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Purpose: Accurate preoperative identification of Human epidermal growth factor

receptor 2 (HER2) low expression breast cancer (BC) is critical for clinical decision-

making. Our aim was to use machine learning methods to develop and validate an

ultrasound-based radiomics nomogram for predicting HER2-low expression in BC.

Methods: In this retrospective study, 222 patients (108 HER2-0 expression and

114 HER2-low expression) with BC were included. The enrolled patients were

randomly divided into a training cohort and a test cohort with a ratio of 8:2. The

tumor region of interest was manually delineated from ultrasound image, and

radiomics features were subsequently extracted. The features underwent

dimension reduction using the least absolute shrinkage and selection operator

(LASSO) algorithm, and rad-score were calculated. Five machine learning

algorithms were applied for training, and the algorithm demonstrating the best

performance was selected to construct a radiomics (USR) model. Clinical risk

factors were integrated with rad-score to construct the prediction model, and a

nomogram was plotted. The performance of the nomogram was assessed using

receiver operating characteristic curve and decision curve analysis.

Results: A total of 480 radiomics features were extracted, out of which 11 were

screened out. The majority of the extracted features were wavelet features.

Subsequently, the USR model was established, and rad-scores were computed. The

nomogram, incorporating rad-score, tumor shape, border, and microcalcification,

achieved the best performance in both the training cohort (AUC 0.89; 95%CI 0.836-

0.936) and the test cohort (AUC 0.84; 95%CI 0.722-0.958), outperforming both the

USRmodel and clinicalmodel. The calibration curves showed satisfactory consistency,

and DCA confirmed the clinical utility of the nomogram.

Conclusion: The nomogram model based on ultrasound radiomics exhibited

high prediction value for HER2-low BC.
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1 Introduction

Breast cancer (BC) is the most frequent malignant disease

among women globally, often associated with a high fatality rate

(1). The human epidermal growth factor receptor 2 (HER2)

emerges as a pivotal transmembrane tyrosine kinase receptor,

regulating cellular proliferation and signal transduction. HER2, as

a well-established biomarker of BC, often exhibits protein

overexpression and gene amplification, which frequently

correlates with an aggressive phenotype (2). According to the

latest ASCO/CAP guidelines (3), HER2 status in BC is evaluated

using immunohistochemistry (IHC) and/or fluorescence in situ

hybridization (ISH). The HER2 status is now classified into three

levels: HER2-0 (IHC score 0), HER2-low (IHC score 1 or 2/ISH

negative), and HER2-positive (IHC score 3+ or 2/ISH positive).

Previously, both HER2-0 expression and HER2-low expression BC

were classified as HER2-negative BC. In reality, low levels of HER2

expression were observed in approximately two-thirds of hormone

receptor (HR)-positive BC cases and in one-third of triple-negative

BC (TNBC) cases (4). With the advancement of antibody-drug

conjugates (ADCs) such as T-DXd and SYD985, the prognosis of

HER2-low BC has improved.

Unlike BC with HER2-0 expression, HER2-low BC exhibits a

unique incidence of somatic mutation, with higher rates of PIK3CA

mutations and lower rates of TP53 mutations (5). Additionally,

HER2-low BC typically presents with larger diameters, higher

histological grading, and more involved lymph nodes. It has also

been shown that the pCR rate is significantly decreased after

neoadjuvant chemotherapy (6). Therefore, HER2-low expression

is more likely to be an independent subtype, accounting for half of

all BCs (7). It presents unique signaling pathways, molecular

alterations, distinct biological features, and clinical outcomes (8).

Hence, early detection of HER2-low expression is essential for

clinical therapy planning.

At present, the preoperative diagnosis of the HER2-low

expression primarily relies on the analysis of specimens obtained

from core needle biopsy using IHC/ISH technique (9). However,

due to the limited biopsy specimen size and the highly instability of

HER2 low expressing during tumour development (10), samples

may not fully capture all of the tumor’s properties. This highlights

the need for the development of a non-invasive, precise, secure, and

repeatable approach for predicting HER2-low expression.

