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Objective: This study aimed to explore the potential effects between various

human plasma lipidomes and endometrioid endometrial cancer (EEC) by using

Mendelian randomization (MR) methods.

Methods: This study designated a total of 179 human plasma lipidomes from the

genome-wide association study (GWAS) database as the exposure variable. An

EEC-related dataset from the GWAS (GCST006465) served as the outcome

variable. MR analyses used the inverse variance-weighted method (IVW), MR-

Egger, weighted median, simple mode, and weighted mode methods for

regression calculations, accounting for possible biases induced by linkage

disequilibrium and weak instrument variables. Any lipidomes failing to pass

heterogeneity and horizontal pleiotropy tests were deemed to lack significant

causal impact on the outcome.

Results: The results of IVW analysis disclosed that a variety of human plasma

lipidomes (n = 15) exhibited a significant causal effect on EEC (p < 0.05). A subset of

these lipidomes (n = 13) passed heterogeneity and horizontal pleiotropy tests,

which demonstrated consistent and viable causal effects (p < 0.05) including

glycerophospholipids, glycerolipids, and sterols. Specifically, phosphatidylcholine

(odds ratio [OR]: 1.065-1.129, p < 0.05) exhibited a significant positive causal effect

on the occurrence of EEC. Conversely, sterol ester (OR = 0.936, p = 0.007),

diacylglycerol (OR = 0.914, p = 0.036), phosphatidylcholine (OR: 0.903-0.927,

p < 0.05), phosphatidylethanolamine (OR = 0.907, p = 0.046) and triacylglycerol

(OR: 0.880-0.924, p < 0.05) showed a notable negative causal association with

EEC, suggesting their inhibitory effects on the EEC occurrence.

Conclusions: The study revealed that human plasma lipidomes have complex

impacts on EEC throughMendelian randomization. This indicated that the diversity

of structural changes in lipidomes could show different effects on subtypes and

then affect EEC occurrence. Although these lipids had the potential to be

promising biomarkers, they needed to be further clinically validated nevertheless.
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1 Introduction

The global incidence of endometrial cancer (EC) is rising

significantly (1–3), and accounts for 4.5% of all female cancers,

with 417,367 new cases and 97,370 EC-related deaths reported (1, 2,

4). Within it, the endometrioid endometrial cancer (EEC) is the

main histotype, comprising approximately 80% of EC (3). Given

EC’s severity and prevalence, it is essential to explore the underlying

etiology to reduce its occurrence, which is also helpful to develop

effective and personalized treatments for susceptible groups.

Lipid metabolism is one of the most commonly dysregulated

metabolic pathways in EC (5), which has significant implications for

oncogenesis and tumor progression (6, 7). Recent advances in

lipidomics have greatly expanded our understanding of the

complexities and range of circulating lipids. Currently, human

plasma lipid species could be divided into four categories as

glycerophospholipids, glycerolipids, sphingolipids, and sterols (8).

Shifts in lipids can impact critical cellular processes such as

proliferation, apoptosis, migration, and invasion, all of which are

essential in the development and progression of cancers (9–12).

Also, the alterations in the lipid composition of cell membranes

may modify the activity of associated receptors and signaling

pathways, thereby influencing cancer cell growth (11, 13).

Moreover, lipids link to energy metabolism and tumorigenesis-

related inflammation (10, 14), both of which are considered to play

an important role in cancer pathogenesis (15). Supportingly, some

studies have indicated that endometrial cancer cells may potentially

possess unique lipid signatures, and improve the risk prediction for

EC (16–18). It is noteworthy that liposomes have biocompatible

and biodegradable characteristics, which can render them various

platforms for drug delivery (19). Liposomes are spherical vesicles

made of one or more concentric phospholipid bilayers encasing an

aqueous core and play the role of lipid-based nanocarriers (19, 20).

They bolster the therapeutic efficacy by stabilizing compounds,

facilitating cross-membrane transport, and enhancing drugs’

pharmacokinetics. Additionally, liposomes provide precision in

targeting drug delivery to specific bodily sites and weaken

systemic toxicity (21). Maybe it is beneficial for novel therapeutic

drug delivery. However, at present our knowledge of liposomes and

EC is deficient, and further investigation is necessary to clarify

these mechanisms.

Mendelian randomization (MR) provides a method to infer

causality from the associations between exposures and outcomes,

leveraging genetic variants as instrumental variables (IVs) (22).

Observational studies could indicate an association between specific

lipidomes and increased EC risk, however, the potential for residual

confounding should be acknowledged (22). At present, the causal

link between lipidomes and EC susceptibility remains an

open question.

In this study, genetic data from Finnish cohorts were utilized to

identify genetic determinants affecting the human plasma

lipidomes, which were analyzed by using two-sample MR

methods. The research aimed to discern genetic associations

between various lipidomes and the development of EEC.
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2 Materials and methods

2.1 Data sources and genetic
variant selection

The exposure dataset sourced from the genome-wide association

study (GWAS) Catalog (https://www.ebi.ac.uk/gwas/, GCST90277238-

GCST90277416) included a total of 179 human plasma lipidomes in

7,174 Finnish individuals from GeneRISK cohort, which consisted

of 4,579 females and 2,595 males (8). This GeneRISK cohort

comprised 7,342 participants (4,691 females and 2,651 males),

recruited from southern Finland during 2015-2017, aged 45-66

years with an average age of 56 (23). According to its baseline health

survey, 11.1% of the individuals received lipid-lowering

treatment and 22.0% received antihypertensive treatment (23).

