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Background: Accurate identification of pathologic grade before operation is

helpful for guiding clinical treatment decisions and improving the prognosis for

soft tissue sarcoma (STS).

Purpose: To construct and assess a magnetic resonance imaging (MRI)-based

radiomics nomogram incorporating intratumoral habitats (subregions of clusters

of voxels containing similar features) and peritumoral features for the

preoperative prediction of the pathological grade of STS.

Methods: The MRI data of 145 patients with STS (74 low-grade and 71 high-

grade) from 4 hospitals were retrospectively collected, including enhanced T1-

weighted and fat-suppressed-T2-weighted sequences. The patients were

divided into training cohort (n = 102) and validation cohort (n = 43). K-means

clustering was used to divide intratumoral voxels into three habitats according to

signal intensity. A number of radiomics features were extracted from tumor-

related regions to construct radiomics prediction signatures for seven

subgroups. Logistic regression analysis identified peritumoral edema as an

independent risk factor. A nomogram was created by merging the best

radiomics signature with the peritumoral edema. We evaluated the

performance and clinical value of the model using area under the curve (AUC),

calibration curves, and decision curve analysis.

Results: A multi-layer perceptron classifier model based on intratumoral habitats

and peritumoral features combined gave the best radiomics signature, with an

AUC of 0.856 for the validation cohort. The AUC of the nomogram in the

validation cohort was 0.868, which was superior to the radiomics signature

and the clinical model established by peritumoral edema. The calibration curves

and decision curve analyses revealed good calibration and a high clinical

application value for this nomogram.
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Conclusion: The MRI-based nomogram is accurate and effective for predicting

preoperative grading in patients with STS.
KEYWORDS
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1 Introduction

Soft tissue sarcomas (STSs) are rare heterogeneous tumors that

account for 1% of all tumors (1), and surgical resection is regarded

as the primary therapeutic approach for localized STS. Recent

studies reported that in addition to surgery, adjuvant

radiotherapy and chemotherapy can improve the prognosis for

high-grade (grade III) STS. In this respect, the possible adverse

consequences of radiation and chemotherapy can be avoided by a

preoperative diagnosis of low-grade illness (grades I and II) (2, 3).

Accurate preoperative grading is also beneficial for the selection of

neoadjuvant chemoradiotherapy (2, 4, 5). Histologic grade is

considered to be an important factor affecting the prognosis for

STS (4). Although the preoperative histological tumor grading of

STS is largely dependent on needle biopsy, because of tumor

heterogeneity (6), the initial biopsy-based pathology test may

underestimate the actual grade (5, 7). Therefore, there is an

urgent need to develop a non-invasive and reliable approach for

determining STS grade before surgery, so that patients can receive

more effective and targeted treatment.

Magnetic resonance imaging (MRI) is the most commonly used

technique for the preoperative diagnosis and evaluation of STS due

to its non-invasive nature and excellent soft tissue contrast

resolution. Although STS can be diagnosed on MRI by an

experienced radiologist, the STS grade is difficult to determine

because of tumor heterogeneity (8). Radiomics is a noninvasive

method that extracts markers to assist physicians in making

judgments through the quantitative mining of features from

medical images (9, 10). Considered a digital biopsy, radiomics
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enables a detailed description of tumor characteristics and spatial

heterogeneity in multiple clinical settings (11, 12). In earlier

research, biomarkers based on quantitative MRI radiomics

features have been regarded as an effective tool to distinguish

tumor grades (13, 14). STSs are highly heterogeneous (6), and

their growth patterns, tumor heterogeneity, and grade have all been

linked in numerous prior investigations (4–7). However,

conventional radiomics analysis is usually performed on the

whole tumor, thus ignoring regional phenotypic changes within

the tumor (15).

Recently, an emerging approach of partitioning tumors into

subregions (known as habitats) containing clusters of voxels with

similar features has allowed for more effective quantification of

intratumor heterogeneity and definition of tumor subregions that

are relevant to tumor growth or invasiveness (16–18). A study

demonstrated that tumor habitat analysis has high value for

predicting tumor grade (19). In addition, recent research

demonstrated that the peritumoral microenvironment is valuable

for the clinical evaluation of tumor-aggressive biological behavior

(20). However, few studies have evaluated the value of both the

tumor habitat and the peritumoral environment for accurately

predicting the grade and invasive potential of tumors.