Radiomics, as a high-throughput technology, offers a brand-

new opportunity for HER2-low expression research. It is a hybrid

field of computer science and medical imaging that aims to measure

aspects that cannot be seen with the human eye (11). To strengthen

the objectivity of tumor heterogeneity representation, radiation

oncology makes use of more complete data mining, prediction,

and analysis (12). Studies have reported that radiomics can

effectively differentiate between benign and malignant breast

lesions (13). Moreover, It also demonstrated excellent

performance on molecular subtyping, lymph node metastasis

prediction and neoadjuvant chemotherapy response prediction

(14). Radiomics offers the advantages of safety and repeatability,

enabling measurement of tumor heterogeneity at any time, unlike

conventional biopsy techniques.
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Ultrasound is widely recommended for preoperative assessment

of BC patients. The rapid development of ultrasound-based

radiomics (USR) technology has further spurred BC research

(15). Given the scarcity of radiomics studies focused on HER2-

low BC, our objective is to develop and validate a decision support

tool.This tool will integrate clinical risk factors and USR to predict

the HER2-low subtype in BC patients.
2 Materials and methods

2.1 Research population

This retrospective analysis was approved by our institutional

review board, and the requirement for informed consent was

waived. We retrospectively reviewed 425 patients with

histologically diagnosed BC between January 2019 and December

2021. The inclusion criteria were as follows: (і) female BC patients

histologically confirmed by surgery or biopsy with complete clinical

and pathological data; (ii) preoperative US performed within 1 week

with complete imaging data. The exclusion criteria were as follows:

(і) no-mass or multifocal lesions; (ii) lesions with calcifications or

cystic changes that might significantly affect pixel values; (iii)

lesions too large(≥5 cm) to be included in a single plane; (iv)

patients who underwent preoperative therapy (neoadjuvant

chemotherapy, biopsy before ultrasound); (v) HER2-positive

(IHC score 3+ or 2+/FISH positive). Figure 1 depicts the

recruitment pathway.
2.2 Clinicopathological characteristics

Baseline clinical data was obtained from medical records. The

original pathological reports were retrieved to investigate pathology

type, estrogen receptor(ER), progesterone receptor (PR), HER2, and

Ki67 status. ER/PR status was marked positive if IHC staining in at

least 1% of tumor nuclei; otherwise, it was marked as negative. The

Ki67 level was categorized as low expression (<14%) and high

expression(≥ 14%) (16). HER2-0 expression was defined as no

membrane staining (IHC score 0), while HER2-low expression was

defined as weak and incomplete membrane immunostaining with

no HER2 gene amplification detected by FISH (IHC score 1 or 2+/

FISH negative) (Figure 2).
2.3 Image acquisition and
tumor segmentation

Preoperative US were conducted using a Philips Epiq5 (Philips,

The Netherlands) or a GE LOGIQ E20 (GE Healthcare, USA)

equipped with L12-5 or ML6-15 linear array transducers. The US

examinations were completed by skilled sonographers with at least

7- year experience. All patients were scanned in a supine position

with both breasts fully exposed. The biggest slice of each lesion was

obtained, and US characteristics were noted according to the Breast

Imaging Reporting and Data System (BI-RADS) (17).
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Sonographer 1 (with more than 7 years of experience) selected the

maximum cross-sectional plane of each breast lesion and manually

segmented a Region of Interest (ROI) along the tumor margin using

ITK-SNAP software (version 3.8). The segmention was confirmed by

sonographer 2 (with more than 10 years of experience). Both

sonographers were blinded to US and clinicopathological results.
2.4 Feature extraction and selection

Features based on US images were extracted using PyRadiomics

(Version 2.2.0). These features encompassed first-order statistics, two-

dimensional (2D) shape descriptors, texture classes, and higher-order

features, including gray-level co-occurrence matrix (GLCM), gray-level

run length matrix (GLRLM), gray-level size zone matrix (GLSZM),

gray-level dependence matrix (GLDM), neighbourhood gray-tone

dependency matrix (NGTDM), and filter-based features. Only

features with the interclass correlation coefficient (ICC) greater than

0.75 were retained for further analysis (18).

