in the clinical models, see

Supplementary Figure S5. The confusion matrices for the training

and test cohorts of the clinical models are shown in Supplementary

Figure S11. Waterfall plots for the training and test cohorts in the
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clinical models can be found in Supplementary Figure S17. DCA for

the training and test cohorts of the clinical models is presented in

Supplementary Figure S23.
3.6 DTL models

Figure 8 illustrates the ROC analysis for different DTL models

in both the training and testing cohorts. PT_DTL_ResNet18

achieved an AUC of 0.812 in the training cohort, 0.696 in the

testing cohort (TUMC) and 0.326 in the testing cohort (GSPH).

Moreover, the AUC of the LLLN_DTL_ResNet18 model was 0.872

in the training cohort, 0.737 in the testing cohort (TUMC) and

0.621 in the testing cohort (GSPH, Gansu Provincial Hospital). The

higher AUC values observed for LLLN_DTL_ResNet18 suggest that

it may be a stronger model. Detailed statistical evaluations of these

models are presented in Table 2.
4 Discussion

Lymph node metastasis in rectal cancer typically occurs in the

mesorectum and LLNs. During the surgical treatment of rectal

cancer, TME, which involves the routine removal of mesorectal

lymph nodes, is commonly performed (14). Unlike mesorectal

lymph nodes, LLNs are not typically included in the routine

excision scope of TME. For patients suspected to have LLN

metastasis, LLND is usually required to completely remove these

metastatic LLNs (15).

Recent studies have indicated that for patients with rectal cancer

diagnosed by imaging as having LLN metastasis, the postoperative

pathologically positive concordance rates for LLND were 27.9 and
B CA

FIGURE 7

ROC curve for the clinical models for predicting LLN metastasis. (A) Clinical models in the training cohorts(TUMC). (B) Clinical models in the test
cohorts (TUMC). (C) Clinical models in the test cohorts (GSPH, Gansu Provincial Hospital). (ROC, receiver operating characteristic; RF, random forest;
KNN, k-nearest neighbor; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; XGBoost, extreme gradient boosting;
LightGBM, light gradient boosting machine; TUMC, Tianjin Union Medical Center; GSPH, Gansu Provincial Hospital).
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39.3%, respectively (16, 17). This suggests that in more than 60% of

patients, LLND was unnecessary, as these patients endured the risks

of surgery without oncological benefit. Thus, accurate preoperative

diagnosis of LLN metastasis in rectal cancer patients is crucial, as

the appropriateness of LLND directly determines its potential

benefit to patients.

This study developed models based on DTL, radiomics, clinical,

and fusion modeling for the prediction of LLN metastasis. Generally,

all models showed superior performance in the training cohort

compared to the testing cohort, indicating potential overfitting or

the models’ inability to generalize well to unseen data. The

PT_Rad_Models and PT_Fusion_Models performed poorly in both

the testing set (TUMC) and the testing cohort (GSPH)

(Supplementary Figure S32). The LLLN_Rad_Models consistently

outperformed the PT_Rad_Models in AUC across all algorithmic

implementations in the testing cohort (TUMC). Similarly, the
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LLLN_Fusion_Models consis tent ly outperformed the

PT_Fusion_Models in AUC across all algorithmic implementations

in the testing cohort (TUMC). This might suggest that the radiomic

features of the LLLN provide a more robust basis for model training

and generalization than those of the PT. LLLN_DTL_ResNet18

showed better generalization from the training cohort (TUMC) to

both testing cohorts (TUMC and GSPH) than PT_DTL_ResNet18.

The consistently superior performance of LLLN_Rad_Models,

LLLN_Fusion_Models and LLLN_DTL_ResNet18s in AUC in the

testing cohort (TUMC) that LLLN data may provide a more robust

and stable basis for predictions than PT data. Compared to PT data,

models are more likely to learn patterns rather than noise from

LLLN data.

Clinical models have a certain level of classification ability in the

testing cohort, and this ability is less affected by the source of the

testing data. In the external testing cohort (GSPH), the AUC for
TABLE 2 Model performance of the DTL (ResNet18) models.