The 179 lipidomes were classified into 13 lipid classes

encompassing 4 major categories, which included glycerolipids,

glycerophospholipids, sphingolipids, and sterols (8). The dataset

associated with EEC was identified by ebi-a-GCST006465 in the

GWAS database (http://gwas.mrcieu.ac.uk/datasets/). A genome-

wide significance threshold of p < 5×10-8 was used to identify single

nucleotide polymorphisms (SNPs) strongly associated with 179

human plasma lipidomes and EEC. Nevertheless, due to a limited

amount of selected SNPs for some lipidomes when utilizing human

plasma lipidomes as the exposure, the threshold was adjusted to

1×10-5 to identify the top independent SNPs, which has been

commonly used in prior MR studies (24, 25). To be in line with

the Mendelian second law for independence among SNPs, the

parameters for linkage disequilibrium (LD) were set as r2 < 0.001

and kb > 10,000. SNPs were selected to ensure they were

independent, thus reducing potential confounding effects from

LD. If the LD r2 value equaled or exceeded 0.001, one of the

SNPs was excluded from further analysis. Additionally, a genetic

distance of 10,000 kb was set to represent the region’s length.

Within this 10,000 kb region, SNPs with an r2 value above 0.001

were removed to eliminate any remaining LD. These stringent

selection criteria were applied to meet the assumptions of MR

and ensure a robust and valid evaluation of the lipidome’s impact

on EEC. SNPs chosen on this basis were regarded as Instrumental

Variables (IVs) for subsequent analyses. Lipidomes lacking

adequate SNPs for MR analysis were dropped from the study.

To ensure the accuracy of results, in this study we adopted the

F-statistic as a measure of the association degree between IVs and

the exposure. To minimize concerns over weak instrument bias, an

F-statistic of ≤ 10 was set for weak IVs.
2.2 Statistical analysis for MR

The MR analysis in this study primarily was based on the

“TwoSampleMR” package in R software (version 4.3.2). Other R

packages were used for further analysis and graphical presentation of

results, including “ggplot2”, “ComplexHeatmap”, “circlize”,

“dendextend”, “dendsort”, “gridBase”, “tidyverse”, and “ggforestplot”.
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The inverse-variance weighted (IVW) method was a meta-

analysis that combines variant-specific Wald ratios for each

mutation with an assumption that each mutation satisfies IV

criteria (22). It integrated the estimated effects across different

SNPs, providing a precise estimate of the effect of exposure on

outcome (22). Including a large number of genetic variants could

increase statistical power, however, there was a risk that they may

not qualify as valid IVs (26). And importantly, the outcomes of

IVW served as our principal reference.

To mitigate potential biases introduced by individual models,

the weighted median and MR-Egger methods were employed as

supplementary and reference approaches to the IVW model.

Pleiotropy meant a potential association between genetic variants

and multiple phenotypes (27). To assess pleiotropy, MR-Egger and

weighted median approaches were used as pleiotropy-robust methods.

Through a weighted linear regression model, MR-Egger regression

could correct for the bias due to directional pleiotropy considering the

effects of multiple genetic variants across all instruments (26). The

slope coefficient represented a causal effect estimation (26). The

intercept represented the average pleiotropic effect estimated across

genetic variants (26). To further comprehensively evaluate the

pleiotropic effects, the Mendelian Randomization Pleiotropy

RESidual Sum and Outlier (MR-PRESSO) test also was used which

could identify and correct for potential outliers (28).

The weighted median approach consistently estimated causal

effects even with 50% of the information derived from valid IVs

(29). It showed higher accuracy compared to the MR-Egger

approach (29). To estimate the true causal effect, we also used the

weighted mode approach as an additional MR method. It assigned

weights to variants, with the largest weights assigned to valid IVs

among all variant subgroups (30). Although its power for detecting

a causal effect in a two-sample setting was lower than that of IVW

and weighted median approaches, it outperformed MR-Egger

regression (30), with similar precision to that of the IVW and

weighted median approaches (30).

If the causal effect directions are consistent across these models,

it suggests a relatively stable causal effect between the exposure and

the outcome. Cochran’s Q-statistics and I2 statistics were also used

to examine heterogeneity in this study (31–33).