Berore feature selection, Z-score standardization was applied for

data preprocessing. This adjustment aimed to set the mean value to

zero, eliminate disparities in value scales, and mitigate the impact of

outliers. It is formulated as Z = (X - m)/s, where Z stands for

transformed value, m stands for mean, and s stands for standard
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deviation. Afterward, the enrolled patients were randomly allocated

into a training cohort and a test cohort in an 8:2 ratio. Feature

selection was conducted within the training cohort. The candidate

USR features significantly associated with HER2-low expression were

filtered out by an independent samples t-test. The least absolute

shrinkage and selection operator (LASSO) regression was then

employed to reduce the dimensionality of the high-dimensional

data and eliminates redundant features by utilizing L1

regularization to reduce the regression coefficients of unnecessary

features to zero. To prevent overfitting, the optimal regularization

parameter lambda was determined via a 5-fold cross-validation

process. In the 5-fold cross-validation, the training dataset was

divided into five subsets. For each iteration, four of these subsets

were designated for model training, while the remaining one served

as the validation set. After completing all five iterations, the most

relevant USR features with non-zero coefficients associated with

HER2-low expression were screened out.
2.5 Model construction and
performance validation

On the basis of these USR features, the following five machine

learning algorithms were used for model training: Support Vector
FIGURE 1

The flowchart of patient selection.
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Classification with Linear Kernel (SVC-L), Support Vector

Classification with Radial Basis Function Kernel (SVC-RBF),

Extreme Gradient Boosting (XGB), Logistic Regression (LR), and

Gaussian Naive Bayes (GNB).The performance of each algorithm

was assessed, and the best-performing one was chosen as the USR

model. These USR features were converted to radiomics score (rad-

score) through a calculation involving the multiplication of

radiomics eigenvalues by their respective LASSO coefficients,

followed by summation. To establish a clinical model,

multivariable logistic regression analyses were performed to

identify clinical risk factors associated with HER2-low expression,

with statistical significance defined as a p-value<0.05. Subsequently,

a nomogram was developed combining rad-score with clinical risk

factors(R language, package “rms”). The construction workflow is

shown in Figure 3.

The model was trained on the training dataset, and its

performance was evaluated on the test dataset. Receiver operating

characteristic (ROC) curves were plotted for each model separately,

and the area under the curve (AUC) was calculated. Furthermore,

accuracy, sensitivity, and specificity were calculated to evaluate the

discrimination ability of the models. Calibration curves were plotted

to evaluate the performance of the nomogram, with the fitness

assessed by the Hosmer-Lemeshow (H-L) test (p>0.05). Decision

curve analysis (DCA) was used to determine the clinical

practicability of the prediction models by quantifying the

net benefits.
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2.6 Statistical analysis

Statistical analysis was performed by R software (version 3.6.1,

https://www.r-project.org). Quantitative data were presented as

mean ± standard deviation(x ± s). Quantitative data conforming

to the normal distribution were compared by independent sample t-

test, whereas the nonparametric Mann-Whitney U test was applied

for grade data. Pearson Chi-square test and Fisher exact test were

used to compare categorical data. A two-sided p-value<0.05 was

considered statistically significant. ROC curves and DCA curve

were plotted using Python (version 3.1) and AUCs 95% confidence

intervals (95% CI) were computed. Goodness of fit was assessed by

the H-L test. Pairwise comparisons of the ROC curves were

performed using the DeLong test.
3 Results

3.1 Baseline clinicopathologicl and
ultrasonic characteristics

Eventually, a total of 222 cases were enrolled (mean age, 56.01 ±

12.66 years; mean tumor size, 2.19 ± 1.09cm). Among them, 108

cases (48.6%) showed HER2-0 expression and 114 cases (51.4%)

exhibited HER2-low expression. All cases were randomized into

two cohorts:training cohort (n = 177) and test cohort (n = 45). No
frontiersin.or
FIGURE 2

All samples with BC underwent IHC to evaluate HER2 status. Samples with an IHC score of 2+ underwent further evaluation using FISH. Samples
with an IHC score of 0 were classified as HER2-0. IHC 1+ or FISH-negative results (no amplification) on IHC 2+ tumors were classified as HER2-
low expression.
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significant differences were observed between the training and test

cohorts (p>0.05, Supplementary Table S1). Compared to the HER2-

0 group, characteristics such as shape, microcalcification, ER, and

PR differed statistically significant in the HER2-low group. In

particular, the HER2-low group had greater rates of HR positivity

(ER+ 79.8% vs. 66.6%; PR+ 75.4% vs. 60.1%) (p<0.05; Table 1).
3.2 Radiomics feature selection and USR
model construction