Thus, the aim of this study was to develop and validate a non-

invasive MRI-based radiomics model combining intratumoral

habitats and peritumoral microenvironments for the pretreatment

differentiation of high-grade STS from low-grade STS.
2 Materials and methods

2.1 Study population

This retrospective investigation obtained ethical approval and

written informed consent was not required. The inclusion and

exclusion criteria are shown in Supplementary A1 in

Supplementary Data Sheet 1. Consecutive patients with soft tissue

sarcomas treated between January 2007 and July 2022 at the Puyang

Oilfield General Hospital, the Third Hospital of Hebei Medical

University, the Shandong Provincial Hospital affiliated with

Shandong First Medical University, and the Affiliated Hospital of

Qingdao University were collected. A total of 145 patients (56 ± 16,

55.2% male) meeting the criteria were enrolled in the study and

were divided into two groups. There were 102 patients from the

affiliated hospital of Qingdao University in the training cohort and
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43 patients from the other three hospitals in the validation cohort.

The pathological findings are shown in Supplementary Table S1.
2.2 MRI protocol

The MRI sequences and scanners are shown in Supplementary

A2 in Supplementary Data Sheet 1. The parameters of the MRI

sequences are listed in Supplementary Table S2.
2.3 Clinical information and collection of
MRI morphological characteristics

Clinical information including age, sex, and the tumor-node-

metastasis (TNM) staging were collected. The FNCLCC (Fédération

Nationale des Centres de luttte contre le cancer) system scores for

the tumor mitotic index, degree of differentiation, and degree of

necrosis were added to give the tumor grade. Histopathological low

grade was assigned to FNCLCC grades I and II, whereas

histopathological high grade was assigned to grade III.

MRI morphological characteristics were assessed by two

radiologists with more than 7 years of experience who were

unaware of the pathological findings (Supplementary A3 in

Supplementary Data Sheet 1).
2.4 Image preprocessing and region-of-
interest segmentation

The MRI preprocessing and tumor region-of-interest (ROI)

segmentation consisted of four main phases: MRI registration, bias-

field correction, segmentation of tumor-associated regions, and

spatial resampling. First, using 3D slicer software (v. 5.0.3,

www.slicer.org), the CE-T1WI and FS-T2WI of each patient were

subjected to 3D rigid transformation registration. Following this

registration, bias-field unevenness was corrected using the Python

N4-bias-field-correction function. Then, the ROI was accurately

drawn, including the tumorous and peritumoral regions, as shown

in Figure 1. Two primary radiologists manually segmented the

tumor ROIs using ITK-SNAP software (v.3.8.0, http://

www.itksnap.org). When there were disagreements over an ROI,

it was reviewed and corrected by another senior expert radiologist,

and the tumor area mask was formed. Then, Radiomics Intelligent

Analysis Software (RIAS) was applied to expand the boundary of

the tumor lesion mask 10 mm outward for each lesion to generate a

peritumoral mask. The “tail sign” can be considered a sign of

infiltration or fascial invasion and is an independent factor affecting

patient prognosis. It had the same signal intensity as the main mass

and had the same enhancement after the injection of gadolinium-

based contrast material. Thus, the “tail sign” was segmented into the

tumor area mask (21, 22). Large blood vessels, bone tissue, and air

areas that had not been invaded in the peritumoral mask were

removed manually. Finally, RIAS was used to resample all of the

images and masks to an isotropic spatial voxel size of 1 × 1 × 1 mm3.
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The signal intensity of the CE-T1WI and FS-T2WI was

standardized using the normalizing technique for histogram

intensity in Python before performing the intratumoral habitats

analysis (23). The K-means clustering module in Python was used

to cluster the voxels in the normalized CE-T1WI and FS-T2WI

images into three clusters representing the functionally-coherent

subregions of the STS intratumoral regions, i.e., the intratumoral

habitats: a low-enhancement solid subregion with low signal

intensity (Habitat 1), a high-signal intensity enhanced viable

subregion (Habitat 2), and a low-activity subregion with

intermediate signal intensity (Habitat 3).
2.5 Extraction of radiomics features

All radiomics feature extraction was performed using the

PyRadiomics toolkit in Python. A total of 1906 radiomics features

were extracted from the tumoral region masks and peritumoral

masks for each sequence, with these including textural features,

shape features, first-order features, and wavelet features. A further

93 radiomics features, including textural features and first-order

features, were extracted from each of the three intratumoral habitats

of each sequence. This resulted in final totals of 558 habitat features,

3812 tumor region features, and 3812 peritumoral features.
2.6 Image normalization and
standardization method