In all test methods mentioned, a significance level of p < 0.05

was considered statistically significant.
3 Results

3.1 The data and detailed information

The GWAS dataset used in this study is primarily based on the

genetic locus study conducted by Linda Ottensmann et al. in 2023,

which investigated the impact of genetic variations on 179 human

plasma lipidomes (8). All the datasets and the EEC-related dataset

were based on sequencing performed on individuals of European

ancestry. Our analysis incorporated 54,884 individuals of European

descent, comprised of 8,758 cases and 46,126 controls, all with

endometrioid endometrial cancer histology. The lipidome selection

was shown as a flow chart visually in Figure 1.
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3.2 The IVs selection for MR analysis

The GWAS dataset for all lipidomes was screened for SNPs

based on the threshold of p < 1×10-5. The parameters for LD were

set as r2 < 0.001 and kb > 10,000. If a lipidome had an insufficient

number of SNPs for MR analysis, it was excluded from the study.

The SNPs selected based on the criterion of F statistic > 10 were

presented in detail in Supplementary Table S1. The F statistics for

all SNPs ranged from 19.53 to 1819.85.
3.3 The results of MR analysis

As shown in Figure 2, the MR analysis revealed a potential effect

between human plasma lipidomes and EEC, including

glycerophospholipids, glycerolipids, and sterols. With a p-value of

IVW < 0.05, five were found with potential positive effects while ten

had potential negative effects. Table 1 disclosed the details of the

odds ratio (OR) and 95% confidence interval (CI) between 15

lipidomes and EEC. A lower incidence of EEC was associated

with sterol ester (27:1/20:4), diacylglycerol (18:1_18:1),

phosphatidylcholine (16:0_22:6), phosphatidylcholine (17:0_20:4),

phosphatidylethanolamine (O-16:1_20:4), triacylglycerol (48:0),

triacylglycerol (49:2), triacylglycerol (50:5), triacylglycerol (56:6),

and triacylglycerol (56:7). Conversely, phosphatidylethanolamine

(18:2_0:0), phosphatidylcholine (16:0_18:2), phosphatidylcholine

(16:1_18:2), phosphatidylcholine (18:2_18:2), phosphatidylcholine

(O-16:0_20:3) exhibited a positive association with EEC. Figure 3

visually presented a circular heatmap illustrating the p-values and

b-values of IVW, MR-Egger and weighted median methods

corresponding to the aforementioned lipidomes (Figures 3A, B).

Among them, 15 lipidomes showed consistent causal effects with

the IVW direction based on the weighted median and MR-Egger.
3.4 The test results of heterogeneity and
horizontal pleiotropy

Furthermore, by using Cochran’s Q test and I2 statistics, MR-Egger

and MR-PRESSO methods, a number of 13 lipidomes successfully

passed tests for heterogeneity and horizontal pleiotropy, and

exhibited the correct causal effect direction. Phosphatidylcholine

(16:0_22:6) [p = 0.6302921 (MR Egger); p = 0.4599443 (IVW)],

phosphatidylcholine (17:0_20:4) [p = 0.6323824 (MR Egger);

p = 0.6837995 (IVW)], phosphatidylethanolamine (O-16:1_20:4)

[p = 0.2323808 (MR Egger); p = 0.2429853 (IVW)], triacylglycerol

(48:0), [p = 0.7215898 (MR Egger); p = 0.7792433 (IVW)],

triacylglycerol (49:2), [p = 0.6593042 (MR Egger); p = 0.7135652

(IVW)], triacylglycerol (50:5), [p = 0.3876029 (MR Egger);

p = 0.4387764 (IVW)], triacylglycerol (56:6), [p = 0.1297905 (MR

Egger); p = 0.0964322 (IVW)], triacylglycerol (56:7), [p = 0.1932159

(MR Egger); p = 0.2206511 (IVW)], dacylglycerol (18:1_18:1) [p =

0.6068697 (MR Egger); p = 0.5702879 (IVW)], and sterol ester (27:1/

20:4) [p = 0.5728314 (MR Egger); p = 0.6262988 (IVW)] had negative

directions. Besides, phosphatidylcholine (16:0_18:2) [p = 0.6862283 (MR

Egger); p = 0.7050082 (IVW)], phosphatidylcholine (16:1_18:2) [p =
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FIGURE 2

Forest plot for MR results of 15 lipidomes. MR, Mendelian randomization; IVW, inverse-variance weighted; OR, odds ratio; CI, confidence interval.
FIGURE 1

Flow chart for filtering lipidomes. GWAS, genome-wide association study; EEC, endometrioid endometrial cancer; SNP, single-nucleotide polymorphism;
MR, Mendelian randomization; IVW, inverse-variance weighted; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier.
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TABLE 1 The MR results of 15 lipidomes.