480 USR features were extracted from each original US image

with good agreement of the feature extraction (ICC>0.75),

including 19 firstorder features, 10 shape features, 75 texture

features, and 376 higher-order composite features. Following an

independent sample t-test, 110 features demonstrating statistically

significant differences from HER2-low expression were further

screened out. The optimal parameter (l = 0.0308) for Lasso

regression was identified by 5-fold cross-validation, resulting in

the best model fit. After dimensionality reduction, 11 USR features

with non-zero coefficients were retained finally. The majority of

these features were wavelet-transformed (9/11), while the

remaining two were LoG-transformed features (Table 2). Based

on this foundation, five machine learning algorithms were

introduced to compare the performance. Furthermore, a

comparison of the performance in terms of accuracy, specificity,

and sensitivity of these five algorithms is presented in Table 3. All
Frontiers in Oncology 05
TABLE 1 Comparison of baseline characteristics of patients between the
HER2-0 and HER2-low BC by univariate analysis.

Characteristics
HER2-0
(n=108)

HER2-low
(n=114)

p-value

Age (year, mean ± SD) 56.34 ± 12.59 55.70 ± 12.76 0.707

Size (cm, mean ± SD) 2.28 ± 1.21 2.12 ± 0.96 0.280

Position 0.064

outer upper quadrant 51 61

outer lower quadrant 10 16

upper inner quadrant 16 22

lower inner quadrant 16 9

central 15 6

Border 0.252

clear 45 39

fuzzy 63 75

Shape 0.011*

regular 16 33

irregular 92 81

Aspect ratio 0.310

<1 47 42

(Continued)
FIGURE 3

The flowchart for constructing USR model, clinical model and nomogram model. USR, ultrasound-based radiomics.
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algorithms have passed the validation with none exhibited

overfitting. In the test cohort, the performance of all algorithms

decreased because the test cohort comprised image data that were

unknown previously. This decrease in performance of the test

cohort reflects the generalization ability of the models. Among

them,the SVC-RBF algorithm gave the highest AUC value

(AUC=0.78). In addition, we noticed a decrease in sensitivity and

a slight increase in specificity (60.9% and 77.3%, respectively). The

overall performance of SVC-RBF is more balanced across all

algorithms and was selected as the USR model.

The SVC-RBF performed best out of all algorithms (training AUC,

0.86; test AUC, 0.78). Figure 4 presents a comparison of the ROC

curves for the five algorithms. These 11 USR features were considered

highly associated with HER2-low expression, and output as rad-score

(Radscore = coefficient 1� feature 1 + coefficient 2� feature 2… +

constant term) (19).

The rad-score of each patient was calculated. The median rad-

score of the HER2-low group was found to be significantly higher

than that of the HER2-0 group (p<0.001; Figure 5).
3.3 Clinical model and nomogram
model construction

Multivariate analysis revealed several baseline characteristics

that were statistically significant between HER2-low expression and

HER2-0 expression, including tumor border, shape, and

microcalcification (p<0.05; Table 4). Hence, these characteristics

were incorporated as clinical risk factors in the construction of the

clinical model. Nevertheless, its performance fell below

expectations, with training and test AUC values of 0.61 and

0.58, respectively.

A nomogram combining the rad-score with clinical risk factors

was constructed (Figure 6A). The nomogrammodel was established

as follows: HER2-low Expression Prob = ( − 1:739� 10−6)�
points3 + 0:000392327� points2 − 0:015125275� points +
TABLE 1 Continued

Characteristics
HER2-0
(n=108)

HER2-low
(n=114)

p-value

≥1 61 72

Microcalcification <.001*

without 85 64

within 23 50

Internal blood flow grade 0.134*

adler0 35 33

adler1 38 31

adler2 21 26

adler3 14 24

ER 0.027*

negative 36 23

positive 72 91

PR 0.015*

negative 43 28

positive 65 86

Ki67 0.051

low expression 25 40

high expression 83 74

Histologic type 0.118

DCIS 6 8

non-special invasive 87 92

infiltrative specific 10 14

rare 5 0
*p<0.05. Alder blood flow grade, 0 no flow, 1 punctate blood flow signal, 2 short-rod like blood
flow signal, 3 abundant blood flow signal. DCIS, ductal carcinoma in situ.
TABLE 2 Eleven retained non-zero coefficients features after dimensionality reduction.

