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Objective: The aim of this study was to enhance the precision of categorization

of endometrial lesions in ultrasound images via a data enhancement framework

based on deep learning (DL), through addressing diagnostic accuracy challenges,

contributing to future research.

Materials and methods: Ultrasound image datasets from 734 patients across six

hospitals were collected. A data enhancement framework, including image

features cleaning and soften label, was devised and validated across multiple

DL models, including ResNet50, DenseNet169, DenseNet201, and ViT-B. A

hybrid model, integrating convolutional neural network and transformer

architectures for optimal performance, to predict lesion types was developed.

Results: Implementation of our novel strategies resulted in a substantial

enhancement in model accuracy. The ensemble model achieved accuracy and

macro-area under the receiver operating characteristic curve values of 0.809 of

0.911, respectively, underscoring the potential for use of DL in endometrial lesion

ultrasound image classification.

Conclusion: We successfully developed a data enhancement framework to

accurately classify endometrial lesions in ultrasound images. Integration of
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anomaly detection, data cleaning, and soften label strategies enhanced the

comprehension of lesion image features by the model, thereby boosting its

classification capacity. Our research offers valuable insights for future studies and

lays the foundation for creation of more precise diagnostic tools.
KEYWORDS

deep lea rn ing , da ta enhancement f r amework , endomet r i a l cancer ,
ultrasonography, diagnosis
1 Introduction

Patients with endometrial cancer, otherwise referred to as cancer of

the uterine body, have a highly variable prognosis; crucially, the

survival rate can be significantly improved through early detection

and diagnosis (1, 2). In clinical practice, patients with postmenopausal

bleeding are generally diagnosed through various means, including

imaging, pathological examination, and serum tumor markers (3, 4).

Magnetic resonance imaging (MRI) and computed tomography (CT)

are relatively accurate imaging methods, but are expensive and CT

poses significant radiation hazards. Further, although curettage and

hysteroscopy are key steps in the diagnostic process, they are somewhat

invasive for patients. In contrast, ultrasound examination is convenient,

non-invasive, inexpensive, and repeatable, and is often used as a first-

line diagnostic tool for endometrial lesions (5, 6). Ultrasonography is

also an important means of large-scale asymptomatic population

screening, where early detection of endometrial cancer by large-scale

screening can significantly improve patient prognosis (7). Nevertheless,

since physical condition and disease state vary in each patient, there is

currently no universal diagnostic indicator for endometrial cancer (4).

Additionally, the accuracy of ultrasound examination is affected by

factors including the technical ability of medical personnel and

environmental noise. Reznak et al. found that the success rate of

ultrasound examination in predicting polyps is 65.1%, and that it has

limited predictive value when used alone (8). Therefore, there is an

urgent need for an auxiliary screening method that can effectively

improve the accuracy of ultrasound examination in diagnosing

endometrial cancer.

In recent years, artificial intelligence, particularly deep learning

(DL), has made significant progress in medical image recognition

(9–11). For instance, numerous developmental directions have

emerged in the application of deep learning for the diagnosis of

endometrial lesions. Based on MRI images, DL models can

automatically locate, segment, and measure the degree of muscle

infiltration of endometrial cancer (12–15); however, DL research

based on ultrasound images is relatively scarce. Hu et al. (16) and

Liu et al. (17) each proposed endometrial thickness measurement

models based on transvaginal ultrasound (TVUS) images; however,

these models cannot be directly applied to endometrial lesion

classification. Other features in ultrasound images, such as

uniformity of endometrial echo and blood flow signals, are also
02
crucial for distinguishing benign and malignant endometrial lesions

(18, 19). Further, DL also performs poorly in the task of ultrasound

image classification. Raimondo et al. (20) used a DL model to

diagnose adenomyosis based on TVUS images, and the results

indicated that the diagnostic accuracy of the DL model was lower

than that of general ultrasound doctors, although it had higher

specificity in identifying healthy uteruses and reducing

overdiagnosis. Therefore, we sought to improve model learning

and utilization of various ultrasound image features using DL

methods to enhance endometrial lesion classification accuracy.