Model name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Precision Recall F1 Threshold Task

PT_DTL_ResNet18

0.74 0.81 0.72-0.91 0.63 0.89 0.89 0.65 0.89 0.63 0.74 0.62
train
(TUMC)

0.65 0.70 0.52-0.88 0.52 0.81 0.79 0.57 0.79 0.52 0.63 0.64
test
(TUMC)

0.62 0.33 0.09-0.56 0.84 0.20 0.67 0.40 0.67 0.842 0.74 0.56
test
(GSPH)

LLLN_DTL_ResNet18

0.80 0.87 0.80-0.95 0.76 0.87 0.88 0.73 0.88 0.76 0.81 0.58
train
(TUMC)

0.73 0.74 0.56-0.91 0.90 0.50 0.70 0.80 0.70 0.90 0.79 0.59
test
(TUMC)

0.62 0.62 0.40-0.84 0.68 0.50 0.72 0.45 0.72 0.48 0.70 0.76
test
(GSPH)
fron
PT_DTL_ResNet18, deep transfer learning on primary tumor using ResNet18; LLLN_DTL_ResNet18, deep transfer learning on largest short-axis lateral lymph node using ResNet18; AUC, area
under the curve; PPV, positive predictive value; NPV, negative predictive value; F1, the harmonic mean of precision and recall; TUMC, Tianjin Union Medical Center; GSPH, Gansu
Provincial Hospital.
BA

FIGURE 8

ROC curve for the DTL (ResNet18) models for predicting LLN metastasis in the training and validation cohorts. (A) PT_DTL_ ResNet18. (B) LLLN
_DTL_ResNet18. (PT_DTL_ResNet18, deep transfer learning on primary tumor using ResNet18; LLLN_DTL_ResNet18, deep transfer learning on
largest short-axis lateral lymph node using ResNet18; DTL, deep transfer learning; LLLN, largest short-axis lateral lymph node; PT, primary tumor;
ROC, receiver operating characteristic; TUMC, Tianjin Union Medical Center; GSPH, Gansu Provincial Hospital).
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PT_DTL_ResNet18 was 0.326, while LLLN_DTL_ResNet18 still

retained some classification ability with an AUC of 0.621. The

possible reasons for this discrepancy could be the differences in

scanning parameters between the two hospitals, leading to poor

performance in the testing cohorts (GSPH). PT images are more

susceptible to scanning parameter variations due to their

dependency on imaging quality and contrast settings, whereas

LLLN images provide more consistent features and are less

affected by such variations.

In the training set, LLLN_Fusion_Models exhibited high AUC

values, indicating a good fit to the training data. In contrast,

LLLN_Rad_Models have lower AUC in training. However, in the

testing set (TUMC), the LLLN_Fusion_Models did not perform

better than the LLLN_Rad_Models for all algorithms

(Supplementary Figure S32). This suggests that within the

methodological framework used in this study, a richer feature

pool does not enhance the models’ predictive efficacy on new

datasets. The integration of a larger number of features might

lead to models that perform well on training data but fail to

generalize to new, unseen data. This can result from models

capturing noise rather than underlying patterns.

Many machine learning studies on lymph node metastasis

diagnosis in rectal cancer do not differentiate between mesorectal

and LLNs (18–23). As a result, the models can only predict whether

lymph node metastasis is present in patients but cannot determine

whether metastasis occurs in the mesorectum or LLNs. This

limitation restricts the clinical applicability of the models. There

are a few focused studies attempting to address this issue. Yan H

and colleagues constructed a diagnostic model for LLN metastasis

based on clinical risk factors and radiomic features fromMR images

of primary rectal tumors and LLNs, achieving an AUC of 0.836 (24).

Similarly, Yang H and others developed a model based on radiomic

features from MR and CT images of LLNs combined with clinical

risk factors, achieving an AUC of 0.936 (25). These studies

segmented all VLLL, extracting 112 radiomic features from each

VLLL. The maximum, minimum, mean, median, and standard

deviation of each feature across all visible LLNs of each

participant were recorded and analyzed using logistic regression.

These studies did not perform external validation. Our research

increased the number of extracted features to 1198, incorporated

fusion models and DTL models, and included external testing

cohorts. In terms of AUC, our findings show that while

VLLN_Rad_Models outperformed LLLN_Rad_Models in the

internal testing cohort (TUMC), their classification ability

markedly declined in the external testing cohort (GSPH), making

them less effective than LLLN_Rad_Models. This may be because

the features of a single largest lateral lymph node are more stable

and less affected by variations in scanning parameters and image

quality. Handling features of a single lymph node also simplifies the

model, reducing the risk of overfitting.