GCST ID lipidomes MR methods SNP number OR (95% CI) p-value SE

GCST90277250 Sterol ester (27:1/20:4)

MR-Egger 27 0.941 (0.878-1.008) 0.095 0.035

Weighted median 27 0.935 (0.883-0.990) 0.021 0.029

IVW 27 0.936 (0.893-0.982) 0.007 0.024

Simple mode 27 0.945 (0.800-1.115) 0.505 0.085

Weighted mode 27 0.936 (0.882-0.995) 0.042 0.031

GCST90277261 Diacylglycerol (18:1_18:1)

MR-Egger 23 1.019 (0.842-1.233) 0.851 0.097

Weighted median 23 0.967 (0.851-1.098) 0.602 0.065

IVW 23 0.914 (0.840-0.994) 0.036 0.043

Simple mode 23 0.966 (0.748-1.248) 0.795 0.130

Weighted mode 23 0.988 (0.829-1.177) 0.893 0.089

GCST90277291
Phosphatidylcholine

(16:0_22:6)

MR-Egger 23 0.792 (0.677-0.927) 0.008 0.080

Weighted median 23 0.903 (0.788-1.035) 0.142 0.069

IVW 23 0.903 (0.831-0.981) 0.016 0.043

Simple mode 23 0.978 (0.759-1.261) 0.868 0.129

Weighted mode 23 0.936 (0.770-1.138) 0.513 0.100

GCST90277298
Phosphatidylcholine

(17:0_20:4)

MR-Egger 27 0.932 (0.856-1.015) 0.119 0.044

Weighted median 27 0.930 (0.869-0.995) 0.036 0.035

IVW 27 0.927 (0.876-0.981) 0.008 0.029

Simple mode 27 0.917 (0.752-1.118) 0.398 0.101

Weighted mode 27 0.928 (0.864-0.998) 0.054 0.037

GCST90277351
Phosphatidylethanolamine

(O-16:1_20:4)

MR-Egger 21 0.815 (0.624-1.063) 0.148 0.136

Weighted median 21 0.845 (0.742-0.963) 0.011 0.066

IVW 21 0.907 (0.824-0.998) 0.046 0.049

Simple mode 21 1.019 (0.793-1.309) 0.886 0.128

Weighted mode 21 0.835 (0.708-0.986) 0.046 0.084

GCST90277381 Triacylglycerol (48:0)

MR-Egger 16 0.905 (0.723-1.134) 0.401 0.115

Weighted median 16 0.890 (0.780-1.015) 0.082 0.067

IVW 16 0.880 (0.799-0.970) 0.010 0.050

Simple mode 16 0.839 (0.655-1.074) 0.184 0.126

Weighted mode 16 0.853 (0.683-1.066) 0.183 0.114

GCST90277386 Triacylglycerol (49:2)

MR-Egger 14 0.834 (0.652-1.067) 0.175 0.126

Weighted median 14 0.856 (0.743-0.986) 0.031 0.072

IVW 14 0.883 (0.793-0.984) 0.024 0.055

Simple mode 14 0.816 (0.654-1.018) 0.095 0.113

Weighted mode 14 0.822 (0.674-1.004) 0.077 0.102

GCST90277391 Triacylglycerol (50:5)

MR-Egger 23 0.929 (0.827-1.044) 0.231 0.060

Weighted median 23 0.931 (0.840-1.032) 0.174 0.053

IVW 23 0.913 (0.853-0.977) 0.008 0.035

Simple mode 23 0.858 (0.706-1.042) 0.136 0.099

(Continued)
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TABLE 1 Continued

GCST ID lipidomes MR methods SNP number OR (95% CI) p-value SE

Weighted mode 23 0.982 (0.832-1.158) 0.830 0.084

GCST90277412 Triacylglycerol (56:6)

MR-Egger 26 1.036 (0.859-1.250) 0.716 0.096

Weighted median 26 0.912 (0.821-1.013) 0.086 0.054

IVW 26 0.916 (0.845-0.994) 0.035 0.042

Simple mode 26 0.878 (0.712-1.084) 0.237 0.107

Weighted mode 26 0.910 (0.793-1.045) 0.195 0.070

GCST90277413 Triacylglycerol (56:7)

MR-Egger 32 0.890 (0.745-1.064) 0.210 0.091

Weighted median 32 0.925 (0.832-1.029) 0.153 0.054

IVW 32 0.924 (0.856-0.998) 0.045 0.039

Simple mode 32 0.938 (0.765-1.150) 0.543 0.104

Weighted mode 32 0.905 (0.750-1.092) 0.305 0.096

GCST90277271
Phosphatidylethanolamine

(18:2_0:0)

MR-Egger 26 1.155 (0.972-1.371) 0.115 0.088

Weighted median 26 1.139 (1.031-1.257) 0.010 0.051

IVW 26 1.099 (1.003-1.203) 0.043 0.046

Simple mode 26 1.090 (0.866-1.373) 0.469 0.118

Weighted mode 26 1.134 (1.024-1.257) 0.024 0.052

GCST90277282
Phosphatidylcholine

(16:0_18:2)

MR-Egger 34 1.105 (0.987-1.238) 0.094 0.058

Weighted median 34 1.079 (0.989-1.178) 0.088 0.045

IVW 34 1.065 (1.005-1.129) 0.033 0.030

Simple mode 34 1.026 (0.879-1.198) 0.749 0.079

Weighted mode 34 1.091 (0.994-1.198) 0.076 0.048

GCST90277294
Phosphatidylcholine

(16:1_18:2)

MR-Egger 24 1.241 (1.085-1.418) 0.005 0.068

Weighted median 24 1.135 (1.035-1.245) 0.007 0.047

IVW 24 1.110 (1.033-1.193) 0.004 0.037

Simple mode 24 1.187 (0.981-1.437) 0.092 0.097

Weighted mode 24 1.142 (1.038-1.256) 0.012 0.049

GCST90277314
Phosphatidylcholine

(18:2_18:2)

