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Deciphering the role of
claudins in lung cancer
Tarek Ziad Arabi †, Wael Alkattan †, Nadine Ashraf Osman,
Belal Nedal Sabbah, Nader Ashraf and Abderrahman Ouban*

College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
Lung cancer remains a major global health challenge, characterized by

aggressive malignancy and poor prognostic outcomes. This review article

focuses on the pivotal role of claudins, a family of tight junction proteins, in

the pathophysiology of lung cancer. Claudins are integral to maintaining

epithelial barrier function and cellular polarity, yet they are intricately involved

in the progression and metastasis of lung cancer. The aberrant expression of

claudins has been observed across various histological subtypes of lung cancer,

indicating their potential as diagnostic and prognostic biomarkers. Specifically,

claudins such as claudin-1, -2, -3, -4, and -7 exhibit diverse expression patterns

that correlate with tumor aggressiveness, patient survival rates, and response to

therapies. Inflammation and cytokine modulation significantly influence claudin

expression, affecting tumor microenvironment dynamics and cancer

progression. This review also highlights the therapeutic implications of

targeting claudins, particularly in cases resistant to conventional treatments.

Recent advances in this area suggest that claudin-modulating agents may

enhance the efficacy of existing therapies and offer new avenues for targeted

interventions. By integrating the latest research, this article aims to provide a

comprehensive understanding of claudin’s roles in lung cancer and encourages

further clinical trials to explore claudin-targeting therapies. This could pave the

way for more effective management strategies, improving outcomes for lung

cancer patients.
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1 Introduction

Lung cancer is the leading cause of cancer incidence and deaths globally (1, 2). Recent

trends indicate a decreasing incidence of lung cancer in many nations, attributed to a

decline in smoking habits (3). The five-year relative survival rates for small cell lung

carcinoma (SCLC) and non-SCLC (NSCLC) ranges from 3%–30% and 9%–65%,

respectively, depending on the tumor’s stage (4). However, advances into lung cancer

molecular biology and immune-based treatments are expected to improve these statistics in

the future (5–7).
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To understand the complex nature of lung pathologies, it is

essential to explore its biological underpinnings, starting at the

cellular level where the disease initiates and progresses (8). The

lung’s barrier function, crucial for the free diffusion of solutes into

airspaces, is facilitated by epithelial cells and tight junctions,

comprising key proteins such as occludin, zona-occluden,

desmosomes, and claudins (9–11). These structures not only

regulate the permeability of the epithelial barrier but also control

the passage through the paracellular space (12). Tight junctions are

not only vital for barrier integrity, but also facilitate cellular

proliferation and differentiation and maintain cellular polarity, an

essential factor in cellular communication and signaling (13–17).

Claudins, a family of tetraspan transmembrane proteins, are

integral to this barrier function for tight junction (18, 19). All

claudins share a similar secondary structure, with significant

variation observed in their extracellular domains and cytoplasmic

scaffolding interactions, particularly among non-classic claudins

(20). The differential expression of claudins across various

histological types of lung tumors could be partially attributed to

the originating cell type of the tumor (21). Claudins-1, -3, -4, -5, and

-7 are predominantly expressed, with each showing distinct patterns

of localization and function (22–24). For instance, claudin-18 is

primarily found in alveolar epithelium while claudins-4 and -7 are

more ubiquitously expressed throughout the respiratory epithelium,

highlighting the diversity of claudin expression in different lung

regions (23, 25, 26).

In lung cancer, claudins may play an essential role as disease

markers, with their expression levels inversely correlating with

tumor aggressiveness and patient prognosis (27). Claudins -1, -2,

-3, -4, and -7 exhibit diverse expression patterns in lung carcinoma,

with variations among different histological types compared to

normal lung tissue and even being influenced by smoking habits

(28–31). Emerging research also indicates a link between claudin

expression and lung cancer metastasis, suggesting their involvement

in tumor migration and invasion (32–34). Also, claudin expression

has been linked to epithelial-mesenchymal transition in lung

squamous cell carcinoma (LSCC) cells through the Tyk2/Stat1

(35) or Wnt/b-catenin signaling pathways (36).