In this study, we developed a DL model for automatic

identification of endometrial lesions using an innovative combination

comprising multi-stage anomaly detection, a data cleaning process, and

a soft label strategy, to improve model understanding of lesion image

features and enhance its classification ability. Our experiments explored

the relationships among lesion features, models, and different degrees

of softening (t). Final accuracy was also enhanced through integration

of several different models.
2 Materials and methods

2.1 Patients

This multicenter retrospective diagnostic study was conducted in

line with the principles of the Declaration of Helsinki. This study was

approved by the Ethics Committee of the People’s Hospital of Quzhou

City (No. 2022-148). Ultrasound examination images were collected

from March 2014 to March 2023 at six hospitals: The Quzhou

Affiliated Hospital of Wenzhou Medical University, Changshan

County People’s Hospital, Kaihua County People’s Hospital, People’s

Hospital of Quzhou Kecheng, The Second People’s Hospital of

Quzhou, and Quzhou Maternal And Child Health Care Hospital.

Inclusion criteria: 1. Non-pregnant women who have had sexual

intercourse and consent to transvaginal ultrasound examinations. 2.

Patients with confirmed pathological diagnoses via hysteroscopy or

endometrial biopsies. Exclusion criteria: 1) Patients who have not had

sexual intercourse and are thus ineligible for transvaginal ultrasound

examinations. 2) Patients are allergic to condoms and thus unsuitable

for ultrasound examinations. 3) Patients with severe reproductive

system abnormalities or acute inflammation who are contraindicated
frontiersin.org

https://doi.org/10.3389/fonc.2024.1440881
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Luo et al. 10.3389/fonc.2024.1440881
for transvaginal ultrasound examinations. 4) Patients with severe

psychological disorders who are unsuitable for transvaginal

ultrasound examinations. 5) Each patient’s endometrial ultrasound

images are collected in two views: all longitudinal images and all

transverse images for each case. 6) Image blurring due to significant

visual losses and damages during the collection process, along with

interferences like gas and artifacts. All images were collected by

professional radiologists, and saved in DICOM format. Then, the

ultrasound images are further screened, as shown in Figure 1; 734

patients were ultimately included in the study.
2.2 Data processing

After collection, all ultrasound data were converted from DICOM

into JPG files using Python for research. Since data were derived from

multiple different hospitals, some preprocessing measures were

performed on all images for experiments, including manual cropping

to retain only the part captured by the instrument and scaling to 224 ×

224. Finally, to improve model robustness and generalization ability,

data augmentation techniques, including random-cropping, random-

flipping, and TrivialAugment (21) were also used during the training

phase. In the testing phase, only size adjustment and normalization of

the original images were conducted.
2.3 Data enhancement framework

An innovative data augmentation framework, primarily

encompassing data cleaning and label softening procedures, was
Frontiers in Oncology 03
developed in this study. The processing of training set data using this

framework is summarized in Figure 2. Following a feature extraction

process, image feature cleaning, and soften label implementation, the

training set was utilized to generate a softened set for training purposes.

2.3.1 Image feature cleaning
Medical data are often intricate, encompassing numerous variables

and factors, and the diverse types of noise they contain represents a

substantial challenge (22). For example, data for the present research

was sourced from multiple hospitals, where the process of ultrasound

image acquisition is influenced by objective factors, such as equipment

performance, environmental noise, and patient size and positioning,

which can lead to the presence of abnormal images and noise within

the dataset, with potential to impair model performance. To mitigate

this possibility, a rigorous data cleaning process was initiated following

division of the original data into training and testing sets.

As illustrated in Figure 2, five-fold cross-validation was first

applied to partition the training set into five subsets, four of which

were used to train an independent DL model. These models were

primarily tasked with predicting the results from the remaining

subsets and generating corresponding image feature vectors. In this

study, ResNet34 was used as the backbone network of the

framework. Finally, five sets of experimental results were

connected to form a complete training set of image features.