The combat compensation method (24), which eliminates

scanner and protocol influences while maintaining the salient

features of texture patterns, was used to standardize the MR

images and radiomics features. Then, all features were

standardized to Z-scores according to the mean and

standard deviation.
2.7 Feature selection

Minimum Redundancy Maximum Relevance (mRMR) was

used to initially reduce the dimensionality of high-dimensional

features, with this resulting in the retaining of 25 highly correlated

and low-redundancy features. Then, to further reduce

dimensionality and save the features with the greatest predictive

ability, we employed the logistic regression method known as the

least absolute shrinkage and selection operator (LASSO).

A total of seven subgroups of radiomics signatures were

established, with these being the tumoral region signature

subgroup, intratumoral habitats signature subgroup, peritumor

signature subgroup, signature subgroup combining tumoral

region and intratumoral habitats features (TH-combined

signature), signature subgroup combining tumoral region and

peritumor features (TP-combined signature), signature subgroup

combining intratumoral habitats and peritumor features (HP-

combined signature), and signature subgroup combining all
frontiersin.org
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radiomics features (THP-combined signature). The radiomics

features selected for each predictive signature are shown in

Supplementary Table S3.
2.8 Classifiers

Different radiomics signatures to predict STS grade were

constructed and evaluated using the following 11 machine

learning classifiers: logistic regression (LR), extremely randomized

trees (ExtraTrees), support vector machine (SVM), NaiveBayes, K

nearest neighbor (KNN), AdaBoost, random forest, eXtreme

Gradient Boosting (XGBoost), Multi-Layer perceptron (MLP),

GradientBoosting, and Light Gradient Boosting Machine

(LightGBM). The classifiers were trained using 10-fold cross-

validation applied to the training cohort, and the grade prediction

performance of the classifiers was evaluated using area under the

receiver operating characteristics (ROC) curve (AUC), accuracy,

sensitivity, and specificity. The best machine-learning algorithm

was determined to be the one with the highest AUC.
2.9 Adding the clinical model and
constructing the nomogram

In the construction of the clinical model, the clinical

information and MRI morphological characteristics connected to

STS grading were first selected using univariate logistic regression.

Subsequently, those clinical features with P < 0.05 were entered into
Frontiers in Oncology 04
a multivariate logistic regression, and peritumoral edema was

selected to create clinical models. We then employed the Akaike

information criterion-based likelihood ratio test to determine the

factors related to STS grading. Finally, we selected the best

radiomics signature and combined it with the peritumoral edema

to build a nomogram. AUC and accuracy were used to evaluate the

performance of the nomogram, radiomics signatures, and clinical

model. Calibration curves and decision curve analysis (DCA) were

conducted to assess the fit and clinical dependability of the

models, respectively.
2.10 Statistical analysis

Statistical tests were conducted using SPSS 26.0 (IBM, New

York, USA), Python (version 3.9.7, www.python.org), and R

software 4.1.2 (https://www.r-project.org/). Continuous variables

in the clinical data were analyzed using either independent sample

t-tests or Mann-Whitney U tests, while categorical variables were

analyzed using the chi-square test or Fisher’s exact test. The

statistical significance level was set at P < 0.05 for all statistical tests.
3 Results

3.1 Clinical factors and modeling

The total 145 patients were divided into the training set and the

external validation set. The clinical information and MRI
FIGURE 1

Flowchart illustrating the study design, including data collection, radiomics feature extraction, model training, and validation.
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characteristics of the patients with STS in the two sets are listed in

Table 1. There were significant differences in age, depth,

heterogeneous SI on FS-T2WI, and location (P < 0.05) between

the two sets. Furthermore, no significant differences were observed

in the remaining characteristics.