Building upon previous comprehensive reviews which illuminated

the role of claudins in head and neck (37), gastrointestinal (38), and

genitourinary cancers (39), this paper extends the investigation into

the realm of lung cancer. Exploring the intricate mechanisms behind

the aberrant expression of claudins in lung cancer is essential, as it may

lay the groundwork for identifying novel therapeutic targets in

upcoming clinical trials. This paper aims to deliver a comprehensive

review of the claudin expression patterns observed in lung cancer and

their potential applications in monitoring and managing the disease.
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We will also delve into the molecular mechanisms leading to irregular

claudin expression and discuss strategies for targeting these

aberrations in treating lung cancer.
2 Claudins in non-small cell
lung cancers

NSCLCs, which include lung adenocarcinomas (LUAD), LSCC,

and large cell carcinomas, constitute nearly 85% of all histological

lung cancer types (40). NSCLCs are more strongly linked to

smoking, which is attributed to three-quarters of all lung cancers

globally, than SCLCs (41). Despite advancements in NSCLC

management, the unclear mechanisms of disease progression and

need for a larger portfolio of targeted therapies leave a lot to be

achieved in the future (40). Claudins have been studied extensively

in NSCLCs to fill in the gap and guide novel prognostic and

therapeutic strategies. In this section, we summarize the evidence

describing the expression of claudins in NSCLCs, their disease-

modifying effects, and potential prognostic implications (Table 1).
2.1 Claudins in lung adenocarcinomas

LUADs are the most common type of lung cancers globally, and

the incidence continues to climb (42). Emerging evidence has

demonstrated that aberrant expression of the claudin family

mediates LUAD progression (Figure 1). LUADs have reduced

claudin-1 messenger ribonucleic acid (mRNA) expression and an

absence of the protein (43). When present, claudin-1 can be

primarily seen along the tight junctions of LUAD cells,

accompanying zona occludins-1 (44). The protein suppresses

LUAD cell migration, invasion, and metastasis (45). Claudin-1

also modulates the genetic profile of LUAD cancer cells by

promoting the expression of metastasis suppressors and blunting

that of metastasis promotors (45). Some studies have revealed that

low expression of the protein is independently associated with poor

overall survival in these patients (45, 46), while others have been

unable to demonstrate an association (47, 48). On the contrary, Sun

et al. found that claudin-1 overexpression is associated with poor

survival (49). The reasons for the conflicting data are unclear;

nevertheless, claudin-1 appears to play important mechanistic and

prognostic roles in LUAD patients.

Claudin-2 has also been extensively study in LUAD. Claudin-2

is highly expressed in LUAD compared to normal lung cells (32, 50,

51). Additionally, claudin-2 protein expression in LUAD is

significantly greater than that of SCLCs, elucidating its potential
TABLE 1 Changes in the levels of expression of different claudins in lung cancers compared to normal tissue.

Malignancy CLDN-1 CLDN-2 CLDN-3 CLDN-4 CLDN-5 CLDN-7 CLDN-18

LUAD ↓ ↑ ↑ ↑ N/A ↓ N/A

LSCC ↑ N/A ↓ N/A ↓ ↓ ↓

SCLC N/A ↓ ↑ ↑ N/A ↑ N/A
↑: increased expression.
↓: decreased expression.
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diagnostic value (52). Arai et al. demonstrated that claudin-2

promotes LUAD cell proliferation (50). Claudin-2 promotes

chemoresistance to doxorubicin of LUAD cells by inhibiting

glucose transport and activating the nuclear factor erythroid 2-

related factor 2 (Nrf2) signaling pathways (53). Targeting these

pathways, caffeine administration has been shown to enhance

lysosomal degradation of claudin-2 and, subsequently, reducing

Nrf2 activity and enhancing chemosensitivity (54). Similar effects

are also exhibited by fisetin – a flavonoid – and kaempferide

through Akt pathway inhibition (55, 56).

Claudin-3 is exhibited in normal bronchial cells in a circular

manner at the cellular membrane, but not in pneumocytes (48). The

diagnostic utility of claudin-3 appears to be limited in LUADs. Moldvay

et al. found increased levels of protein expression in LUADs compared

to LSCC (52), while Jung et al. found no difference between the two

entities (48). Claudin-3 expression has been linked to poor survival and

increased recurrence and/or metastasis in LUAD patients, but not

tumor stage or size (57). Forced overexpression of claudin-3 enhances

LUAD cell migration, proliferation, and chemoresistance, and its

knockout blunts these effects (57).