There are several limitations to this study. First, the relatively

small sample size may limit the robustness of the results. Further

multicenter studies with larger sample sizes are required to improve
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the diagnostic accuracy of the model and to validate its

generalizability in predicting the pathological characteristics of

LLN in rectal cancer patients prior to nCRT or surgery. Second,

this study included patients who received nCRT before LLND, and

only those with postoperative LLN pathology confirmed as positive

were included. It is assumed that LLN metastasis occurred before

nCRT and did not develop during treatment. This assumption

might lead to bias in the results, as it does not consider the

possibility that LLN metastasis could occur during nCRT, thereby

affecting the accuracy and applicability of the predictive model

based on pre-nCRT data.
5 Conclusion

This study demonstrated the diagnostic potential of radiomic,

deep transfer learning, and fusion models for predicting LLN

metastasis in rectal cancer patients. The use of LLLN data proved

to be a more reliable basis for model prediction than PT data. While

the fusion models showed high AUC values in the training set, they

did not outperform the radiomic models when applied to unseen

data. Among models performing adequately on the internal test set,

all showed declines on the external test set, with LLLN_Rad_Models

for diagnosing LLN metastasis being less affected by scanning

parameters and data sources compared to other models.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Ethics statement

The studies involving humans were approved by Tianjin Union

Medical Center’s Ethics Committee and Gansu Provincial Hospital's

Ethics Committee. The studies were conducted in accordance with the

local legislation and institutional requirements. Written informed

consent for participation was not required from the participants or

the participants’ legal guardians/next of kin in accordance with the

national legislation and institutional requirements.
Author contributions

YS: Visualization, Writing – original draft. ZL: Data curation,

Writing – review & editing. HY: Validation, Visualization,

Writing – original draft. PJ: Data curation, Writing – original

draft. ZZ: Visualization, Writing – review & editing. JL: Data

curation, Writing – original draft. YZ: Investigation, Writing –

review & editing. PL: Validation, Writing – review & editing. QZ:
frontiersin.org

https://doi.org/10.3389/fonc.2024.1433190
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2024.1433190
Visualization, Writing – original draft. YL: Data curation, Writing –

review & editing. LL: Data curation, Writing – review & editing. BD:

Data curation, Writing – review & editing. XZ: Project

administration, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was funded by the Tianjin Key Medical Discipline

(Specialty) Construction Project (NO:TJYXZDXK-044A) and the

hospital level scientific research fund of Tianjin Union Medical

Center Center (NO:2022GCXK001).
Acknowledgments

We thank the Department of Radiology for supporting the MR

images and appreciate the Python technology provided by the

OneKeyAI platform.
Frontiers in Oncology 14
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1433190/

full#supplementary-material
References
1. Yano H, Moran BJ. The incidence of lateral pelvic side-wall nodal involvement in
low rectal cancer may be similar in Japan and the West. Br J Surg. (2008) 95:33–49.
doi: 10.1002/bjs.6061

2. Oh HK, Kang SB, Lee SM, Lee SY, Ihn MH, Kim DW, et al. Neoadjuvant
chemoradiotherapy affects the indications for lateral pelvic node dissection in mid/low
rectal cancer with clinically suspected lateral node involvement: a multicenter retrospective
cohort study. Ann Surg Oncol. (2014) 21:2280–7. doi: 10.1245/s10434-014-3559-z

3. Zhou S, Jiang Y, Pei W, Zhou H, Liang J, Zhou Z. Neoadjuvant
chemoradiotherapy followed by lateral pelvic lymph node dissection for rectal cancer
patients: A retrospective study of its safety and indications. J Surg Oncol. (2021)
124:354–60. doi: 10.1002/jso.26509

4. Kroon HM, Hoogervorst LA, Hanna-Rivero N, Traeger L, Dudi-Venkata NN,
Bedrikovetski S, et al. Systematic review andmeta-analysis of long-termoncological outcomes
of lateral lymph node dissection formetastatic nodes after neoadjuvant chemoradiotherapy in
rectalcancer.EurJSurgOncol. (2022)48:1475–82.doi:10.1016/j.ejso.2022.04.016