The results of the univariate and multivariate LR analysis

showed that peritumoral edema was an independent predictor of

STS grade. Table 2 shows the univariate and multivariate logistic

regression results with P < 0.05. A clinical model was established

with the inclusion of peritumoral edema. The AUC values for the

clinical model applied to training and validation sets were 0.665

(95% CI : 0 . 582–0 .749) and 0 .613 (95% CI : 0 . 472–

0.755), respectively.
Frontiers in Oncology 05
3.2 Radiomics feature selection and
radiomics signature performance

We initially identified 25 features using mRMR and then further

screened these features using LASSO. We established seven

radiomics signature subgroups and used 11 machine learning

methods to construct separate signatures for each subgroup,

resulting in a total of 77 radiomics signatures. The AUC and

accuracy of these are shown in Table 3. For the validation set, the

best signature and the optimal performance within each subgroup

were as follows: the tumoral region signature built using the

ExtraTrees classifier had a highest AUC value of 0.613; the

intratumoral habitats signature built using the KNN classifier had
TABLE 1 Patient clinical information and MRI characteristics in the training and validation cohorts.

Training cohort Validation cohort P

No. of patients 102 43

grade
Low 47 27

0.066
High 55 16

Clinical information

Age * 56 ± 16 47 ± 17 0.002

Sex
Male 52 28

0.118
Female 50 15

MRI features

Depth
Deep 31 25

0.002
Superficial 71 18

Number
Single 80 33

0.823
Many 22 10

Margin definitions at CE-T1WI

<50% 10 9

0.19250%–90% 47 17

≥90% 45 17

Tumor volume containing
necrosis signal

Areas without necrosis 30 8

0.0311%–50% 56 20

>50% of tumor volume 16 15

Heterogeneous SI at T2WI
<50% 63 12

<0.001
≥50% 39 31

Peritumoral enhancement
(+) 50 18

0.430
(-) 52 25

Peritumoral edema

No 21 9

0.429Limited 72 27

Large 9 7

Location
Limb 77 18

<0.001
Head and neck 10 4

(Continued)
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a highest AUC value of 0.626; the peritumor signature built using the

MLP classifier had a highest AUC value of 0.828; the TH-combined

signature built using the AdaBoost classifier had a highest AUC value

of 0.589; the TP-combined signature built using the LR classifier had a

highestAUCvalueof 0.738; theHP-combined signature builtusing the

MLP classifier had a highest AUC value of 0.856; and the THP-

combined signature built using the MLP classifier had a highest AUC

value of 0.657. In summary, we found that theHP-combined signature
Frontiers in Oncology 06
built by combiningmRMRandLASSOwith theMLPclassifier had the

highest predictive performance (for the training and validation sets the

accuracy valueswere 0.873 and0.814, respectively, and theAUCvalues

were 0.923 and 0.856), and was therefore the model used in the

subsequent studies. Eighteen features were selected by LASSO to

establish the HP-combined signature (the best radiomics signature),

as shown in Figure 2, with this including 12 peritumoral features and

six habitat features.
TABLE 2 Positive results of clinical information and MRI characteristics in univariate and multivariate logistic regression.

Variable
Univariate Multivariate

OR 95% CI p value OR 95% CI p value

Age 1.010 0.985-1.035 0.439

Sex 1.381 0.632-3.017 0.418

Depth 1.660 0.709-3.882 0.243

Number 0.818 0.318-2.104 0.677

Margin definitions at CE-T1WI 1.445 0.784-2.665 0.239

Tumor volume containing
necrosis signal

2.054 1.093-3.861 0.025 1.531 0.754-3.106 0.238

Heterogeneous SI at T2WI 2.812 1.211-6.529 0.016 1.815 0.721-4.567 0.205

Peritumoral enhancement 1.599 0.730-3.503 0.240

Peritumoral edema 4.755 1.868-12.104 <0.001 3.970 1.497-10.524 0.006

Location 1.254 0.832-1.889 0.280

T stage 1.452 1.009-2.090 0.045

N stage 1.708 0.579-5.040 0.332

M stage 1.595 0.571-4.452 0.373
Variable: Clinical and MRI characteristics; Univariate: Odds ratio (OR), 95% confidence interval (CI), and p-value for each variable in univariate analysis; Multivariate: Same metrics for
multivariate analysis, showing the adjusted effects of each variable.
TABLE 1 Continued

Training cohort Validation cohort P

MRI features

Internal trunk 9 15

Trunk wall 6 6

T-stage

1 21 7

0.749
2 34 16

3 18 10

4 29 10

N-stage
0 85 35

0.778
1 17 8

M-stage
0 83 35

0.997
1 19 8
No. of Patients: Total number of patients in each cohort; Grade: Tumor grade (Low vs. High); MRI Features: Various MRI characteristics such as depth, number, margin definitions, tumor
volume containing necrosis signal, heterogeneous SI at T2WI, peritumoral enhancement, peritumoral edema, location, T-stage, N-stage, and M-stage; * Data are presented as mean ±
standard deviation.
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TABLE 3 The predictive performance of different radiomics machine learning signatures in the training and validation cohorts.