Subsequently, anomaly detection methods, such as Isolation

Forests (23), were introduced to analyze the feature vectors of the

generated training set and exclude potential anomalous data. The

training sets selected by three methods were then merged to form a

new, cleaned training set. In this study, we selected Isolation Forest,

Local Outlier Factor, and One-Class SVM. The selection of methods is
FIGURE 1

Patient selection workflow. A total of 746 patients with endometrial lesions were collected, of which 734 were ultimately included in the analysis.
Cancers, Hypers, and Polyps indicate patients with these types of lesions.
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contingent upon the data and the specifics of the research. This

innovative approach to data cleaning ensured the robustness of the

developedmodel, despite the diverse and potentially noisy data sources.

2.3.2 Soften label
To enhance generalization ability of the model and alleviate

overfitting, a label smoothing strategy was implemented, based on

the inverse proportion of image-to-cluster center distance. As

shown in Figure 2, Soften Label included the following processes:

first, dimension reduction and clustering were performed on the

new processed training set; then, the center of each category cluster

and the distance of each image to each cluster center were

calculated; finally, new labels were formed, according to the

distance ratio. In addition, an adjustable temperature, t , was
introduced, to control the smoothness of the label. The new label

for training was obtained by calculating the inverse distance ratio

multiplied by t , plus the hard label value. Datasets were named at

different processing stages as the cleaned set and the softened set.
2.4 Model architecture and
training strategy

In this study, a hybrid model to predict patient lesion types, based

on convolutional neural network (CNN) and Transformer architectures,
Frontiers in Oncology 04
is proposed, with the aim of maximizing prediction accuracy. As shown

in Figure 3, the proposed model combines three classic CNN models

(ResNet50, DenseNet169, and DenseNet201) and ViT-B, leveraging the

complementary strengths of these different models to enhance the

accuracy of endometrial ultrasound image classification.

The multilayer perceptron layer of the original model was tailored

to suit this classification task. Each preprocessed image was fed into the

model for automatic processing, outputting a three-dimensional array.

After Log-Softmax function processing, the prediction probability for

each image was obtained. During model integration, the prediction

probabilities from all sub-models were weighted to yield the final result.

In the testing phase, the average prediction probability for all images

from a single patient was calculated, to determine the prediction result.

The experiment comprised three stages. Initially, unmodified

ResNet50 was employed as the base model and the impact of

different data processing methods on model performance

assessed. Subsequently, the applicability of the proposed method

was explored by training various CNN and visual transformer

models, and the results statistically analyzed after setting the t
value. Finally, high-performing models from the second stage were

integrated to test the performance of the optimal model. During the

training process, CrossEntropyLoss was used as the objective

function, and AdamW was used as the optimizer for end-to-end

training. Additionally, the transformer architecture network was

loaded with pretraining parameters.
FIGURE 2

Image features cleaning and soften label processes. The original training set was obtained using four steps: (A) data division, (B) image features
cleaning, (C) feature extraction, and (D) soften label, to obtain the final soften set. The Soften Label subfigure shows the calculation formula used for
softening labels.
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In this manuscript, suffixes have been added to indicate

different models; for example, ResNet50_b represents the baseline

model, while ResNet50_c represents the model trained using the

cleaned set data. Similarly, models trained using softened set data

have the suffix “_s”.
2.5 Devices and software

This was a multicenter study, and different hospitals used

various devices for the data collection process, including Samsung

WS80A, GE Volkswagen E10, GE Volkswagen E8, PhilipPsQ5,

PhilipPsQ7, and Mindray Resona 6s. All equipment met the

experimental requirements. The protocols for each scanning

instrument are shown in Table 1.
2.6 Statistical analysis

Statistical analyses were performed during the testing phase,

with individual cases serving as the smallest unit of measurement.

Models were validated on a test set, followed by statistical evaluation

of the confusion matrix derived from the validation outcomes.