Filter Category Feature Name
Mean Value

p-value Feature Coefficient
HER2-0 HER2-low

LoG gldm
LargeDependenceLow
GrayLevelEmphasis

0.8538 0.5669 0.001 -0.041862

LoG glrlm
LowGrayLevel
RunEmphasis

0.3596 0.2866 0.011 -0.004805

wavelet firstorder InterquartileRange 8.7533 11.4926 <0.01 0.025894

wavelet firstorder Range 32.804 42.177 0.002 0.064012

wavelet glcm InverseVariance 0.4265 0.3363 0.025 -0.038853

wavelet firstorder Minimum -51.7193 -19.5611 <0.01 0.062032

wavelet glcm Correlation 0.5932 0.4198 0.019 -0.021779

wavelet glcm JointAverage 5.6366 4.1785 0.011 -0.048355

(Continued)
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0:158781371. The nomogram model demonstrated a good

distinguishing ability between HER2-0 expression and HER2-low

expression, as evidenced by the greatest AUC values (training AUC,

0.89; test AUC, 0.84). The calibration curves were close to the 45-

degree lines, and the H-L test showed there was no significant

difference between the observed value and expected value (training

p=0.671, test p=0.541), signifying strong agreement and high

calibration precision of the model (Figures 6B, C).
Frontiers in Oncology 07
3.4 Model performance assessment

The nomogrammodel exhibited the highest performance (training

AUC, 0.89; test AUC, 0.84), followed by the USRmodel (training AUC,

0.86; test AUC, 0.78), and then the clinical model (training AUC, 0.61;

test AUC, 0.58) (Table 5). Figure 7 displays the ROC curves of the three

models. Statistical analysis using the Delong test revealed that the

nomogram model showed a significantly higher AUC than the other
TABLE 3 Performance of the five machine learning classifiers in training and test cohort.

Classifier Cohort AUC 95%CI ACC(%) SEN(%) SPE(%)

SVC-L
Training 0.78 0.707-0.844 69.5 69.2 69.7

Test 0.77 0.628-0.906 60 43.5 77.3

SVC-RBF
Training 0.86 0.800-0.912 78.5 81.3 75.5

Test 0.78 0.650-0.919 68.9 60.9 77.3

XGB
Training 0.83 0.772-0.892 75.1 83.5 66.3

Test 0.71 0.564-0.865 60 56.5 63.6

LR
Training 0.77 0.700-0.838 51.4 100 0

Test 0.76 0.615-0.898 57.8 43.5 72.7

GNB
Training 0.76 0.692-0.832 67.8 81.3 53.4

Test 0.69 0.532-0.843 66.7 65.2 68.7
TABLE 2 Continued

Filter Category Feature Name
Mean Value

p-value Feature Coefficient
HER2-0 HER2-low

wavelet gldm
GrayLevel
NonUniformity

4.3905 3.6691 0.01 -0.006254

wavelet glrlm
GrayLevel
NonUniformity

3.4017 2.8856 0.035 -0.026538

wavelet glrlm
GrayLevelNon
UniformityNormalized

0.1531 0.1256 0.016 -0.014143
FIGURE 4

ROC curves of the five machine learning classifiers predicting HER2-low expression in the training (A) and test cohort (B).
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models (p=0.043, p<0.001, respectively) (Table 6). Figure 8 illustrates

the DCA of these models. It demonstrated that within the threshold

range of 0.29-0.42, the nomogram model provided a higher net benefit

compared to the USR and clinical model.
4 Discussion

In this retrospective study, we explored the feasibility of

radiomics features extracted from ultrasound images as

noninvasive predictors to differentiate between HER2-low

expression and HER2-0 BC. Additionally, we developed a
Frontiers in Oncology 08
nomogram by integrating clinical factors with radiomics features

for HER2-low BC prediction.

Traditionally, the assessment of HER2 status in BC has been

binary, categorizing tumors as either negative or positive. However,

advancements in genomic and molecular research advocate for a

more precise ternary classification of HER2 expression status in

clinical practice. HER2-low expression BC likes to be an unique

subtype with distinct molecular, pathological, and clinical

characteristics. Encouragingly, novel ADCs have provided

targeted therapy opportunity for BC patients with HER2-low

expression (20). Early and accurate diagnosis of HER2-low BC

contributes to the improvement of prognosis.

