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Developing a novel dosiomics
model to predict treatment
failures following lung
stereotactic body
radiation therapy
Ashok Bhandari1, Kurtis Johnson1, Kyuhak Oh1, Fang Yu2,
Linda M. Huynh1, Yu Lei1, Sarah Wisnoskie1,3, Sumin Zhou1,
Michael James Baine1, Chi Lin1, Chi Zhang1* and Shuo Wang1*

1Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United
States, 2Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, United States,
3Department of Radiation Oncology, Novant Health Cancer Institute, Winston-Salem, NC, United
States
Purpose: The purpose of this study was to investigate the dosiomics features of

the interplay between CT density and dose distribution in lung SBRT plans, and to

develop a model to predict treatment failure following lung SBRT treatment.

Methods: A retrospective study was conducted involving 179 lung cancer

patients treated with SBRT at the University of Nebraska Medical Center

(UNMC) between October 2007 and June 2022. Features from the CT image,

Biological Effective Dose (BED) and five interaction matrices between CT and

BED were extracted using radiomics mathematics. Our in-house feature

selection pipeline was utilized to evaluate and rank features based on their

importance and redundancy, with only the selected non-redundant features

being used for predictive modeling. We randomly selected 151 cases and 28

cases as training and test datasets. Four different models were trained utilizing

the Balanced Random Forest framework on the same training dataset to

differentiate between failure and non-failure cases. These four models utilized

the same number of selected features extracted from CT-only, BED-only, a

combination of CT and BED, and a composite of CT and BED including their

interaction matrices, respectively.

Results: The cohort included 125 non-failure cases and 54 failure cases, with a

median follow-up time of 34.4 months. We selected the top 17 important and

non-redundant features (with the Pearsons’s coefficient < 0.5) in each model.

When evaluated on the same independent test set, the four models—CT

features-only, BED features-only, a combination of CT and BED features, and a

composite model including features from CT and BED that includes their

interaction matrices—achieved AUC values of 0.56, 0.75, 0.73, and 0.82,

respectively, with corresponding accuracies of 0.61, 0.79, 0.71, and 0.79. The

composite model demonstrated the highest AUC and accuracy, indicating that

incorporating interactions between CT and BED reveals more predictive

capabilities in distinguishing between failure and non-failure cases.
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Conclusion: The dosiomics model integrating the interaction between CT and

Dose can effectively predict treatment failure following lung SBRT treatment and

may serve as a useful tool to proactively evaluate and select lung SBRT treatment

plans to reduce treatment failure in the future.
KEYWORDS

radiomics, dosiomics, lung SBRT, modeling, CT-dose interaction, treatment failure,
Non-Small Cell Lung Cancer (NSCLC)
Introduction

Despite the decline in the rate of new cases and deaths in recent

years (1), lung cancer remains the leading cause of cancer-related

deaths in the US, accounting for over 20% of all cancer-related deaths

(2). Non-small cell lung cancer (NSCLC) is the predominant type,

accounting for more than 80% of all lung cancers (3). With the rapid

advances in lung cancer screening (4), NSCLC is increasingly

diagnosed at earlier stages (3). Although surgery remains the

standard of care for early-stage lung cancer (5), stereotactic body

radiation therapy (SBRT) has rapidly been accepted as a standard

treatment for patients with early-stage medically inoperable NSCLC

(6–8). SBRT allows delivering ablative radiation dose to the target

while maintaining tolerable toxicities (9–12) by utilizing modern

techniques in motion management (13–16) and imaging guidance

technologies (17, 18). Despite achieving an excellent local control rate,

lung SBRT still exhibits a relatively high total failure rate, combining

both regional and distant failures, at approximately 30% (6, 7). Novel

treatment assessment technologies are still warranted to predict

potential treatment failures, thereby improving the survival benefits.

Radiomics is a machine learning-based quantitative image

analysis technology. Owing to its distinct advantages in providing

a comprehensive and quantitative representation of the

radiographic phenotype of a 3D target volume (19–25), it has

become an active area of research for risk assessment and

treatment response prediction in cancer management (26–30).