Additionally, receiver operating characteristic (ROC) curves were

plotted. Primary indicators for comparing model performance were

accuracy and area under the ROC curve (AUC); sensitivity and

specificity were also considered as indicators of the classification

capabilities of models. Two visualization techniques, Grad-CAM

(24) and t-SNE (25), were employed to elucidate the operational

mechanism of the model.
Frontiers in Oncology 05
3 Results

3.1 Case inclusion and grouping

Among 1875 high-quality images from 734 patients, we

randomly extracted 30% of cases as a test set. The remaining

images were used as the original training set for data

augmentation and model training. The detailed dataset partitions

used in this study are presented in Table 2. All experiments were

trained and tested using the same data-division. Our final model

achieved the best performance, with accuracy and macro-AUC

values of 0.809 and 0.911, respectively.
3.2 Impact of innovative strategies

In the methods testing phase, we chose ResNet50 as the baseline

model. Model performance was significantly improved through

feature cleaning and soften label processing. As shown in Table 3,

when the original training set was used for training, the accuracy of

the test set was only 0.691. This provided us with a comparison

baseline; the baseline was determined in the same way for each

model in subsequent multi-model comparisons. We noticed that

abnormal images in the training set could affect model training;

therefore, we used feature cleaning to reprocess the training set.

After obtaining relatively clean data, the accuracy of the model on

the test set increased to 0.741. In subsequent experiments, we used a

label-softening method to reconstruct the labels in the new dataset.

Under the same data augmentation and image preprocessing, the
FIGURE 3

Architecture of model integrating ResNet50, DenseNet169, DenseNet201, and ViT-B.
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accuracy of the model increased to 0.764. The independence and

invariance of the test set were ensured in each training batch.

Label smoothness was controlled using the parameter, t , which
is similar to the smoothing coefficient in Label Smooth (26). In this

experiment, we introduced a variety of different t values, to generate
different soften-labels. ResNet50 showed different classification

capabilities under different values of t. As shown in Table 4,

ResNet50 performed best when t was 0.7. To further study the

impact of t on model training, we introduced five other models,

including DenseNet169, DenseNet201, EfficientNetB4, VGG16-bn

and ViT-B. As shown in Table 4, our framework effectively

improved the representation learning of various models,

indicating that the improvement in the performance of ResNet50

was not isolated. Further, the best performance of each model

corresponded to different values of t. Among individual models,

DenseNet201 achieved the best accuracy when t was 0.9. When t
Frontiers in Oncology 06
was 0.7, the performances of ResNet50, DenseNet169, and VGG16-

bn were better than those achieved with other softening coefficients.

These conditions may indicate that the optimal value of t may vary

depending on the characteristics of the dataset, model, and study.
3.3 Prediction model performance

As shown in Figure 4, the confusion matrixes for each model

effectively reflected their classification performance. In terms of

overall accuracy, the DenseNet201_s model exhibited outstanding

performance, achieving a best score of 0.786, particularly in

recognition of polyp class images, for which it had the best

single-category recall rate. We also plotted ROC curves for

DenseNet169_s and DenseNet201_s, to evaluate and compare

their performances by measuring AUC values (Figure 4). We
TABLE 2 Partition details of the endometrial lesion classification dataset.

Category
Datasets Training set Testing set

Patients Images Patients Images Patients Images

Cancer 168 460 118 323 50 137

Hyper 290 661 203 470 87 191

Polyp 276 746 193 506 83 240

Total 734 1867 514 1299 220 568
TABLE 1 Scanning Instrument Protocol.

GE Voluson E8 GE Voluson E6
mindray
Resona 7s

mindray
Resona 6s

PHILIPS
EPIQ-7

PHILIPS
EPIQ-5

Intracavitary probe RIC5-9 IC5-9-D V11-3HU DE10-3U 3D9-3V C10-3V

Probe frequency 5-9MHz 5-9MHz 3-11MHz 3-10MHz 3-9MHz 3-10MHz

Bandwidth 4.5-9.8MHz 4.5-9.8MHz 2.5-12.2MHz 2.8-11.8MHz 2.7-9.2MHz 2.8-1.2MHz

TIS 0.4 0.4 0.3 0.3 0.3 0.4

Depth 6.0cm 7.0cm 7.0cm 8.0cm 7.0cm 6.0cm

Magnification 1.2 1.5 1.1 1.1 1.1 1.1

Maximum fan angle 180° 180° 180° 180° 180° 180°

Frame rate 40HZ 41HZ 42HZ 42HZ 49HZ 47HZ

Gain 40%-80% 40-70% 40-70% 40-70% 40-70% 40-70%

Dynamic range 50-120 50-120 50-120 50-120 50-120 50-120
TABLE 3 Impact of different data processing approaches on model performance.