Training cohort Validation cohort

ACC AUC 95% CI ACC AUC 95% CI

Tumor region

LR 0.892 0.932 0.884 - 0.988 0.512 0.581 0.405 - 0.757

ExtraTrees 1.000 1.000 1.000 - 1.000 0.605 0.613 0.446 - 0.781

SVM 0.922 0.944 0.894 - 0.994 0.651 0.583 0.408 - 0.759

NaiveBayes 0.882 0.920 0.865 - 0.974 0.651 0.602 0.427 - 0.777

KNN 0.814 0.903 0.848 - 0.957 0.535 0.591 0.425 - 0.758

AdaBoost 0.951 0.989 0.976 - 1.000 0.581 0.547 0.369 - 0.726

RandomForest 0.990 1.000 0.999 - 1.000 0.558 0.574 0.399 - 0.749

XGBoost 1.000 1.000 1.000 - 1.000 0.674 0.472 0.285 - 0.660

MLP 0.882 0.916 0.862 - 0.971 0.581 0.574 0.397 - 0.752

GradientBoosting 0.961 0.996 0.990 - 1.000 0.558 0.497 0.312 - 0.682

LightGBM 0.892 0.940 0.898 - 0.983 0.465 0.436 0.257 - 0.615

Habitats

LR 0.814 0.831 0.7511 - 0.9116 0.581 0.495 0.317 - 0.674

ExtraTrees 1.000 1.000 1.000 - 1.000 0.488 0.568 0.398 - 0.739

SVM 0.804 0.832 0.746 - 0.919 0.605 0.569 0.398 - 0.741

NaiveBayes 0.775 0.800 0.713 - 0.886 0.581 0.454 0.277 - 0.631

KNN 0.765 0.843 0.769 - 0.916 0.535 0.626 0.464 - 0.789

AdaBoost 0.863 0.931 0.886 - 0.976 0.535 0.522 0.344 - 0.700

RandomForest 0.980 0.997 0.991 - 1.000 0.535 0.602 0.432 - 0.772

XGBoost 1.000 1.000 1.000 - 1.000 0.581 0.604 0.434 - 0.774

MLP 0.784 0.831 0.751 - 0.910 0.628 0.609 0.440 - 0.778

GradientBoosting 0.941 0.977 0.955 - 0.100 0.581 0.521 0.345 - 0.697

LightGBM 0.804 0.869 0.798 - 0.941 0.488 0.538 0.359 - 0.718

Peritumor

LR 0.863 0.892 0.829 - 0.956 0.764 0.729 0.566 - 0.892

ExtraTrees 1.000 1.000 1.000 - 1.000 0.628 0.712 0.560 - 0.864

SVM 0.882 0.960 0.928 - 0.991 0.791 0.799 0.665 - 0.933

NaiveBayes 0.784 0.821 0.735 - 0.907 0.674 0.799 0.647 - 0.950

KNN 0.755 0.854 0.787 - 0.921 0.512 0.675 0.519 - 0.831

AdaBoost 0.902 0.974 0.950 - 0.999 0.605 0.587 0.403 - 0.770

RandomForest 0.990 1.000 0.999 - 1.000 0.674 0.670 0.505 - 0.835

XGBoost 1.000 1.000 1.000 - 1.000 0.628 0.641 0.475 - 0.808

MLP 0.843 0.914 0.860 - 0.968 0.744 0.828 0.719 - 0.947

GradientBoosting 0.882 0.991 0.980 - 1.000 0.628 0.778 0.639 - 0.917

LightGBM 0.804 0.926 0.880 - 0.973 0.605 0.609 0.434 - 0.784

Tumor region+ habitats

LR 0.892 0.942 0.900 - 0.984 0.465 0.530 0.352 - 0.709

ExtraTrees 1.000 1.000 1.000 - 1.000 0.465 0.470 0.293 - 0.647

SVM 0.912 0.962 0.919 - 1.000 0.558 0.586 0.410 - 0.761

NaiveBayes 0.794 0.908 0.853 - 0.963 0.605 0.523 0.346 - 0.701

(Continued)
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TABLE 3 Continued