However, radiomics is still limited in comprehensive treatment

response assessment, especially in radiation oncology, because it

only extracts and analyzes features from the medical images without

considering radiation dose. Dose-volume histograms (DVH) are the

standard metric in radiation oncology to assess dose coverage to the
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target and dose exposure to the organs at risk (OARs), assisting in

the prediction of treatment outcomes and potential toxicities.

However, DVHs do not possess spatial information concerning

the dose distribution in a 3D organ or lesion. Limited studies have

examined how the subtle difference in the 3D spatial distribution of

the radiation dose impacts the treatment response for similar

treatments; these types of studies are categorized as dosiomics.

First cited in 2018, the term dosiomics refers to studies that attempt

to combine radiomics predictive mathematics with 3D spatial dose

information (31). These existing dosiomics studies (32), however,

only investigated the dose distribution without considering the

interplay between the dose and the specific tissue irradiated.

Theoretically, the interaction between radiation and the irradiated

tissue, as represented by medical images, essentially influences the

treatment outcome.

In this study, we designed a novel dosiomics model

incorporating the interplay between tissue density and the

biologically effective dose to predict potential treatment failure.
Materials and methods

Ethical approval and patient selection

The Institutional Review Board at our institution approved this

retrospective study (IRB 722-19-EP). We retrospectively enrolled

consecutive NSCLC lung cancer patients treated with stereotactic

body radiation therapy (SBRT) at the University of Nebraska

Medical Center (UNMC) between October 2007 to June 2022.

We exclusively selected cases determined to be the primary

NSCLC based on multidisciplinary tumor board discussion about

patient clinical history, imaging, and available pathology before

radiation treatment. We excluded patients with the following

conditions: 1) adjuvant treatment for positive surgical margins, 2)

SBRT for metastatic disease, 3) recurrence/oligo-progression of

previously treated primary lung tumor, and 4) patients with

multiple targets who underwent more than one SBRT treatment

simultaneously. In addition, we excluded patients with a follow-up

time of less than a year, except those patients who presented with

treatment failures between 6 months to a year after the SBRT

treatment. Figure 1 summarizes the patient selection process of our
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study. As summarized in Table 1, the patient cohort included 84

male and 95 female patients. The median age is 73 in the range from

52 to 91. The median follow-up time is 34.4 months, ranging from

7.3 to 178.5 months, with a 10-90 percentile range of 73.5 months.

81 cases are adenocarcinoma, 60 cases are squamous cell carcinoma,

9 cases are NSCLC (not otherwise specified - NOS), and 2 cases are

large cell carcinoma. The cohort also included 27 presumed NSCLC

cases without tissue confirmation. After the medical record review,

125 cases are considered as non-failure cases, and 54 cases are

determined to have treatment failure.
Clinical endpoints

Treatment failure in this study includes local, regional, and

distant failures. Local failure refers to the recurrence of cancer

within the same lobe as the primary site of disease. Regional failures

pertain to regional nodal recurrence, while distant failure involves

recurrence in a different lobe or in extrathoracic regions. These

definitions of treatment failures are consistent with RTOG0236.

Local failures were assessed using PET imaging and biopsy, when

deemed safe. If a biopsy was not feasible, we relied on

multidisciplinary discussions based on at least two consecutive

scans to determine if a case represented a true local failure.

Regional failures were similarly confirmed through PET and

involved endobronchial ultrasound with biopsy confirmation.

Distant failures were validated using PET scans and biopsies,

except in cases of brain metastases, which were not always

biopsied. We also have closely examined the medical record for

the non-failure cases, with standard care being chest CT every 3-4

months during the follow-up time within two years after SBRT. All

available CTs right before the death were reviewed in the process.
Frontiers in Oncology 03
CT simulation

All the patients underwent a free-breathing computed

tomography (CT) scan (FB-CT) and a 4D-CT scan using one of

the three Siemens scanners: Sensation Open, Definition, or

Confidence (Siemens Medical Solutions USA, Inc., PA, USA). All

the scans were acquired using 120kVp with a slice thickness of 2 or

3 mm. The tube current used for the scans were ranging from 30

mA to 381 mA. Additionally, all images were acquired using the

smooth convolution kernel equipped on the Siemens CT scanners

(B31s or B31f).
TABLE 1 Patient characteristics.