Dataset Model ACC AUC F1 Recall Precision

Base

ResNet50

0.691 0.811 0.680 0.665 0.697

Cleaned set 0.741 0.845 0.736 0.728 0.744

Soften label 0.764 0.873 0.752 0.745 0.759
Boldface numerals are utilized to underscore the optimal results in this group's trial.
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found that DenseNet-201_s was the single model with the best

comprehensive classification performance in this study.

In the final phase of our experiment, we implemented an

ensemble model approach to enhance the performance of our

model. The ensemble models were constructed based on the

performance ranking of models as indicated in Table 4. As

demonstrated in Table 5, the Ensemble Model2, which is

comprised of ResNet50_s, DenseNet169_s, DenseNet201_s, and

ViT-B models, yielded the most superior test results, achieving an

accuracy of 0.809 and a macro-AUC of 0.911. As illustrated in
Frontiers in Oncology 07
Figure 4, the Ensemble Model2 outperforms DenseNet201_s in the

classification of cancer and hyperplasia. The macro-AUC value of

the Ensemble Model2 has significantly improved, and the ROC

curve is also more reasonable.
3.4 Model visualization

The operation process of DL models is often viewed as a ‘black

box’ prediction; however, we applied the Grad-CAM and t-SNE

visualization methods to explain the working mechanism used by

our DL model.

In Grad-CAM, we used hook functions to generate the gradient

of the last dense module of the model and stacked these gradients

onto the original image to generate heat maps. As shown in

Figure 5, the areas of interest for the model can be distinguished

by depth of color. From these images, it can be observed that the

model accurately focused on lesion areas in the endometrium; more

attention was paid to these areas, and these local features deeply

affected model prediction.

We also intuitively observed the training effect of the model using

the t-SNE method to count the feature vectors extracted by the model.

In the high-dimensional space of feature vectors, we calculated the
TABLE 4 Model performance comparison (Accuracy).

Model Base
Soften label (t)

0.6 0.7 0.8 0.9

ResNet50 0.691 0.727 0.764 0.714 0.718

DenseNet169 0.727 0.755 0.782 0.736 0.736

DenseNet201 0.731 0.764 0.745 0.75 0.786

EfficientNetB4 0.672 0.7 0.69 0.714 0.745

VGG16-bn 0.682 0.732 0.745 0.695 0.727

ViT-B 0.736 0.782 0.723 0.759 0.75
Boldface numerals are utilized to underscore the optimal results in this group's trial.
FIGURE 4

Charts summarizing statistical analysis of results from seven different models. Matrix diagrams represent confusion matrices, while the line plots are
ROC curves.
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similarities between each data point and mapped these data to low-

dimensional space for visualization, and compared the clustering

diagrams before and after model training (Figure 6). As illustrated in

Figure 6, most images were mapped in their fixed areas through

training, but there was overlap among certain categories. Further, the

distance between different category cluster centers reflected the

intrinsic relationship of their key image features to a certain extent.

We proposed a soften-label method based on this principle.
Frontiers in Oncology 08
4 Discussion

In the burgeoning field of DL, our study represents a pioneering

effort to accurately classify endometrial lesions in ultrasound images

using DL models. We achieved an automatic classification with a

final accuracy of 0.809 and a macro-AUC value of 0.911.

To maximize DL model effectiveness, we established an

innovative data augmentation framework. In this study, collection

of datasets from multiple centers ensured inclusion of diverse

endometrial lesion ultrasound data. Although this diversity

ensured the generalization performance of the model, it also

introduced additional noise, which is an inherent challenge

commonly present in medical datasets. Within our data

augmentation framework, we implemented a scalable data

cleaning process, including selection of appropriate feature

extraction networks and anomaly detection methods, which

significantly improved the accuracy of ResNet50 on our test set,

from 0.70 at baseline to 0.741. Another challenge arose from the low

signal-to-noise ratio of ultrasound images and the similarity of

lesion image features. To address this, we incorporated a label

softening strategy, based on clustering and inverse distance, into the
TABLE 5 Performance of ensemble models with different compositions.