MR-Egger 23 1.078 (0.906-1.283) 0.405 0.089

Weighted median 23 1.112 (0.983-1.258) 0.092 0.063

IVW 23 1.129 (1.036-1.230) 0.006 0.044

Simple mode 23 1.001 (0.788-1.272) 0.994 0.122

Weighted mode 23 1.155 (0.948-1.406) 0.166 0.100

GCST90277322
Phosphatidylcholine

(O-16:0_20:3)

MR-Egger 16 1.388 (1.164-1.655) 0.003 0.090

Weighted median 16 1.137 (1.004-1.287) 0.043 0.063

IVW 16 1.158 (1.053-1.273) 0.003 0.049

Simple mode 16 1.110 (0.873-1.410) 0.408 0.122

Weighted mode 16 1.173 (0.994-1.385) 0.079 0.085
F
rontiers in Onco
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MR, Mendelian randomization; IVW, inverse-variance weighted; OR, odds ratio; CI, confidence interval; SNP, single-nucleotide polymorphism; SE, standard error.
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0.4202402 (MR Egger); p = 0.2840796 (IVW)], and phosphatidylcholine

(18:2_18:2) [p = 0.2144235 (MR Egger); p = 0.2419252 (IVW)] had

forward directions. Table 2 displays the details of 13 lipidomes that

passed the tests along with their respective p-values in heterogeneity and

horizontal pleiotropy analyses.
3.5 Scatter plots of MR analysis

Figures 4, 5 presented the regression results of the SNPs

corresponding to the aforementioned 13 lipidomes using the IVW,

weighted median, and MR-Egger algorithms. Figure 4 indicated that

phosphatidylcholine (16:0_22:6), phosphatidylcholine (17:0_20:4),

phosphatidylethanolamine (O-16:1_20:4), triacylglycerol (48:0),

triacylglycerol (49:2), triacylglycerol (50:5), triacylglycerol (56:6),

triacylglycerol (56:7), diacylglycerol (18:1_18:1) and sterol ester (27:1/

20:4) showed significant negative causal associations with EEC.

Conversely, phosphatidylcholine (16:0_18:2), phosphatidylcholine

(16:1_18:2), and phosphatidylcholine (18:2_18:2) exhibited significant

positive causal effects on EEC.
4 Discussion

In this study, we used MR methods to explore the complex causal

associations between 179 human plasma lipidomes and the risk of

EEC. Our findings implied that EEC disease was linked with lipidomes

and discovered significant effects of glycerophospholipids,

glycerolipids, and sterols on EEC risk. Several triacylglycerol (TG)

variants (49:2, 50:5, 56:6, and 56:7) and diacylglycerol (DG) within the

glycerolipids group, sterol ester (SE) within the sphingolipids group,

phosphatidylethanolamine (PE) and phosphatidylcholines (PCs)

within the glycerophospholipids group exhibited as protective roles
Frontiers in Oncology 07
for EEC. While the effects of PCs varied depending on their structural

compositions, a few variants of phosphatidylcholine (16:0_18:2,

16:1_18:2, and 18:2_18:2) showed positive roles for EEC.

This study was the first to investigate the causal effects of

various lipidomes with different structures on EEC occurrence in

a relatively homogenous population, and it illustrated the divergent

roles of lipidome subtypes. The findings revealed the complexity of

lipidomes, which could be negative or positive other than

traditional perspectives. As promising biomarkers for EEC, they

played a potential role in disease managements and might impact

patients’ prognosis and survival. Moreover, it benefited mechanistic

studies, pharmaceutical developments, and the advancement of

precision medicine, all of which hold significant clinical

importance and value.

Traditionally, DGs and TGs were considered to increase the risk

of numerous diseases. However, in our study, DG and several forms

of TGs with different structures might be protective factors for EEC.

Similarly, some studies investigating lipid metabolism and tumors

also indicated an inverse association between TGs and oncogenesis.

Eiji Hishinuma et al. quantified 628 metabolites in plasma samples

from 142 EC patients by using ultra-high-performance liquid

chromatography coupled with tandem mass spectrometry (16).

They found reduced levels of TGs (TG 20:5_34:0, 20:5_36:2,

22:6_32:1, and 22:6_34:2), which included polyunsaturated fatty

acids (PUFA), in these patients (16). These findings are consistent

with our results, indicating that TGs containing unsaturated fatty

acids play a crucial role in EC progression. Hang Zheng et al.

demonstrated that the omega-3 PUFA could markedly inhibit cell

proliferation, induce cell cycle arrest, and trigger apoptosis in

cellular and animal models with EC (34). Besides, previous

research showed that omega-3 PUFA supplementation may

mitigate the harmful effects of obesity-driven cancers (35). These

findings indicated the metabolic effects of omega-3 PUFAs in EC
FIGURE 3

The circular heatmap shows the p-values and b-values of algorithms corresponding to 15 lipidomes. (A) Heatmap of p-values corresponding to 15
lipidomes. (B) Heatmap of b-values corresponding to 15 lipidomes. The clustering algorithm used in the circular heatmap is an unsupervised
clustering method, which simply represents the similarity among the data points. MR, Mendelian randomization; IVW, inverse-variance weighted.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1436955
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lou et al. 10.3389/fonc.2024.1436955
tumors. However, as with many complex diseases, the common

variants identified via GWAS account for only a small portion of the

heritability of tumors, and rare variants throughout the genome

might also significantly influence disease progression (36).