The inherent instability of HER2 expression in BC, due to its

high heterogeneity, presents challenges in accurately assessing

tumor landscape through biopsies, particularly with limited

sample sizes. A previous study reported that 18.5% of cases had

post-operative pathology inconsistent with preoperative puncture

results (21). Besides, the availability of FISH testing is constrained

by local laboratory conditions, leading to inconsistencies in HER2

status interpretation across different centers (22). Hence, novel non-

invasive approaches are needed to effectively evaluate HER2-

low expression.

Ultrasound is a commonly used modality in the clinical

assessment of BC. Our study identified that border, shape, and

microcalcification as independent clinical risk factors. The clinical

model was established based on these ultrasound features. We

observed that the border and shape characteristics of HER2-0 BC

are more relatively clear and regular compared to the HER2-low

group, consistent with previous findings in TNBC patients (23). The

molecular mechanisms of microcalcifications are not fully

understood but may be linked to SPCA2-Orai1 (24). HER2

amplification can activate Orai channels, leading to calcium

release inside the cell. Ultrasound lacks sensitivity in detecting

microcalcifications, and the definition of tumor shape and

borders is reliant on the subjective judgment of sonographers.
FIGURE 5

The violin plots illustrating the distribution of rad-scores between the HER2-0 and HER2-low groups in the training (A) and test cohort (B).
TABLE 4 Multivariate analysis for the classification of HER2-0 and
HER2-low BC.

Characteristics p-value OR (95%CI)

Age 0.890 1.00 (0.98 - 1.03)

Size 0.486 0.89 (0.64 - 1.24)

Position 0.492 1.39 (0.55 - 3.54)

Border 0.020* 3.11 (1.19 - 8.12)

Shape <.001* 0.15 (0.05 - 0.44)

Aspect ratio 0.967 1.01 (0.54 - 1.91)

Microcalcification 0.003* 2.70 (1.39 - 5.26)

Internal blood
flow grade

0.994 1.00 (0.45 - 2.23)

ER 0.673 0.79 (0.27 - 2.34)

PR 0.367 1.58 (0.59 - 4.24)

Ki67 0.247 0.65 (0.31 - 1.35)

Histologic type 0.321 1.94 (0.52 - 7.19)
*p<0.05.
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This may explain the poor performance of our clinical model. Son

et al. (25) similarly reported AUCs of merely 0.501, 0.680, and 0.665

for discriminating HER2-positive type, Luminal type, and TNBC

based on the clinical model. Thus, relying solely on clinical

parameters may not be adequate for accurately predicting BC

molecular subtypes.

It is not surprising, given the considerable biological intricacies

and documented variation in HER2 gene expression and somatic

mutations among HER2-low BC cases. HER2 is a crucial negative

prognostic factor in BC, facilitating the activation of signaling

cascades responsible for cell proliferation, migration, and survival

(26). HER2 presented a heterogeneous amplification, with

instability and high degree of variations even in different intrinsic
Frontiers in Oncology 09
subtypes (27). The heterogeneity likely maps as subtle

morphological, structural, and functional distinctions which is

imperceptible for human eye, but could be quantitatively

evaluated by radiomics (28), providing additional deeper insights

into the tumor.

The USR model developed in this study, which includes 11

features utilizing wavelet or LoG filter, demonstrated a significant

improvement in performance. Among these features, wavelet

features were found to have the greatest weight (9 out of 11),

making them the most pivotal aspects in this radiomics analysis.

Taking the wavelet feature with the largest weight coefficient as an

example(wavelet-H_firstorder_Range), it represents the variation

between maximum and minimum of gray-level values within the
FIGURE 6

(A) Nomogram developed with shape, border, microcalcification, and rad-score. If a patient had a rad-score of 0.841, a mass with irregular shape,
unclear border and no calcification, the general nomogram score was 229, with a corresponding probability of HER2-low expression is 0.782.
Calibration curve of the nomogram in the training cohort (B) and test cohort (C).
TABLE 5 Performance of the three prediction models in training and test cohort.