Model Model Composition ACC AUC

Ensemble model1 DenseNet169+DenseNet201
+ViT-B

0.777 0.898

Ensemble model2 Ensemble model1+ ResNet50 0.809 0.911

Ensemble model3 Ensemble model2+
EfficientNetB4

0.805 0.908

Ensemble model4 Ensemble model2+ VGG16-bn 0.791 0.906

Ensemble model5 Ensemble model3+ VGG16-bn 0.782 0.912
Boldface numerals are utilized to underscore the optimal results in this group's trial.
FIGURE 5

Images from Grad-CAM analysis. The red annotation on the original image indicates the model’s focal region, which closely coincides with the
critical lesion area.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1440881
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Luo et al. 10.3389/fonc.2024.1440881
data augmentation framework. This strategy, which did not

introduce additional prior knowledge, bolstered the model’s

understanding of the relationships among lesion image features,

thereby improving its generalization and robustness. Consequently,

the accuracy of ResNet50 on the test set improved to 0.764,

effectively enhancing the fine-grain level of the model. Finally, we

integrated multiple distinct DL models, leveraging their respective

strengths to improve testing accuracy to 0.809.

In the second stage of our experiment, we applied our method

to multiple models, each of which showed significant improvement

over their baseline performance. These findings underscore the

effectiveness and wide applicability of our approach. In the label

softening process, we utilized t to manage the degree of label

softening. Performance of the models varied under different t
values, with each model achieving substantial improvements over

their baseline performances under specific t values; however, the

optimal t value varied across models. Nevertheless, it is difficult to

draw clear conclusions based on these findings, for to two potential

reasons: first, the limited range of t values used in the experiments

leaves open the possibility that there may be an optimal t value in

other ranges that could yield the best results for the majority of

models; and, second, the inherent variations in the architectures of

each model could result in varying sensitivities to t value, leading to
differences in optimal t values among models.

In contrast to previous studies, our research has made

significant strides in the classification of endometrial lesions using

DL methods to analyze ultrasound images. Unlike prior works that

focused on endometrial thickness measurement based on

ultrasound images, we have successfully developed a model that

can accurately classify endometrial lesions. By integrating

innovative strategies, such as feature cleaning and label softening,

our model can effectively learn and utilize various ultrasound image

features. Based on the findings of Reznak et al., our model achieved

better results than medical staff, particularly in the detection of

polyps. Consequently, our model significantly enhances

endometrial lesion classification accuracy, marking a substantial

breakthrough in the field of DL applied to ultrasound-

based diagnosis.
Frontiers in Oncology 09
Despite these advances, our research has limitations. Our

dataset , a l though diverse , was not sufficient ly large,

comprehensive, or representative, posing challenges in terms of

distinguishing features of endometrial cancer from those of

endometrial hyperplasia. Further, during the data collection

process, there was a lack of uniform standards among operators.

Furthermore, the process involved subjective selection of

representative ultrasound images for preservation by operators,

which could lead to discrepancies between the knowledge

encapsulated in ultrasound image data and real-world conditions

(27, 28). This unilateral learning from disparate images may result

in suboptimal model performance. To mitigate this issue, we could

consider methods akin to those used for the analysis of

hysteroscopy or MRI datasets. During the data collection process,

comprehensive and continuous data is gathered for each patient. As

shown in Yasaka K et al.’s research (29), continuous image data can

provide more comprehensive and in-depth information.

For future work, we aim to refine our methods further. We will

consider using other models when extracting image features, or

even combining additional different models to complete the task.

We will conduct further comparative experiments, to determine a

more suitable combination of anomaly detection methods.