Claudin-4 is focally expressed in normal pneumocytes and more

strongly expressed in the cylindrical cells of the bronchial mucosa

(48). Claudin-4 expression is significantly upregulated in LUADs

compared to normal and premalignant samples (52, 58, 59) and

significantly greater than that of LSCCs (48, 52). Claudin-4 can also

be used to differentiate between LUAD and malignant pleural

mesotheliomas (60), and specifically epithelioid mesothelioma with

a sensitivity and specificity of 97% (61). However, the protein is not

associated with any staging or survival parameters in LUAD patients

(48). To our knowledge, there have been no studies examining the

mechanistic role of claudin-4 in LUAD development. However,
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changes in claudin-4 expression have been shown to promote

epithelial-mesenchymal transition, which is a crucial predisposing

factor to the neoplastic process (62). It is crucial for future studies to

elucidate the role of claudin-4 in LUADs.

Claudin-7 proteins are strongly expressed in normal bronchial

cells (52). In LUADs, mRNA expression does not differ from that in

normal tissues (52), but protein levels are significantly reduced (63).

Similarly, mRNA levels in LUADs are similar to LSCCs; however,

immunohistochemistry has shown elevated levels in LUAD

samples (52).
2.2 Claudins in lung squamous
cell carcinomas

Following LUAC, LSCCs constitute the second most diagnosed

form of NSCLCs (64), resulting in nearly a third of lung cancer in

men and a fifth of lung cancer in women (65). Besides their utility in

differentiating between LUAC and LSCC, as discussed previously

(48, 52), alterations in LSCC compared to normal tissue and

prognostic implications have also been reported. Overexpression

of claudin-1 mRNA is found in up to 80% of LSCC samples (66, 67).

Further solidifying its role, forcibly silencing claudin-1 expression

blunts LSCC cell line proliferation and invasiveness (67). However,

there has been no association found between its expression and the

prognosis of LSCC patients (47).

Reduced claudin-3 levels have been linked to poor overall

survival in LSCC patients, due to its promotion of epithelial-

mesenchymal transition (68). Che et al. also demonstrated that

claudin-7 is downregulated in LSCCs, and its downregulation is

linked with poor differentiation and lymphatic metastasis (63).
FIGURE 1

Changes in claudin levels promote the development of LUAD through different mechanisms. Firstly, reductions in claudin-1 levels lead to decreased
expression of zona-occludens and occludin. Increased claudin-2 levels blunt glucose transport and activates Nrf2. Furthermore, claudin-3
overexpression promotes malignant cell migration and chemoresistance. Finally, claudin-4 exacerbates epithelial-mesenchymal transition, an
important step in oncogenesis.
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Blunted levels of claudins -5, -7, and -18 promote proliferation of

LSCC cells due to phosphorylation and nuclear translocation of Akt

and subsequent activation of the G1/S transition in the cell life cycle

(69). Finally, claudin-12 has been shown to drive epithelial-

mesenchymal transition through activation of the Tyk2/Stat1

signaling (70). Conclusively, claudins are drivers of LSCC

pathogenesis; however, further studies are needed to elaborate on

their mechanistic roles and prognostic potential.
3 Claudins in small cell
lung carcinoma

SCLC is a highly aggressive form of lung cancer, responsible for

a significant number of cancer-related deaths worldwide (71, 72).

The malignancy of SCLC is characterized by its aggressive biological

features, especially its high propensity for metastasis, contributing

to its poor prognosis (73, 74).

In the context of claudins, the expression of these proteins in

SCLC reveals critical insights into its pathology. Molday et al.

observed SCLCs showing strong immunopositivity with claudins-3,

-4, and -7, while being less strong for claudin-1 and being entirely

negative for claudin-2 (52). However, Sormunen et al. displayed that

SCLC exhibit a higher expression of claudin-2 than adenocarcinomas

(21), contradicting with Molday et al. (52). Additionally, claudins-3

and -4 mRNA expression in SCLC are found to be 16 times and 3–4

times, respectively, higher than in normal lung tissue (52).

Furthermore, in comparison to carcinoid tissue, claudin-3 and -4

mRNA expression in SCLC was found to be 13 times and 3 times

higher, respectively (52). Nonetheless, LSCC has 15 times higher

claudin-3 mRNA expression compared to SCLC (52). These findings

highlight the distinct claudin expression patterns in SCLC, suggesting

their potential role in the disease’s aggressive nature.