Training cohort Validation cohort

ACC AUC 95% CI ACC AUC 95% CI

KNN 0.863 0.919 0.870 - 0.969 0.512 0.573 0.399 - 0.747

AdaBoost 0.951 0.987 0.972 - 1.000 0.605 0.589 0.411 - 0.768

RandomForest 0.990 1.000 1.000 - 1.000 0.512 0.495 0.319 - 0.672

XGBoost 1.000 1.000 1.000 - 1.000 0.488 0.461 0.284 - 0.637

MLP 0.873 0.940 0.898 - 0.983 0.535 0.562 0.388 - 0.737

GradientBoosting 0.922 0.994 0.986 - 1.000 0.419 0.517 0.337 - 0.698

Tumor region+ peritumor

LightGBM 0.853 0.954 0.918 - 0.989 0.535 0.579 0.405 - 0.753

LR 0.882 0.961 0.930 - 0.993 0.698 0.738 0.585 - 0.892

ExtraTrees 1.000 1.000 1.000 - 1.000 0.674 0.698 0.525 - 0.871

SVM 0.922 0.969 0.934 - 1.000 0.651 0.716 0.556 - 0.877

NaiveBayes 0.843 0.905 0.848 - 0.962 0.628 0.699 0.532 - 0.866

KNN 0.814 0.910 0.859 - 0.962 0.651 0.666 0.506 - 0.825

AdaBoost 0.941 0.996 0.990 - 1.000 0.628 0.613 0.437 - 0.790

RandomForest 0.980 1.000 1.000 - 1.000 0.605 0.615 0.445 - 0.784

XGBoost 1.000 1.000 1.000 - 1.000 0.605 0.566 0.383 - 0.749

MLP 0.863 0.940 0.897 - 0.982 0.628 0.688 0.525 - 0.851

GradientBoosting 0.971 0.998 0.994 - 1.000 0.558 0.601 0.426 - 0.776

LightGBM 0.873 0.963 0.934 - 0.993 0.558 0.546 0.367 - 0.726

Habitats+ peritumor

LR 0.863 0.912 0.857 - 0.967 0.674 0.639 0.466 - 0.812

ExtraTrees 1.000 1.000 1.000 - 1.000 0.605 0.716 0.561 - 0.872

SVM 0.912 0.956 0.915 - 0.996 0.674 0.771 0.630 - 0.912

NaiveBayes 0.833 0.867 0.794 - 0.939 0.651 0.653 0.483 - 0.822

KNN 0.833 0.912 0.862 - 0.962 0.581 0.670 0.516 - 0.824

AdaBoost 0.912 0.976 0.954 - 0.998 0.605 0.682 0.522 - 0.842

RandomForest 0.990 1.000 0.999 - 1.000 0.767 0.765 0.615 - 0.915

XGBoost 1.000 1.000 1.000 - 1.000 0.698 0.704 0.541 - 0.866

MLP 0.873 0.923 0.872 - 0.974 0.814 0.856 0.739 - 0.974

GradientBoosting 0.971 0.988 0.971 - 1.000 0.674 0.619 0.448 - 0.790

LightGBM 0.882 0.939 0.894 - 0.984 0.628 0.590 0.417 - 0.764

Tumor region+ habitats+ peritumor

LR 0.882 0.950 0.912 - 0.989 0.535 0.611 0.443 - 0.780

ExtraTrees 1.000 1.000 1.000 - 1.000 0.535 0.598 0.426 - 0.771

SVM 0.892 0.976 0.954 - 0.998 0.581 0.627 0.458 - 0.796

NaiveBayes 0.794 0.908 0.853 - 0.963 0.535 0.551 0.372 - 0.730

KNN 0.833 0.918 0.869 - 0.967 0.581 0.588 0.422 - 0.754

AdaBoost 0961 0.989 0.975 - 1.000 0.628 0.609 0.435 - 0.783

RandomForest 0.990 1.000 1.000 - 1.000 0.465 0.506 0.334 - 0.678

XGBoost 1.000 1.000 1.000 - 1.000 0.581 0.546 0.371 - 0.722

MLP 0.863 0.937 0.892 - 0.982 0.674 0.657 0.490 - 0.824
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3.3 Establishment of a
radiomics nomogram