5. Guan X, Cheng P, Wei R, Li J, Jiao S, Zhao Z, et al. Enlarged tumour-draining lymph
node with immune-activated profile predict favourable survival in non-metastatic
colorectal cancer. Br J Cancer. (2024) 130:31–42. doi: 10.1038/s41416-023-02473-x

6. Li XT, Sun YS, Tang L, Cao K, Zhang XY. Evaluating local lymph node metastasis
with magnetic resonance imaging, endoluminal ultrasound and computed tomography in
rectal cancer: a meta-analysis. Colorectal Dis. (2015) 17:129–35. doi: 10.1111/codi.12909

7. Tsunoda Y, Ito M, Fujii H, Kuwano H, Saito N. Preoperative diagnosis of lymph
node metastases of colorectal cancer by FDG-PET/CT. Jpn J Clin Oncol. (2008) 38:347–
53. doi: 10.1093/jjco/hyn032

8. Bae SU, Won KS, Song BI, Jeong WK, Baek SK, Kim HW. Accuracy of F-18 FDG
PET/CT with optimal cut-offs of maximum standardized uptake value according to size
for diagnosis of regional lymph node metastasis in patients with rectal cancer. Cancer
Imaging. (2018) 18:32. doi: 10.1186/s40644-018-0165-5

9. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton
P, et al. Radiomics: extracting more information from medical images using advanced
feature analysis. Eur J Cancer. (2012) 48:441–6. doi: 10.1016/j.ejca.2011.11.036

10. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S,
et al. Decoding tumour phenotype by noninvasive imaging using a quantitative
radiomics approach. Nat Commun. (2014) 5:4006. doi: 10.1038/ncomms5006

11. Salehi AW, Khan S, Gupta G, Alabduallah BI, Almjally A, Alsolai H, et al. A
study of CNN and transfer learning in medical imaging: advantages, challenges, future
scope. Sustainability. (2023) 15:5930. doi: 10.3390/su15075930

12. Majumder S, Katz S, Kontos D, Roshkovan L. State of the art: radiomics and
radiomics-related artificial intelligence on the road to clinical translation. BJR Open.
(2024) 6:tzad004. doi: 10.1093/bjro/tzad004
13. Bedrikovetski S, Dudi-Venkata NN, Kroon HM, SeowW, Vather R, Carneiro G, et al.
Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic
review and meta-analysis. BMC Cancer. (2021) 21:1058. doi: 10.1186/s12885-021-08773-w

14. Knol J, Keller DS. Total mesorectal excision technique-past, present, and future.
Clin Colon Rectal Surg. (2020) 33:134–43. doi: 10.1055/s-0039-3402776

15. HazenSJA,SluckinTC,KonishiT,KustersM.Laterallymphnodedissectioninrectalcancer:
Stateoftheartreview.EurJSurgOncol.(2022)48:2315–22.doi:10.1016/j.ejso.2021.11.003

16. Yang X, Gu C, Hu T, Bi L, Wei M, Deng X, et al. Is laparoscopic selective lateral
lymph node dissection for locally advanced rectal cancer after neoadjuvant
chemoradiotherapy safe? ANZ J Surg. (2019) 89(11):E492–e497. doi: 10.1111/ans.15449

17. Sun Y, Lian L, Zhang H, Bai X, Xie Z, Ouyang J, et al. The feasibility and technical
strategy of a fascia space priority approach in laparoscopic lateral lymph node dissection
for advanced middle and low rectal cancer: a retrospective multicentre study. Wideochir
Inne Tech Maloinwazyjne. (2021) 16:312–20. doi: 10.5114/wiitm.2021.105143

18. Yang YS, Feng F, Qiu YJ, Zheng GH, Ge YQ, Wang YT. High-resolution MRI-based
radiomics analysis to predict lymph nodemetastasis and tumor deposits respectively in rectal
cancer. Abdom Radiol (NY). (2021) 46:873–84. doi: 10.1007/s00261-020-02733-x

19. Xian MF, Zheng X, Xu JB, Li X, Chen LD, Wang W. Prediction of lymph node
metastasis in rectal cancer: comparison between shear-wave elastography based
ultrasomics and MRI. Diagn Interv Radiol. (2021) 27:424–31. doi: 10.5152/dir.2021.20031

20. Zhou X, Yi Y, Liu Z, Zhou Z, Lai B, Sun K, et al. Radiomics-based preoperative
prediction of lymph node status following neoadjuvant therapy in locally advanced
rectal cancer. Front Oncol. (2020) 10:604. doi: 10.3389/fonc.2020.00604