Consequently, an integrated approach that combines fundamental

research with clinical investigations is essential to clarify the causal

links more comprehensively (36).

We found PE also had an observed protective effect on EEC. PE

species were integral to cellular survival, signaling pathways, and

apoptotic processes. Abnormal metabolism of PEs has been

observed in various cancers (37, 38), with a significant decrease in

hepatic, pulmonary, gastric, and colorectal cancers (39). Also,

Agnieszka Skorupa et al. discovered that PE levels are reduced in

ECs of all grades compared to normal endometrial tissue (40). The

biosynthesis of PE was identified as a key pathway that was

dysregulated in EC when compared to normal tissue as well as

among tumors of different grades (40). The abundance of PE levels

was proved to positively regulate longevity in both yeast and

mammalian cells, which was related to the induction of

autophagy (41, 42). Through precursor ethanolamine

supplementation in mammalian cells, the enhancement of

endogenous PEs led to an observable increase in autophagic flux

measured by LC3 lipidation (41). It partly interpreted the negative

correlation between PE and EEC in our study and was conducive to

finding potential therapeutic targets in the future.

SEs were the unsaturated sterols esterified with long-chain fatty

acids and served as a storage form for these fatty acids, buffering

against excess sterols that might otherwise interfere with essential

cellular functions (43, 44). In humans, cholesterol was the most

abundant sterol lipid. As levels of SEs increased, levels of free sterols

could be reduced. By maintaining the proper level of esterified
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cholesterol, membrane stability might be supported, potentially

reducing the risk of EEC tumorigenesis. Besides, in the synthesis

of SEs, enzymes could mediate the esterification of cholesterol on

the surface of high-density lipoproteins (HDL), which were

absorbed from peripheral tissue (45). HDL was an acknowledged

good lipid protein with antioxidant and anti-inflammatory

properties and played a role in preventing oxidative modification

of low-density lipoproteins (LDL) (46). Oxidized LDL was

implicated in inducing mutagenesis, promoting cellular

proliferation, and initiating metastasis (47). This suggested that

insufficient SE could lead to insufficient HDL and elevate the risk of

oxidative and inflammatory exposure, contributing to the

development and progression of EEC potentially. Additionally,

Avery Sengupta et al. found that the inclusion of sterol esters in

the diet of hypercholesterolemic rats led to a reduction in plasma

cholesterol and an increase in antioxidant enzyme levels in cell

membranes (48). It was well known that reactive oxygen species

(ROS) generated by cellular alterations could promote the secretion

of inflammatory factors, while excessive inflammation could

amplify oxidative stress, causing cell and tissue damage and

potentially leading to cancer (49). This oxidative stress could

activate the PI3K/AKT/mTOR signaling pathway, which was

involved in EC proliferation and progression (50). The interplay

between oxidative stress and chronic inflammation established a

vicious cycle that supported EC development (50). These findings

suggested that sterol esters might help reduce the risk of EEC,

presenting an intriguing and worthy question for future research.

The effects of PCs were inconsistent, with different structural

forms playing completely antagonistic roles. Both negative and

positive associations revealed a complex relationship between PCs

and EEC. Similar findings were also revealed in a European
TABLE 2 Details of 13 lipidomes that passed the test.

GCST ID Lipidomes
p-value of

heterogeneity
(MR-Egger)

p-value of
heterogeneity

(IVW)

p-value of
horizontal
pleiotropy

Direction

GCST90277282 Phosphatidylcholine (16:0_18:2) 0.6862283 0.7050082 0.4660940 Forward

GCST90277294 Phosphatidylcholine (16:1_18:2) 0.4202402 0.2840796 0.0718408 Forward

GCST90277314 Phosphatidylcholine (18:2_18:2) 0.2144235 0.2419252 0.5574212 Forward

GCST90277250 Sterol ester (27:1/20:4) 0.5728314 0.6262988 0.8503631 Negative

GCST90277261 Diacylglycerol (18:1_18:1) 0.6068697 0.5702879 0.2278977 Negative

GCST90277291 Phosphatidylcholine (16:0_22:6) 0.6302921 0.4599443 0.0679216 Negative

GCST90277298 Phosphatidylcholine (17:0_20:4) 0.6323824 0.6837995 0.8613317 Negative

GCST90277351
Phosphatidylethanolamine
(O-16:1_20:4)

0.2323808 0.2429853 0.4074765 Negative

GCST90277381 Triacylglycerol (48:0) 0.7215898 0.7792433 0.7880618 Negative

GCST90277386 Triacylglycerol (49:2) 0.6593042 0.7135652 0.6237871 Negative

GCST90277391 Triacylglycerol (50:5) 0.3876029 0.4387764 0.7115147 Negative

GCST90277412 Triacylglycerol (56:6) 0.1297905 0.0964322 0.1688780 Negative

GCST90277413 Triacylglycerol (56:7) 0.1932159 0.2206511 0.6486125 Negative
MR, Mendelian randomization; IVW, inverse-variance weighted.
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prospective investigation (51). PCs were the predominant

glycerophospholipids in eukaryotic membranes and were linked

to tumor cell proliferation and signal transduction (52). Multiple

studies have identified PCs as potential diagnostic biomarkers.