Patient Characteristics

Gender

Male 84

Female 95

Follow-Up (months)

Median 34.4

Range 7.3 -178.5

PTV (cc)

Mean ± STD 33.1 ± 27.4

Histology

Adenocarcinoma 81

Squamous Cell Carcinoma 60

NSCLC NOS 9

Large Cell 2

Presumed NSCLC 27

Tumor location

RUL 45

RML 7

RLL 46

LUL 58

LLL 23

Fractionation

1000x5 126

1200x4 25

1250x4 14

1800x3 7

1200x5 4

750x8 2

700x10 1
FIGURE 1

Flowchart of patient selection process for lung dosiomics study.
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Target segmentation and volumes
of interest

The Gross Tumor Volume (GTV) and the Planning Target

Volume (PTV) were delineated by the attending radiation

oncologist based on the maximum intensity projection from the

4D CT scan during the treatment planning. To reduce the inter-

observer variability, we created a semi-automatic GTV that

encompasses the voxels with the HU value between (-550 to

2000) within the clinical GTV volume. We also defined a

peritumoral region that included an outer 2 cm ring outside the

PTV and a dose structure (ISO50) for the tissues that received equal

to or more than 50% of the prescription dose outside the PTV. Our

rationale to create these volumes of interest outside PTV is that

peritumoral radiomics signatures have been demonstrated to be

valuable in cancer prognosis assessment (27). In addition, the

peritumoral region outside the PTV typically experiences a rapid

dose fall-off in Lung SBRT, resulting in a notably nonuniform dose

distribution across this area. The volumes of interest of an example

patient were shown in Figure 2.
Dose calculation

The treatment plans of 133 patients were created on the free

breathing (FB) CT whereas the remaining 46 patients were

planned on the average intensity projection (average CT) from

their respective 4DCT scans. To ensure consistency among the

plans in this study, all the plans with the radiotherapy structures

that were created on the average CT images were copied to their

respective FBCT images, and the radiotherapy plan was

recalculated with the same monitor units (MU) without re-

optimizing. Among the 179 patients, 3 patients were planned

using the collapsed-cone-convolution superposition (CCC)

algorithm in the Pinnacle treatment system (TPS) (Philips

Medical Systems, Fitchburg,WI). 23 patients were planned in

the iPlan treatment planning system (Brainlab AG, Feldkirchen,

Germany). The remaining patients were planned the Analytical

Anisotropic Algorithm (AAA) in Eclipse treatment planning
Frontiers in Oncology 04
system (Varian Medical Systems, Palo Alto, CA). For the 23

patients planned in iPlan, the machine was recommissioned in

the Eclipse TPS, and the plans were recalculated by the AAA

algorithm for improved heterogeneity correction.
Fractionation

The fractionation schemes are summarized in Table 1. 126

patients received 1000cGy x 5 fractions, 25 patients received

1200cGy x 4 fractions, 14 patients received 1250cGy x 4 fractions,

7 patients received 1800cGy x 3 fractions, 4 patients received

1200cGy x 5 fractions, 2 patients received 750cGy x 8 fractions

and 1 patient received 700cGy x 10 fractions.
Data preprocessing

The CT volume images, target segmentation, and 3D dose

distribution matrix of each patient were exported in DICOM

format in Eclipse TPS. We converted all the DICOM files to

NRRD format using a batch process in 3D slicer software (33)

https://www.slicer.org/), as previously described (34, 35). We then

resampled volume CT images, 3D dose distribution matrices, and

the target segmentations with a 1 x 1 x 2mm2. Additionally, we

performed cropping on all matrices using the segmentation mask

encompassing the peritumoral region, along with a margin in all

three directions. This process ensured that all matrices of a patient

possess identical dimensions and resolution.
Voxelated biological effective dose

We used a linear quadratic (LQ) radiobiological model to

generate a 3-D distribution of Biologically Effective Dose (BED)

from the 3D physical dose distribution. The voxels within the PTV

are considered cancerous and are assigned with an a/b ratio of

10Gy. The voxels outside the PTV are considered healthy tissue,

and hence were assigned with an a/b ratio of 3Gy. Depending on

the a/b ratio for each voxel, the corresponding BED is calculated
FIGURE 2

Volumes of Interest of our study: (A). Gross Tumor Volume (GTV), (B). Planning Target Volume (PTV), (C). Peritumoral Region, and (D). Normal Tissue
receiving greater than 50% of Prescription Dose - ISO50.
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using Equation 1, as shown below:

BEDi,j,k   =   n  �   di,j,k   1   +  
di,j,k

( ab )i,j,k

 !
  (1)

where BEDi,j,k is the BED for the voxel at position (i,j,k), n is the

number of fractions, di,j,k is the dose per fraction at voxel (i,j,k), and
a
b i,j,k is the alpha-beta ratio (10 for cancerous tissue or 3 for normal

tissue) for the voxel at position (i,j,k) depending on if the voxel is

inside or outside the PTV.
Calculation of the voxelated
interaction matrices

The BED matrix and the planning CT image matrix exhibit a

point-to-point correspondence. Specifically, each voxel within the

BED matrix corresponds to a voxel within the CT image matrix

with the same coordinates, representing the dose received by the

tissue in the corresponding voxel of the CT image matrix. To delve

deeper into the potential features concealed within the relationship

between the CT image matrix and the BED matrix, we generated a

series of interaction matrices to depict the interrelationship between

the CT image and the Biological Effective Dose (BED). Specifically,

we extracted a pair of three-dimensional patches (3 x 3 x 3)

surrounding each voxel in both the CT image matrix and BED

matrix. Subsequently, we computed various metrics, including

Entropy, Spearman Rank Coefficient, Jensen-Shannon Divergence

(JSD), andWasserstein distance between these two patches (CT and

BED). Each of these metric values was then recorded within an

empty matrix, preserving the spatial alignment with the original

voxel location within the CT image matrix. Figure 3 illustrated the

process of calculating the 3-D interaction matrices between CT

image and BED. In addition, we also calculated a pair-wise

multiplication matrix between the CT image and the BED

dose matrix.
Frontiers in Oncology 05
Feature extraction

PyRadiomics (24), an open-source package, was used to extract

radiomics features. Briefly, we converted the DICOM images and

target delineation to NRRD format using a batch process in 3D

slicer software (33) https://www.slicer.org/), as previously described

(34, 35).
Data split for training and testing

We randomly split the dataset into training and test subsets,

comprising 84% (151 cases) and 16% (28 cases) of the total data,

respectively. Both datasets were balanced to maintain similar ratios

of failure and non-failure cases.
Feature selection

Following the feature extraction, we selected the important and

non-redundant features from the features extracted from the CT

image, BED and the calculated interaction matrices using our in-

house feature selection pipeline that has been previously reported

(34, 35). The feature selection pipeline consists of two main steps:

quantifying feature importance and identifying non-redundant

features. Feature importance is determined through repeated 5-

fold cross-validation using various classification algorithms from

the training dataset (151 cases), including Random Forest, Extra

Trees, AdaBoost, and XGBoost. The final importance score for each

feature is the average of the scores from all algorithms. Pearson’s

correlation coefficient was then calculated among these features in

descending order to identify non-redundant features, with the top-

ranked feature automatically considered non-redundant. For each

subsequent feature, if the Pearson coefficient with any previously

identified non-redundant feature exceeds 0.5, it is deemed

redundant and discarded.
FIGURE 3

Schematic representation of the calculation of the voxelated interaction matrices.
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Classification predictive modeling

Four different models were trained utilizing the Balanced

Random Forest (BRF) framework on the same training dataset

(151 cases) to differentiate between failure and non-failure cases.

These models utilized various combinations of features: CT-only,

BED-only, a combination of CT and BED, and a composite of CT

and BED including their interaction matrices, respectively. We

utilized a grid-search approach to optimize the hyperparameters

of the BRF classifier. We explored a parameter grid consisting of

‘ ‘max_depth ’ ’ , ‘ ‘n_es t imator ’ ’ , ‘min_sample s_sp l i t ’ ,

‘‘min_samples_leaf’’, ‘‘max_feature’’, ‘‘bootstrap’’ and ‘‘criterion’’