A nomogram (Figure 3A) combining the best radiomics

signature with the clinical independent predictors was

subsequently constructed. Table 4 shows the predictive

performance of the radiomics signature, clinical model, and

nomogram. The nomogram demonstrated superior performance

than the top-performing machine learning signature and clinical

model. Figures 3B–D illustrates the calibration curves and DCA of

the nomogram. The calibration curves showed good calibration in

the training set (Figure 3B) and confirmed favorable calibration in

the validation set (Figure 3C), indicating that the nomogram

discriminated well. The DCA (Figure 3D) demonstrated that the
Frontiers in Oncology 09
nomogram provided greater clinical application value than the

radiomics signature and the clinical model. Consequently, the

nomogram should achieve optimal performance in terms of

clinical application.
4 Discussion

Knowledge of the STS histological grade of a tumor is essential

for formulating a therapeutic strategy and is a key factor affecting

the prognosis (4, 25). The results of our study showed that a

signature based on the radiomics features of the intratumoral

habitats and peritumoral microenvironments extracted from

preoperative MRI could predict the grade of STS with high
TABLE 3 Continued

Training cohort Validation cohort

ACC AUC 95% CI ACC AUC 95% CI

GradientBoosting 0.951 0.994 0.985 - 1.000 0.581 0.596 0.420 - 0.772

LightGBM 0.902 0.965 0.935 - 0.996 0.535 0.603 0.433 - 0.773
Accuracy (ACC), area under the curve (AUC), and 95% CI for each machine learning model in the training cohort; Validation Cohort: Same metrics for the validation cohort; Models: Various
machine learning algorithms (e.g., LR, logistic regression; ExtraTrees, extremely randomized trees; SVM, support vector machine; KNN, K nearest neighbor; XGBoost, eXtreme Gradient
Boosting; MLP, Multi-Layer perceptron; LightGBM, Light Gradient Boosting Machine).
FIGURE 2

Coefficient profile plot (A), cross-validation plot (B), and histogram of feature weights (C) for the best radiomics features selected in the study.
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accuracy. By analyzing the radiomics features derived from

tumorous regions, intratumoral habitats, and peritumoral areas,

we established a total of 77 single or combined radiomics signatures

from seven different subgroups. Among these, the HP-combined

signature established by the MLP classifier combined with mRMR

and LASSO feature screening methods yielded the best predictive

performance. Finally, the nomogram showed better prediction

performance than the radiomics signature and the clinical model

based on peritumoral edema, and could thus provide valuable

information to clinicians and patients and help guide clinical

decision-making. The nomogram calibration curve demonstrated

that both cohorts could benefit from the approach, and the DCA
Frontiers in Oncology 10
confirmed that the nomogram achieved the best clinically

applicable performance.

Several qualitative MRI characteristics have previously been

reported as potential imaging biomarkers for STS grading. Zhang

et al. (26) found peritumoral hyperintensity to be an independent

risk factor for predicting histopathological grade. Crombé et al. (4)

confirmed that high-grade STS was linked to the MRI

morphological characteristics of heterogeneity, necrosis, and

peritumoral enhancement. In addition, some studies have shown

that in addition to the general MRI features related to the prognosis

of STS, some specific STS subtypes are independent prognostic

factors for specific STS subtypes, such as the “Tail sign” of
FIGURE 3

Nomogram (A), calibration curves (B, C) of the nomogram in the training and external validation cohorts, and decision curve analysis (D) for
the nomogram.
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undifferentiated pleomorphic sarcoma, the “Water−like”

appearance of myxofibrosarcoma, the “Triple sign” and absence

of calcifications in synovial sarcoma, signal heterogeneity in myxoid

liposarcoma (22). In our study, we included peritumoral edema to

establish the clinical model. The prediction performance of the

clinical model was poor, with an AUC value of only 0.665 for the

training set and 0.613 for the external validation set. This result

indicates that the MRI characteristics and the low-dimensional

clinical data only capture a small portion of the relevant

information present in the imaging data and omit a great deal of

the lesion heterogeneity detail.