Knific et al. analyzed 126 plasma samples and identified three

reduced PC levels in EC patients (53). It observed that plasma PC

was lower in patients with EC than in healthy volunteers (53). This

reduction might reflect oncogenic alterations in lipid transporter

and PC metabolism enzyme activities. Several studies on

endometrial cancer tissue reported on the enzymes degrading

PCs. Metabolic enzymes, phospholipases A1 (PLA1) and A2

(PLA2), which converted PC to lysophosphatidylcholine (LPC)

and then metabolized to lysophosphatidic acid (LPA) by

lysophospholipase D (LPD) (54). PLA2 and LPD were

overexpressed in cancerous tissues compared to normal
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endometrium, leading to an increased formation of LPC and LPA

(55). Similar significant decreases in plasma PC levels have been

reported in patients with ovarian and cervical cancers (38, 56, 57).

On the other hand, PC remodeling might influence the level of HDL

in EC patients (58). With higher levels of PC variants, HDL had a

significant decrease, and HDL was negatively correlated with

transcription factor EB and estrogen-related receptor a (58). As

high expressions of both were associated with cancer progression

and poor prognosis of EC (58), it might partly explain the positive

relationship between PCs and EEC based on enhanced membrane

fluidity. Certainly, the precise mechanisms at play remained to be

further explored. Deeper investigations were necessary to assess the

potential clinical significance of these findings.

Several observational studies have suggested an association

between disease severity and lipid profiles. For instance,
FIGURE 4

Scatter plots of three lipidomes with forward direction. The slopes of each line represented the causal association for each method. The light
blue line represented the IVW estimate, the dark green line represented the weighted median estimate, the dark blue line represented the MR-
Egger estimate, the light green line represented the simple mode estimate, and the pink line represented the weighted mode estimate. IVW,
inverse-variance weighted; MR, Mendelian randomization; SNP, single-nucleotide polymorphism. (A) Phosphatidylcholine (16:0_18:2).
(B) Phosphatidylcholine (16:1_18:2). (C) Phosphatidylcholine (18:2_18:2).
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FIGURE 5

Scatter plots of ten lipidomes with negative direction. The slopes of each line represented the causal association for each method. The light blue line
represented the IVW estimate, the dark green line represented the weighted median estimate, the dark blue line represented the MR-Egger estimate,
the light green line represented the simple mode estimate, and the pink line represented the weighted mode estimate. IVW, inverse-variance
weighted; MR, Mendelian randomization; SNP, single-nucleotide polymorphism. (A) Sterol ester (27:1/20:4). (B) Diacylglycerol (18:1_18:1).
(C) Phosphatidylcholine (16:0_22:6). (D) Phosphatidylcholine (17:0_20:4). (E) Phosphatidylethanolamine (O-16:1_20:4). (F) Triacylglycerol (48:0).
(G) Triacylglycerol (49:2). (H) Triacylglycerol (50:5). (I) Triacylglycerol (56:6). (J) Triacylglycerol (56:7).
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Chen et al. found that patients with type 2 diabetes had higher levels

of total cholesterol (TC), TG, and low-density lipoprotein

cholesterol (LDL-C) in the observation group compared to the

control group, while high-density lipoprotein cholesterol (HDL-C)

levels were lower (59). Additionally, TC, TG, and LDL-C levels were

lower in the mild group compared to the moderate and severe

groups, whereas HDL-C levels were higher in the mild group (59).

This research indicated that the severity of type 2 diabetes correlates

with more profound lipid metabolism disorders. Similarly, Nie et al.

discovered that in Alzheimer’s disease (AD) patients, lipid

metabolite changes accompanied the progression from mild to

moderate to severe stages (60). Specifically, the relative content of

TG (18:0_16:0_18:0)+NH4 and TG (18:0_16:0_16:0)+NH4

increased with AD severity, while PE (20:0_20:4)-H and LPC

(16:1e)-CH3 decreased (60). Regarding EC, only a few studies

have been conducted. Lorentzen et al. found that fatty acids,

glycerophospholipids, and sphingolipids were enriched in EC

through metabolomic analysis, suggesting a role for lipids in

disease progression and severity, warranting further research (61).

Therefore, analyzing the lipid profile concerning disease severity

might provide deeper insights into the metabolic disruptions in

patients, thereby enhancing the robustness and applicability of

study findings, and offering more tailored interventions and

management strategies based on disease severity. However, the

GWAS database used in our study did not provide specific

clinical pathological characteristics of the patients.