with specific value ranges. The parameters are summarized in

Table 2. We created a BRF classifier with the defined

hyperparameters and utilized the GridSearchCV to perform the

grid search by applying the 5-fold cross-validation on the training

set. We constructed the BRF classifier model with the best

hyperparameters identified in the grid search and tested the

model performance on the test dataset.
Model performance evaluation

The performance of the models was quantified by the area under

the receiver operating characteristic curve (AUC), accuracy,

sensitivity, and specificity. Besides these metrics, we implemented

Delong test (36) to compare the AUCs from different models. We

also conducted Decision Curve Analysis (DCA) to evaluate the

clinical utility of our predictive models. DCA assesses the net

benefit of the model by considering true positives and false

positives across a range of threshold probabilities, reflecting the

trade-off between interventions and their potential outcomes. We

calculated net benefit using standardized formulas, comparing the

model’s performance to both default strategies—assuming all patients

would receive intervention and assuming none would in Python (37).

DCA plots were generated to visually represent the model’s clinical

impact, enabling an assessment of its value in guiding patient

decision-making. Additionally, we plotted the calibration curve and

calculated the Brie score for each model. Briefly, calibration curves
Frontiers in Oncology 06
were computed using scikit-learn package in Python, providing mean

predicted probabilities and corresponding fractions of positive

outcomes. Brier score losses, from scikit-learn, were also calculated

to quantify prediction accuracy. We visualized the calibration curves

for all models on a single plot.
Competing risk time-to-event analysis

The Fine-Gray model (38) was used to predict the cumulative

incidence of having treatment failure using the features identified by

the four considered models, including CT-only, BED-only, a

combination of CT and BED, and a composite of CT and BED

including their interaction matrices, separately. The concordance

index (c-index) was estimated to assess the models’ ability to

separate individuals with treatment failure earlier than others.

The c-index value ranges between 0 and 1, and a value of 0.5

suggests no discriminating ability, and a value of 1 suggests perfect

discriminating ability. The Brier score was evaluated to assess both

calibration (i.e. how close the prediction is to the true underlying

risk of event) and discrimination. A smaller Brier score indicates a

better model. The integrated Brier score (IBS) was calculated to

integrate the Brier score values obtained at all follow up times to

assess the overall performance of the considered models. The

competing risk analyses using the prodlim, riskRegression, and

pec packages of R statistical software (R version 4.4.1, http://

www.r-project.org).
Results

BED and interaction matrices

We have calculated the biologically effective dose (BED)

distribution from the physical dose distribution using a linear

quadratic (LQ) radiobiological model as described above. Figure 4

showed an example of a planning CT, a physical dose distribution

extracted directly from the treatment plan, and the corresponding

biologically effective dose (BED) distribution. Figure 5 showed

interaction matrices calculated using planning CT and

biologically effective dose (BED) distribution. (A) the Entropy

matrix, (B) the Jensen-Shannon Divergence matrix (C) the

pairwise multiplication matrix, (D) the Spearman rank correlation

matrix, and E) the Wasserstein distance matrix.
Feature extraction

We extracted features from the four volumes of interest (GTV,

PTV, peritumor region, and ISO50) on each set of the seven matrices

of interest – the CT image matrix, LQ_BED matrix, and five

interaction matrices. From each ROI in a single matrix, 105

features were extracted, including 14 shape-based features and 91

first-order and textual features. Using radiomics mathematics,

features were extracted from the volumes of interest (GTV, PTV,

Peritumoral Region, and ISO50) across various matrices (CT, BED,
TABLE 2 Summary of the search ranges for each parameter during
hyperparameter tuning of the Balanced Random Forest (BRF)
classification model.

Model
hyperparameter name

Search space for
optimal hyperparameter

n_estimators 50, 100, 200, 300

max_depth 2, 3, 5, 7

min_samples_split 2, 4, 6, 8, 10

min_samples_leaf 1, 2, 3

max_features auto, sqrt, log2

bootstrap True, False

criterion gini, entropy
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Entropy, Jensen-Shannon Divergence, pairwise multiplication,

Spearman rank correlation, and Wasserstein distance matrices).