Moreover, we will explore setting of an adaptive t value, which is

currently highly individualized, to further optimize the

performance of our model. Despite its limitations, our study has

opened up new possibilities for application of DL in medical image

diagnosis and provides a crucial reference that can inform

future research.
5 Conclusion

In this study, we developed a novel DL model that can

accurately classify endometrial lesion ultrasound images. This

model, enhanced by our innovative feature cleaning and soft label

strategies, outperforms traditional models, providing clinicians with

more precise diagnostic information. This is the first application of

DL in this area and demonstrates its potential value, despite some
FIGURE 6

t-SNE reduction of model data. Parts a and b are t-SNE plots before and after model training, respectively.
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limitations in data scale and collection. Our research paves the way

for future use of DL in medical image diagnosis, particularly as we

plan to incorporate more continuous medical imaging data.
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endometria, analýza vlastnıh́o souboru za obdobı ́ let 2012–2016 [Ultrasound staging of
stage I-II endometrial cancer, analysis of own file in the years 2012–2016. Ceska
Gynekol. (2017) 82:218–26.

4. Long B, Clarke MA, Morillo ADM, Wentzensen N, Bakkum-Gamez JN.
Ultrasound detection of endometrial cancer in women with postmenopausal
bleeding: Systematic review and meta-analysis. Gynecol Oncol. (2020) 157:624–33.
doi: 10.1016/j.ygyno.2020.01.032

5. Turkgeldi E, Urman B, Ata B. Role of three-dimensional ultrasound in
gynecology. J Obstet Gynecol India. (2015) 65:146–54. doi: 10.1007/s13224-014-0635-z
6. Kolhe S. Management of abnormal uterine bleeding – focus on ambulatory
hysteroscopy. Int J Womens Health. (2018) 10:127–36. doi: 10.2147/ijwh.s98579

7. Yang X, Ma K, Chen R, Meng YT, Wen J, Zhang QQ, et al. A study evaluating
liquid-based endometrial cytology test and transvaginal ultrasonography as a screening
tool for endometrial cancer in 570 postmenopausal women. J Gynecol Obstet Hum
Reprod. (2023) 52:102643. doi: 10.1016/j.jogoh.2023.102643

8. Reznak L, Kudela M. Comparison of ultrasound with hysteroscopic and
histological findings for intrauterine assessment. BioMed Pap Med Fac Univ Palacky
Olomouc Czech Repub. (2018) 162:239–42. doi: 10.5507/bp.2018.010

9. ZhaoM, Meng N, Cheung JPY, Yu C, Lu P, Zhang T. SpineHRformer: A transformer-
based deep learning model for automatic spine deformity assessment with prospective
validation. Bioengineering (Basel). (2023) 10:1333. doi: 10.3390/bioengineering10111333

10. Meng N, Cheung JPY, Wong KK, Dokos S, Li S, Choy RW, et al. An artificial
intelligence powered platform for auto-analyses of spine alignment irrespective of
image quality with prospective validation. EClinicalMedicine. (2022) 43:101252.
doi: 10.1016/j.eclinm.2021.101252
frontiersin.org

https://doi.org/10.1016/S0140-6736(05)67063-8
https://doi.org/10.1177/1533033820945784
https://doi.org/10.1177/1533033820945784
https://doi.org/10.1016/j.ygyno.2020.01.032
https://doi.org/10.1007/s13224-014-0635-z
https://doi.org/10.2147/ijwh.s98579
https://doi.org/10.1016/j.jogoh.2023.102643
https://doi.org/10.5507/bp.2018.010
https://doi.org/10.3390/bioengineering10111333
https://doi.org/10.1016/j.eclinm.2021.101252
https://doi.org/10.3389/fonc.2024.1440881
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Luo et al. 10.3389/fonc.2024.1440881
11. Meng N, Wong KK, Zhao M, Cheung JPY, Zhang T. Radiograph-comparable
image synthesis for spine alignment analysis using deep learning with prospective
clinical validation. EClinicalMedicine . (2023) 61:102050. doi: 10.1016/
j.eclinm.2023.102050

12. Mao W, Chen C, Gao H, Xiong L, Lin Y. A DL-based automatic staging method
for early endometrial cancer on MRI images. Front Physiol. (2022) 13:974245.
doi: 10.3389/fphys.2022.974245