Expanding upon these observations, further research into claudin

expression in SCLCmay provide valuable perspectives on key aspects

of the disease’s progression and intervention. For instance, Mao et al.

identified exosomal miR-375-3p to break the vascular barrier by

inhibiting claudin-1, promoting SCLC metastasis (33). In addition,

Spi-B–mediated silencing of claudin-2 promotes early dissemination

of both SCLC and NSCLC (75). Recently, the identification of

differentially expressed genes in SCLC showed claudin-18, among

others, significantly correlated to immune infiltration in the tumor

microenvironment (76). Moreover, a study identified junctional

adhesion molecule 3 as a potential therapeutic target, further

reinforcing the importance of exploring these molecules in the

development of new treatments for SCLC (77). These insights pave

the way for future research, emphasizing the need for a deeper

understanding of molecular mechanisms in SCLC to enhance

therapeutic strategies and improve patient outcomes.
4 Claudins in pleural mesothelioma

Malignant pleural mesothelioma (MPM) affects 2,000 to 3,000

people annually in the United States and is rising worldwide, with

over 5,000 new cases yearly inWestern Europe and a peak incidence
Frontiers in Oncology 04
expected in Japan by 2025 (78–80). MPM, which is more common

in men (5:1 male-to-female ratio) and increases with age, is

primarily related to occupational asbestos exposure, though

familial cases and other factors, such as previous radiation and

simian virus-40, have also been identified (78, 81–85). Despite its

histologic diversity (epithelioid, biphasic, and sarcomatoid), there

are no approved early detection methods, but serum mesothelin-

related peptide and osteopontin show promise in diagnosis (86, 87).

To date, treatment remains challenging due to the disease’s

complexity and limited patient numbers for studies, resulting in

an alarmingly low median survival of 9 to 17 months (78). However,

recent developments suggest potential advancements in MPM

treatment (88, 89).

Studies have shown distinct expression patterns of various

claudin subtypes in mesothelioma tissues, with these patterns often

being linked to the specific type, severity, and expected outcome of

the tumor. In comparison to normal mesothelial tissues,

mesothelioma tissues frequently display different claudin expression

profiles, hinting at their possible involvement in the development or

progression of the cancer. In their study, Soini et al. observed that

40%, 80%, 18%, 23%, 14%, and 43% of mesothelioma cases expressed

claudins -1, -2, -3, -4, -5, and -7, respectively (90). Notably, the

presence of claudins -1, -3, -4, -5, and -7 was markedly lower in

mesothelioma compared to metastatic adenocarcinoma, except for

claudin 2, which showed no significant difference. Furthermore, an

inverse relationship was found between the presence of claudins -1,

-3, -4, -5, and -7 and calretinin positivity. In terms of mesothelioma

subtypes, sarcomatoid and biphasic forms showed less positivity for

these claudins compared to the purely epithelioid form. However, the

study found no link between claudin expression and the survival rates

of patients with malignant mesotheliomas (90). Interestingly,

Nakashima et al. (91) found that claudin-5 was not expressed in

mesothelioma, presenting a stark contrast to the findings of Soini

et al. (90), who reported claudin-5 expression in 14% of

mesothelioma cases. This contradiction between the studies could

potentially be attributed to a bias arising from differences in sample

sizes. Such variations in sample sizes can influence the detection and

reporting of low-frequency markers like claudin-5 in mesothelioma,

leading to differing conclusions in otherwise similar studies. Stefon

et al. have reported that claudin-15 may be valuable in subtyping

mesotheliomas (92). This finding is particularly significant from a

prognostic standpoint, as different subtypes of mesothelioma are

known to have varying implications for patient prognosis. The ability

to accurately subtype mesotheliomas using markers like claudin-15

could therefore play a crucial role in predicting disease outcomes and

tailoring treatment strategies to individual patient needs, enhancing

the overall management of this challenging malignancy.