This process resulted in 420, 420, 840, and 2940 features,

respectively, which were then processed in our feature selection

pipeline, and the selected features were then utilized to develop

four predictive models: CT-only, BED-only, a combination of CT

and BED, and a composite model of CT and BED that integrates their
interaction matrices.
Frontiers in Oncology 07
Feature selection

From the same training set (151 patients), our in-house feature

selection pipeline resulted in 17 important and non-redundant

features for each model. The importance ranking is shown in

Figure 6, and non-redundancy, assessed by the Pearson Coefficient

being less than 0.5, are shown in Figures 7A–D, respectively.
FIGURE 5

Interaction matrices calculated using planning CT and biologically effective dose (BED) - (A) Entropy matrix, (B) Jensen-Shannon Divergence matrix
(C) pairwise multiplication matrix, (D) Spearman rank correlation matrix, and (E) Wasserstein distance matrix.
FIGURE 4

Exemplary representation of (A) planning CT image, (B) physical dose distribution extracted directly from the treatment plan, and (C) calculated
biologically effective dose (BED) distribution from one patient.
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Model performance

Repeated 5-fold cross-validation on the training dataset

comprising 151 subjects demonstrated that the Balanced Random

Forest model attained an average area under the receiver operating

characteristic curve (AUC) of 0.98, 0.94, 0.99, and 0.99, respectively

(Figure 8). Upon evaluation with the same independent testing set

of 28 subjects, each model achieved AUC values of 0.56, 0.75, 0.73,
Frontiers in Oncology 08
and 0.82, respectively, with corresponding accuracies of 0.61, 0.79,

0.71, and 0.79, as shown in Figures 9A–D). Sensitivity and

specificity of each model were displayed in Figures 10A–D via

confusion matrices. The p-values for each pairwise comparison

between models, calculated using the Delong test, are listed

in Table 3.

As shown in Figure 11, the Decision Curve Analysis plot

illustrated the net benefit of four models (CT, BED, CT-BED, and
FIGURE 6

Feature importance of the four models: (A) CT-Only model; (B) BED-Only model; (C) CT-BED model; (D) Composite model.
FIGURE 7

Pearson coefficient of features for (A) CT-Only, (B) BED-Only, (C) CT-BED, and (D) composite model.
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Composite) compared to the “Treat All” and “Treat None”

scenarios across various threshold probabilities. The Composite

model (red line) showed the highest net benefit over a wide range of

threshold probabilities, suggesting it provides the most clinical

utility. The other models, on the other hand, demonstrated
Frontiers in Oncology 09
fluctuating net benefits, with the CT-BED (green line) also

performing well at certain thresholds. Our results indicated that

the Composite model may be the most effective for guiding clinical

decisions within the threshold probability range shown. As shown

in Figure 12, the composite model achieved a Brie score of 0.18
FIGURE 9

Receiver-operating characteristic (ROC) curves of (A) CT-Only, (B) BED-Only, (C) CT-BED, and (D) composite model on the same independent
test set.
FIGURE 8

Receiver-operating characteristic (ROC) curves of (A) CT-Only, (B) BED-Only, (C) CT-BED, and (D) composite model on the same training set.
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indicating its superiority compared to other models in reflecting the

observed outcomes by its predicted probabilities. The Brie score for

both BED and CT-BED models are 0.20 and 0.20, respectively,

showing that they had more deviations from the perfect predictions
Frontiers in Oncology 10
compared to the composite model. The CT model, on the other

hand, exhibited poor calibration, diverging from the diagonal line,

suggesting that its probability estimates were less reliable.
Competing risk time-to-event analysis

Figure 13 showed the Brier score for the training and validation

data, respectively. There is no treatment failure or competing death

event after 8 years for the training data and 4.5 years for the test data

following the treatment. Therefore, a time range of 1 year to 8 years

after treatment was used for the plot on training data and 1 year to

4.5 years for the plot of the validation data. For the training data, the

Brier scores are similar and less than 0.25 for all considered models

at year 1 to year 8, indicating all these considered models provides

good performance. For the validation data, all models have Brier

scores less than 0.25, though the combination of CT and Bed model

provides larger (worse) brier score at year 1 to year 4 than other

three models. In addition, all considered models provide good
TABLE 3 Comparison of AUC values between different models using a
Delong test.