Model Cohort AUC 95%CI ACC(%) SEN(%) SPE(%)

Clinical Training 0.61 0.526-0.692 68.9 69.5 68.2

Test 0.58 0.418-0.752 61.6 60.4 62.8

USR Training 0.86 0.800-0.912 78.5 81.3 75.5

Test 0.78 0.650-0.919 68.9 60.9 77.3

Nomogram Training 0.89 0.836-0.936 83.6 84.6 82.5

Test 0.84 0.722-0.958 73.3 65.2 81.8
USR, ultrasound-based radiomics.
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image. With the modification of tumor heterogeneity, the grey level

distributions will likewise be altered (29). The wavelet transform is a

flexible and robust tool that utilizes different basic wavelet functions

to decompose signals (30). It enables the extraction of multiscale

features in both time and frequency domains,thereby capturing

finer details in images (31). Zhou et al. (32) observed that

peritumoral textures in wavelet-transformed images are

characterized by high-frequency signals, whereas intratumoral

textures can be characterized by low-frequency signals. It
FIGURE 7

Performance of the clinical model, USR model, and nomogram model. ROC curves in training cohort (A) and test cohort (B). USR, ultrasound-
based radiomics.
FIGURE 8

Decision curve analysis for the three models in test cohort. The horizontal axis represents measures the net benefit and the vertical axis measures
the threshold probability. USR, ultrasound-based radiomics.
TABLE 6 AUC comparison of three prediction models by Delong test.

z-value p-value

USR model vs clinical model 4.815 <0.001*

USR model vs nomogram model -2.021 0.043*

clinical model vs
nomogram model

6.635 <0.001*
*p<0.05.
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enhances the information content in low-frequency signals (33).

Jiang et al. (34) reported that wavelet-transformed radiomics

outperformed original first-order and texture radiomics (AUC:

0.921 vs. 0.880). Moreover, wavelet features contribute to predict

lymph node metastasis, vascular invasion and oncogene

amplification (35, 36).

In this study, the 11 USR features were converted into rad-score.

It was observed that the HER2-low group displayed a higher median

score in comparison to the HER2-0 group. The increased rad-score

reflects a greater variability in gray levels and more complex

textures within the ROI (37). Xu et al. also observed a higher rad-

score in the TNBC group compared to the non-TNBC group (38).

Tumors with high heterogeneity typically manifest complex local

textures, varying gray levels, and irregularly borders (39).

Consequently, our study provides evidence of the heightened

degree of heterogeneity in HER2-low BC.

Recent studies have emphasized the emerging trend of

integrating radiomics with clinical factors, with the expectation

that this integration may offer enhanced value (40). A previous

research combined the rad-score with age and BIRADS criteria in a

nomogram, resulting in superior discrimination between TNBC

and fibroadenoma (AUC 0.986 and 0.977, respectively). Likewise,

the nomogram model developed by Hu et al. (41), demonstrated

commendable performance in microvascular invasion prediction

(validation AUC of 0.731). In this study, we constructed a

nomogram to leverage the advantages of integrating clinical risk

factors with the rad-score. To the best of our knowledge, this is the

first application of ultrasonography-based radiomics for predicting

HER2-low expression. The nomogram model demonstrated

superior performance compared to those achieved by the clinical

model or the USR model individually (AUC: training 0.89; test

0.84). The calibration curves indicated satisfactory consistent and

accurate predictions by the nomogram, while DCA analysis

demonstrated a higher net benefit associated with its clinical use.

There are several limitations to this study that must be

acknowledged: (і) Small sample size: our study’s small sample size

raises the possibility of selection bias. (ii) Limited clinical features:

our study included a relatively small number of clinical features. As

research on HER2-low BC is still in its early stages, future efforts

may benefit from adding more data from labs and molecular

detection. Therefore, the potential of clinical characteristics may

not have been fully utilized in our current investigation. (iii)

Monomodal ultrasound imaging: we solely utilized two-

dimensional grayscale ultrasound images, excluding multimodal

techniques like Doppler ultrasound, ultrasound elastography, and

contrast-enhanced ultrasound. Multi-modal ultrasound technology

may bring more complementary information.
5 Conclusions

Ultrasound-based radiomics has a good predictive ability for

HER2-low expression in BC. The nomogram model integrates
Frontiers in Oncology 11
clinical factors and rad-score, yielding the highest predictive

performance.This non-invasive methodology shows potential for

early assessment of HER2-low expression, which is crucial for

clinicians in guiding treatment decisions for BC patients.
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