21. Zhu H, Zhang X, Li X, Shi Y, Zhu H, Sun Y. Prediction of pathological nodal
stage of locally advanced rectal cancer by collective features of multiple lymph nodes in
magnetic resonance images before and after neoadjuvant chemoradiotherapy. Chin J
Cancer Res. (2019) 31:984–92. doi: 10.21147/j.issn.1000-9604.2019.06.14

22. Meng X, Xia W, Xie P, Zhang R, Li W, Wang M, et al. Preoperative radiomic
signature based on multiparametric magnetic resonance imaging for noninvasive
evaluation of biological characteristics in rectal cancer. Eur Radiol. (2019) 29:3200–9.
doi: 10.1007/s00330-018-5763-x

23. Chen LD, Liang JY, Wu H, Wang Z, Li SR, Li W, et al. Multiparametric
radiomics improve prediction of lymph node metastasis of rectal cancer compared with
conventional radiomics. Life Sci. (2018) 208:55–63. doi: 10.1016/j.lfs.2018.07.007

24. Yan H, Yang H, Jiang P, Dong L, Zhang Z, Zhou Y, et al. A radiomics model
based on T2WI and clinical indexes for prediction of lateral lymph node metastasis in
rectal cancer. Asian J Surg. (2023) 47:450–8. doi: 10.1016/j.asjsur.2023.09.156

25. Yang H, Jiang P, Dong L, Li P, Sun Y, Zhu S. Diagnostic value of a radiomics
model based on CT and MRI for prediction of lateral lymph node metastasis of rectal
cancer. Updates Surg. (2023) 75:2225–34. doi: 10.1007/s13304-023-01618-0
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1433190/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1433190/full#supplementary-material
https://doi.org/10.1002/bjs.6061
https://doi.org/10.1245/s10434-014-3559-z
https://doi.org/10.1002/jso.26509
https://doi.org/10.1016/j.ejso.2022.04.016
https://doi.org/10.1038/s41416-023-02473-x
https://doi.org/10.1111/codi.12909
https://doi.org/10.1093/jjco/hyn032
https://doi.org/10.1186/s40644-018-0165-5
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1038/ncomms5006
https://doi.org/10.3390/su15075930
https://doi.org/10.1093/bjro/tzad004
https://doi.org/10.1186/s12885-021-08773-w
https://doi.org/10.1055/s-0039-3402776
https://doi.org/10.1016/j.ejso.2021.11.003
https://doi.org/10.1111/ans.15449
https://doi.org/10.5114/wiitm.2021.105143
https://doi.org/10.1007/s00261-020-02733-x
https://doi.org/10.5152/dir.2021.20031
https://doi.org/10.3389/fonc.2020.00604
https://doi.org/10.21147/j.issn.1000-9604.2019.06.14
https://doi.org/10.1007/s00330-018-5763-x
https://doi.org/10.1016/j.lfs.2018.07.007
https://doi.org/10.1016/j.asjsur.2023.09.156
https://doi.org/10.1007/s13304-023-01618-0
https://doi.org/10.3389/fonc.2024.1433190
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Prediction of lateral lymph node metastasis in rectal cancer patients based on MRI using clinical, deep transfer learning, radiomic, and fusion models
	1 Introduction
	2 Methods
	2.1 Study cohort
	2.2 Region of interest segmentation
	2.3 Radiomics feature extraction
	2.4 Radiomics feature selection and model construction
	2.5 Clinical model construction
	2.6 DTL model development and feature extraction
	2.7 Construction of the fusion model
	2.8 Model validation and comparison

	3 Results
	3.1 Baseline characteristics and clinical model analysis
	3.2 Feature selection
	3.2.1 Primary tumor radiomic features
	3.2.2 Primary tumor fusion features
	3.2.3 LLLN radiomic features
	3.2.4 VLLN radiomic features
	3.2.5 LLLN fusion features

	3.3 Radiomic models
	3.3.1 PT_Rad_models
	3.3.2 LLLN_Rad_models
	3.3.3 VLLN_Rad_models

	3.4 Fusion models
	3.4.1 PT_Fusion_Models
	3.4.2 LLLN_Fusion_Models

	3.5 Clinical models
	3.6 DTL models

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