AUC p-value

CT vs BED 0.56 vs 0.75 0.24

CT vs CT-BED 0.56 vs 0.73 0.30

CT vs Composite 0.56 vs 0.82 0.07

BED vs CT-BED 0.75 vs 0.73 0.78

BED vs Composite 0.75 vs 0.82 0.39

CT-BED vs Composite 0.73 vs 0.82 0.34
P-value >0.05 suggests that the difference between the area under curve (AUC) are not
significantly different.
FIGURE 10

Confusion Matrix of (A) CT-Only, (B) BED-Only, (C) CT-BED, and (D) composite model on the same independent test set.
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performance on the training data (c-index >70; IBS values <0.25).

Among all these models, the CT only model has the worst

performance with the smallest c-index and the largest IBS value.

For the validation data, the BED only model and the composite

model have better performance (c-index >70, and low IBS values).

All these results are presented in Table 4.
Discussion

With technical advancements along with the rapid digitization

of information, we are witnessing an exponential increase in the

accumulation of data, such as medical imaging data and 3D dose

distribution, in Radiation Oncology. Traditionally, these data were

primarily utilized for human perception or visual representation.

Our analytical capabilities for evaluating medical imaging,

specifically CT and the 3D dose distribution matrix, were

constrained to simplistic, 1-dimensional methodologies, such as
Frontiers in Oncology 11
dose-volume histogram (DVH). However, recent advancements in

computational capacities and artificial intelligence technologies

have revolutionized our approach, equipping us to transform data

such as CT and dose matrix into structured, minable datasets. This

enables the application of sophisticated data mining techniques to

unearth complex patterns and associations that may be indicative of

specific clinical outcomes. This transition not only enhances our

ability to explore underlying mechanisms but also opens up new

avenues for predictive analytics and decision-making based on

comprehensive, multi-dimensional data analysis.

Owing to its distinct advantages in providing a comprehensive

and quantitative representation of the radiographic phenotype of a

3D target volume (19–25), radiomics has become an active area of

research for risk assessment and treatment response prediction in

cancer management (26–30). However, despite its utility, radiomics

remains constrained in its capacity for comprehensive treatment

response assessment, particularly in Radiation Oncology. This

limitation arises because radiomics focuses on extracting and
FIGURE 12

Calibration plot for each model with their brier scores.
FIGURE 11

The decision curve analysis plot illustrating the net benefit of four models (CT, BED, CT-BED, and Composite) compared to the "Treat All" and "Treat
None" scenarios across various threshold probabilities.
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analyzing features predominantly from the images. With the recent

increase in the application of radiomics techniques in the 3D dose

distribution domain, dosiomics features are being increasingly

examined for their potential in predictive modeling. However,

existing dosiomics studies (32, 39–43) have focused more on the

features extracted directly from 3D dose distribution rather than their

correlation, or interaction with the medical images. Logically, it is the

interplay between the radiation and the underlying characteristics of

irradiated tissue, as represented by medical images, that

fundamentally determines the treatment outcome. Thus, a more

holistic approach that incorporates both medical images and its

interaction with the radiation dose is possibly essential for a more

accurate and thorough assessment of treatment response.

Our study addresses this gap by incorporating 3D dose matrix

into the analytical framework and calculating five distinct

interaction matrices between CT and dose. These matrices are

designed to potentially represent the dynamic interplay or

correlation between CT and dose. This approach enhances the

comprehensiveness of our analysis, potentially providing a deeper

understanding of the interactions that may influence outcomes

within our study’s scope. Specifically, the Entropy matrix elucidates

local variations or complexity within data, where components

exhibiting low entropy are more uniform compared to those with

high entropy. The Jensen-Shannon divergence (JSD) matrix and the

Wasserstein distance matrix both quantify the dissimilarity between
Frontiers in Oncology 12
CT and dose distributions in the local environment based on

distinct mathematical perspectives with different emphases.

Spearman’s rank correlation matrix assesses the monotonic

relationship between CT and dose distributions in the local

environment. By integrating these matrices into our feature

mining process, we can potentially uncover additional hidden

features that represent the voxelated interplay or correlation

between images and dose, which might be pivotal in determining

treatment outcomes. Our approach potentially allows for a more

nuanced understanding of the factors influencing therapeutic

efficacy. As shown in our results, the composite model,

characterized predominantly by its top features from these

interaction matrices, demonstrated superior performance

compared to other models, indicating these interaction matrices

are informative and predictive.