Lipidomes play interconnected roles in various biological

processes, acting not only as structural constituents of cellular

membranes but also as signaling molecules and energy sources. In

the context of endometrial cancer, dysregulated lipid metabolism

significantly influences cancer initiation and progression through

mechanisms that are interdependent and collectively contribute to

tumor growth, survival, and metastasis. For example, cholesterol,

the most abundant sterol lipid in humans, is intricately linked to

synthesizing steroid hormones such as estrogens, progestogens,

androgens, and corticosteroids (62, 63). Elevated cholesterol levels

can enhance the production of estrogens, impacting the progression

of various hormone-responsive tumors, including EC, breast

cancer, colorectal cancer, and others (64). Cholesterol is

converted into pregnenolone, the precursor of all steroid

hormones, and subsequently into estrogens like estradiol, which

promotes the proliferation of endometrial cells (65, 66). The

interplay between cholesterol-derived estrogens and lipid

signaling pathways facilitates cancer growth by activating estrogen

receptor signaling in cancer cells (67). Additionally, oxysterols can

act as estrogen mimetics by binding to estrogen receptors, further

connecting cholesterol metabolism with estrogen-driven

carcinogenesis (67). These multifaceted interactions underscore

the important role of lipid metabolism in EC and highlight

potential avenues for therapeutic intervention.

The relationship between lipidomes and EEC involves complex

biochemical pathways. As lipid metabolism is closely linked to

cancer development and progression, one of the key pathways is the

interplay between Lipids and estrogen synthesis. Adipose tissue can

be the primary site for aromatase enzyme activity, which converts

androgens (such as androstenedione) into estrogens, directly
Frontiers in Oncology 11
promoting endometrial proliferation and the transcription of pro-

proliferative genes, thereby supporting the growth of estrogen-

sensitive endometrial cells (68, 69). Estrogens bind to estrogen

receptors in endometrial cells, directly regulating the transcription

of multiple pro-proliferative genes, including insulin-like growth

factor 1 (IGF1) and IGF1R, and activating the MAPK and AKT

signaling pathways that stimulate endometrial cell proliferation

(68, 70). Estrogen-mediated gene products ultimately regulate

autophagy, proliferation, apoptosis, survival, differentiation, and

vasodilation (70). Moreover, Lipids influences chronic

inflammation associated with visceral fat and can promote

hyperinsulinemia, increased IGF1, and hyperglycemia (71).

Insulin and IGFs can promote cell proliferation and survival by

activating pathways such as the PI3K/AKT/mTOR pathway

(72, 73). This activation leads to increased cell growth and

survival while inhibiting apoptosis, contributing to cancer

development (72, 73). Additionally, high insulin levels can also

reduce sex hormone-binding globulin, further contributing to the

elevated levels of free estrogens (74). These interconnected

pathways underscore the role of lipid metabolism and its

influence on hormone regulation and inflammatory pathways in

the pathogenesis of EC.

This research has several strengths. It is the first study to apply

the MR approach to comprehensively explore the link between

plasma lipidomes and EEC. By using MR analysis, it minimizes

bias from unobserved confounding to the greatest extent possible,

effectively enhancing the validity of our conclusions. The

considerable sample size amplifies the study’s statistical

robustness, facilitating a more accurate determination of causal

relationships. Furthermore, by conducting investigations within a

relatively homogeneous population, our findings can be

extrapolated to the population more precisely. Despite these

strengths, our study also has some limitations. Firstly, it focuses

on the endometrioid subtype of EC and exclusively encompasses

participants of European descent, which may lessen the

applicability of our results to other ethnic groups and EC

subtypes. Secondly, because lacking of clinical data in GWAS

datasets and no access requests are currently accepted in THL

Biobank, we did not analyze the effect of clinical factors such as

age, stage, grade, molecular classification and drug treatments

history on the lipid profile (75). Thirdly, we applied a less

stringent p-value threshold of 1×10-5 (rather than the standard

5×10-8) during the SNP screening of lipid profiles to ensure a

sufficient number of SNPs referenced to previous MR studies (24,

25). Besides, due to the difficulty in obtaining high-quality, high-

confidence SNPs, we did not perform multivariable Mendelian

randomization (MVMR) analysis that might allow the

disentanglement of the direct effects of each lipid trait on an

outcome while accounting for pleiotropy within lipid pathways.

Notably, MR analysis cannot entirely rule out all confounding

effects on other biological pathways related to EEC phenotypes,

and our results does not clarify the mechanisms or molecular

pathways by which metabolites may affect the development of EC.

Thus, future studies should aim to refine these limitations through

basic and clinical studies to unravel the complex interaction

between plasma lipidomes and EC.
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5 Conclusion

In conclusion, applying a two-sample MR study, we found the

complex effects of human plasma lipidomes on EEC. The diversity

in structural alterations of lipidomes may have different impacts on

subtypes, subsequently influencing the occurrence of EEC. As

promising biomarkers, these lipidomes are worthy of further

clinical validation.
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