One key aspect of our study is that we analyzed intratumoral

habitats. Zhou et al. proposed the concept of extracting quantitative

features from distinct tumor sub-regions (27), and later studies

showed that sub-regional radiomics analysis methods may better

quantify the tumorous subregion related to tumorous growth or

aggressiveness than conventional radiomics, and obtain prediction

models with higher accuracy (17, 19). These studies suggest that

intratumoral habitats may provide valuable clues for tumor

prediction and prognosis. In our study, to obtain a model for

predicting STS grade with high accuracy, we considered

integrating high-throughput radiomics feature analysis with

voxel-based habitat segmentation to predict STS grade. The

results showed that among the optimal signatures for each

subgroup, the predictive performance of the intratumoral habitats

radiomics signature was better than that of the conventional tumor

radiomics signature, and the predictive performance of the HP-

combined signature was better than that of the TP-combined

signature. These results demonstrate that the intratumoral

clustered segmented habitats contain important information for

STS grading and are capable of predicting STS grade with higher

accuracy than conventional radiomics approaches based on the

whole tumor.

Another key aspect of our study is that we analyzed the

peritumoral area. Clinical evidence demonstrates that the

heterogeneity of STS extends beyond the tumor itself,

encompassing the surrounding area (28). Consequently, the

surrounding environment of the tumor can provide valuable data

for assessing the aggressive biological behavior of the tumor.

Combinations of intratumoral and peritumoral radiomics features

were successfully used in recent research to identify the histological

categories of renal cell carcinoma (29) and to differentiate between

benign and malignant pulmonary nodules (30, 31). Previous

research also revealed that the peritumoral microenvironment

provides supplementary information for predicting STS

histopathological grade (26). Among the optimal signatures of

each subgroup in our study, the peritumor signature

outperformed any other single radiomics signature, and the TP-

combined signature and HP-combined signature performed better

than the single tumoral region signature and intratumoral habitats

signature, respectively. These results demonstrate that peritumoral

radiomics features provide added predictive value.

In our study, the best-performing HP-combined signature

contained six habitat features and 12 peritumoral features, with

“T1C 1 original glcm ClusterShade” contributing the most to the

performance. This feature was extracted in Habitat 1, which is a
T
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low-enhancing solid subregion, and we deduce that this region may

have a greater association with tumor grade than the other regions.

In terms of feature types, Gray Level Co-occurrence Matrix

(GLCM) texture features (classified as higher-order features) have

demonstrated significant clinical impacts in both radiology and

nuclear medicine (32, 33). Although the blood supply to STS

tumors is reflected in the CE-T1WI signal strength, it is difficult

to distinguish minor signal intensity changes within tissue on

conventional MRI. Specifically, “T1C 1 original glcm ClusterShade”

quantifies the skewness and uniformity of gray-scale variability that is

imperceptible to visual inspection. Previous studies showed GLCM

features to possess strong predictive capabilities for tumor grade and

found that they played an indispensable role in the construction of

radiomic signatures (34, 35).

Regarding the selection of features in this study, mRMR is a

novel method for feature screening that screens radiomics features

by employing more rational coefficients and reducing redundancy

(36). In comparison, LASSO is a feature screening technique that

prevents overfitting during signature construction (37). In this

study, 11 machine learning methods (LR, ExtraTrees, SVM,

NaiveBayes, KNN, AdaBoost, RandomForest, XGBoost, MLP,

GradientBoosting, and LightGBM) were selected for investigation,

and in combination with the seven subgroups they resulted in a

total of 77 radiomics signatures. MLP is a supervised learning

method that can learn nonlinear models in real-time, achieving

high accuracy and good generalization ability (38–40). The present

results of this study showed that out of all the tested machine

learning signatures, the HP-combined signature built by the MLP

classifier combined with the popular mRMR and LASSO feature

screening techniques demonstrated the highest predictive ability.

There are some limitations to this study. First, it should be

noted that this study was conducted retrospectively, which means

that although we had strict inclusion and exclusion criteria, there

may still have been selection bias. Second, because of the relatively

small sample size, the histological subtypes were not distributed

evenly, which may have caused some statistical bias. Additionally,

our data were collected from four different institutions utilizing

similar but not identical scanners and processes. Therefore, to

enhance the stability of features, as well as to account for any

variations among them, the combat compensation method and a

resampling methodology were employed. Finally, manual

segmentation was applied to the work, which may lead to

deviations. A recent study (41) demonstrated that automatic

segmentation achieved favorable performance. This study is only

a preliminary analysis, and further research in a larger prospective

clinical series is needed to determine associations between patient

tumor grade and spatial habitat analysis.

In summary, we developed a nomogram that can accurately and

noninvasively predict STS grade before surgery so that patients can

obtain more effective and targeted treatment. By enhancing

surveillance and improving adjuvant clinical trial design, our

predictive model may help close the gap between radiology and

precision healthcare.
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