Although delta-radiomics (44–48) has also been utilized to

evaluate treatment response in radiation oncology, it relies on

analyzing temporal changes in imaging to predict clinical

outcomes post-treatment. This retrospective and passive approach

does not facilitate modifications or improvements to treatment

plans, which are typically assessed using relatively simplistic, 1D

metrics such as DVH prior to treatment delivery. Conversely, our

approach, upon thorough validation, could offer physicians the

ability to proactively select more effective treatment plans,

potentially reducing treatment failures.

Our study has a few limitations. First, we have a relatively small

sample size, and our conclusion necessitates cautious interpretation

and requires validation through external datasets. The observed

discrepancy in AUC values between the training set and the test set

suggests that the sample size may be insufficient for robust model

evaluation. Additionally, we did not observe the significant difference

in AUC for the four models, which is also likely caused by our limited

sample size since we only had 28 patients in the test set. Second,

although we utilized the biological effective dose (BED) to account for

the variations of biological effect due to various fractionations, it

should be noted that voxels within the PTV were assigned an alpha-

beta ratio of 10, while voxels outside the PTV were assigned a value of
TABLE 4 c-index and IBS score for both training and test set in the
competing risk analysis.

Training Test

c-index IBS c-index IBS

BED 73.2 0.133 70.8 0.129

CT 70.7 0.147 67.1 0.139

CT-BED 74.6 0.134 68 0.167

Composite 75.4 0.134 70.7 0.136
FIGURE 13

Brier score for the training and validation data for the competing risk analysis.
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3 in our calculation of the voxelated BED, as there is currently no

widely accepted model for voxelated BED based on tissue electron

density. Furthermore, we chose an empirical value of 10 for the alpha-

beta ratio for the cancerous tissue, although this may not be the most

appropriate for NSCLC, where higher values have been suggested (49,

50). In addition, applying a uniform alpha-beta ratio across all NSCLC

subtypes may be overly simplistic, given the reported variations in cell

survival curves among different lung cancer (51), which potentially

overlooks the nuanced biological differences. Our current analyses did

not evaluate the potential impact on the model performance from

these variations. We did not address these considerations in our

current study primarily because these specific values have not yet been

widely validated and accepted in clinical settings. Third, we did not

further investigate the uncertainty of the features caused by various

tube current, voxel size resampling and kernel reconstruction as it has

been demonstrated that the variations in tube current do not

significantly affect radiomic features (52) and that radiomic features

have shown no notable correlation with exposure (53). Also, since

resampling minimizes the effect of voxel size on the radiomic features

(53, 54), the image sets used in our study were resampled to 1 x 1 x 2

mm³. Additionally, all images were acquired using either the B31s or

B31f convolution kernel from the single vendor (Siemens), and both of

B31s and B31f kernel are considered as smooth kernels with limited

expected difference (55). Fourth, in our analysis, we selected free-

breathing CT arbitrarily without conducting an extensive comparison

of potential results using average CT, given the fact that the superiority

of free-breathing CT compared to average CT within the context of

clinical treatment planning remains a subject for debate. Although

additional features and outcomes could be explored further using

average CT, we have proved our concept that integrating the

interaction between dose and CT enhances prediction accuracy

compared to using CT or dose alone.

Future investigations following our proof-of-concept study are

still warranted in the following areas. First, our model needs to be

validated, and possibly evolved, with external datasets. We also plan to

perform independent tests using newer patients once the follow-up

time meets our requirements as an alternative approach for further

independent validation. Second, the impact of various alpha-beta

ratios techniques on model performance, for biological effectiveness

of SBRT or various histology subtypes, needs to be explored. Third, we

also intend to initiate a clinical trial that utilizes our dosiomics model

as a plan evaluation metric, in addition to the existing DVH-based

metrics, to further validate or refine the model within a prospective

setting. This approach potentially mitigates the inherent limitations of

most radiomics studies, which primarily are retrospective and thus

often fail to incorporate all necessary biological variables.
Conclusion

Our proof-of-concept study demonstrated that a dosiomics

model, which incorporates the interaction between CT and dose,

has demonstrated effectiveness in predicting treatment failures

following lung SBRT treatment. This model holds potential as a

proactive tool for evaluating and selecting treatment plans, aimed at

reducing future treatment failures.
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