MPM and LUAC often present diagnostic challenges due to

their overlapping histological features. Recent studies have

highlighted the potential of claudin-4 as a differential marker in

this context. The absence of claudin-4 has been found particularly

useful in distinguishing between MPM and adenocarcinoma, as

almost all carcinoma cases express claudin-4 (93). This contrast in

claudin-4 expression between MPM and LUAC has been

documented in various research articles (60, 94–98). These

findings suggest the inclusion of claudin-4 level assessment could
frontiersin.org

https://doi.org/10.3389/fonc.2024.1435535
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Arabi et al. 10.3389/fonc.2024.1435535
enhance the diagnostic accuracy when distinguishing between

MPM and LUACs.
5 Therapeutic implications of claudins
in lung cancer

The therapeutic potential of claudins in lung cancer has

garnered increasing interest, particularly as the field moves

towards more targeted approaches. Recent advancements have

incorporated Clostridium perfringens enterotoxin (CPE),

particularly due to its ability to bind to specific claudins

overexpressed in cancer cells. Claudins such as claudins-3 and -4

serve as receptors for CPE, making it an ideal candidate for

targetting claudins. This has led to the development of modified

CPE variants, such as CPE-Mut3, which show enhanced binding to

a broader range of claudins including CLDN-1 and CLDN-5. These

modifications improve the targeting and cytotoxicity against

claudin-overexpressing tumors, which is particularly beneficial for

NSCLC patients where these claudins are prevalent (99).

Furthermore, studies have shown that CPE-mediated therapies

can disrupt tight junctions in cancer cells, leading to their

destruction and offering a potential pathway for novel cancer

treatments (100). Additionally, combining CPE with other

therapeutic modalities, such as gold-nanoparticle-mediated laser

intervention, has demonstrated significant reduction in tumor cell

viability, further enhancing the therapeutic landscape (101).

However, the success of these therapies depends on the

accessibility of claudins on the cancer cell surface and the specific

conditions under which CPE can exert its cytotoxic effects (102).

Beyond CPE, other therapeutic strategies targeting claudins have

also shown promise. A groundbreaking study on CLDN6-specific

CAR-T cells combined with an amplifying RNA vaccine has

demonstrated promising results in patients with relapsed or

refractory solid tumors, of which half had lung involvement. This

approach leverages the specific expression of CLDN6 in tumors while

avoiding on-target/off-tumor toxicity, a major challenge in CAR-T

therapies for solid tumors. The ongoing Phase 1 BNT211-01 trial has

reported a disease control rate of 67% and an objective response rate

of 33%, with manageable safety profiles (103). This innovative

therapy could open the door for new therapeutic opportunities;

however, this would need to be tested in primary lung neoplasms.

In addition, histone deacetylase inhibitors like tricostatin A and

quisinostat have been demonstrated to suppress claudin-2

expression, resulting in reduced tumor cell proliferation and

migration, which could represent a potential therapeutic avenue

for lung adenocarcinomas (104). Claudin-18, particularly its splice

variant 2, has been identified as a viable target for therapeutic

antibodies, although clinical trials have yet to show efficacy in its

lung-specific form (105). Moreover, claudin-7 has been linked to

increased cisplatin sensitivity by promoting pro-apoptotic pathways

(106). However, the role of claudin-1 in drug resistance remains

complex, with conflicting evidence regarding its impact on

chemosensitivity (107, 108).
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Conclusively, while claudin-targeting therapies, particularly

those involving CPE, hold significant potential, ongoing research

and clinical trials are essential to refine these approaches and fully

realize their potential in lung cancer treatment.
6 Conclusion

In summary, our review has elucidated the complex role of

claudins in the pathophysiology of lung cancer. These tight

junction proteins are not only pivotal in maintaining cell polarity

and barrier integrity but also significantly influence lung cancer

progression and metastasis. The differential expression of claudins

among various lung cancer subtypes offers insights into their

potential as biomarkers for diagnosis and prognosis. Notably, the

overexpression of certain claudins like claudin-2 and claudin-4 has

been linked with increased malignancy and poor patient outcomes,

while others such as claudin-1 show variable associations depending

on the cancer subtype. Furthermore, the interaction of claudins with

inflammatory pathways and their modulation by cytokines highlights

their role in cancer microenvironment dynamics. The therapeutic

potential of targeting specific claudins, supported by emerging

studies, suggests a promising avenue for developing personalized

treatment strategies, particularly in resistant cases. As research

continues to unravel the multifaceted functions of claudins, it is

imperative that future clinical trials are designed to explore and

validate claudin-targeting therapies in lung cancer management.
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