13. Chen X, Wang Y, Shen M, Yang B, Zhou Q, Yi Y, et al. DL for the determination
of myometrial invasion depth and automatic lesion identification in endometrial cancer
MR imaging: a preliminary study in a single institution. Eur Radiol. (2020) 30:4985–94.
doi: 10.1007/s00330-020-06870-1

14. Dong HC, Dong HK, Yu MH, Lin YH, Chang CC. Using DL with convolutional
neural network approach to identify the invasion depth of endometrial cancer in
myometrium using MR images: A pilot study. Int J Environ Res Public Health. (2020)
17:5993. doi: 10.3390/ijerph17165993

15. Bhardwaj V, Sharma A, Parambath SV, Gul I, Zhang X, Lobie PE, et al. Machine
learning for endometrial cancer prediction and prognostication. Front Oncol. (2022)
12:852746. doi: 10.3389/fonc.2022.852746

16. Hu SY, Xu H, Li Q, Telfer BA, Brattain LJ, Samir AE. Deep Learning-Based
Automatic Endometrium Segmentation and Thickness Measurement for 2D
Transvaginal Ultrasound. Annu Int Conf IEEE Eng Med Biol Soc. (2019) 2019:993–7.
doi: 10.1109/EMBC.2019.8856367.7

17. Liu Y, Zhou Q, Peng B, Jiang J, Fang L, Weng W, et al. Automatic measurement
of endometrial thickness from transvaginal ultrasound images. Front Bioeng Biotechnol.
(2022) 10:853845. doi: 10.3389/fbioe.2022.853845

18. Opolskiene G, Sladkevicius P, Valentin L. Prediction of endometrial Malignancy in
women with postmenopausal bleeding and sonographic endometrial thickness ≥ 4.5mm.
Ultrasound Obstet Gynecol. (2011) 37:232–40. doi: 10.1002/uog.v37.2

19. Giannella L, Mfuta K, Setti T, Boselli F, Bergamini E, Cerami LB. Diagnostic
accuracy of endometrial thickness for the detection of intra-uterine pathologies and
Frontiers in Oncology 11
appropriateness of performed hysteroscopies among asymptomatic postmenopausal
women. Eur J Obstet Gynecol Reprod Biol. (2014) 177:29–33. doi: 10.1016/
j.ejogrb.2014.03.025

20. Raimondo D, Raffone A, Aru AC, Giorgi M, Giaquinto I, Spagnolo E, et al.
Application of deep learning model in the sonographic diagnosis of uterine adenomyosis.
Int J Environ Res Public Health. (2023) 20:1724–. doi: 10.3390/ijerph20031724

21. Müller, Samuel G, Hutter F. TrivialAugment: tuning-free yet state-of-the-art
data augmentation. 2021 IEEE/CVF International Conference on Computer Vision
(ICCV) , Montrea l , QC, Canada , (2021) , pp . 754–62. doi : 10 .1109/
ICCV48922.2021.00081

22. Sagheer SVM, George SN. A review on medical image denoising algorithms.
Biomed Signal Process Control. (2020) 61:102036. doi: 10.1016/j.bspc.2020.102036

23. Liu FT, Ting KM, Zhou ZH. Isolation forest, in: 2008 Eighth IEEE International
Conference on Data Mining. IEEE. (2008). doi: 10.1109/ICDM.2008.17

24. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM:
Visual Explanations from Deep Networks via Gradient-Based Localization. (2017)
IEEE International Conference on Computer Vision. IEEE. doi: 10.1109/ICCV.2017.74

25. Maaten LV, Hinton GE. Visualizing Data using t-SNE. J Machine Learning
Research. (2008) 9:2579–605.

26. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception
architecture for computer vision. IEEE. (2016), 2818–26. doi: 10.1109/CVPR.2016.308

27. Brattain LJ, Telfer BA, Dhyani M, Grajo JR, Samir AE. Machine learning for
medical ultrasound: status, methods, and future opportunities. Abdom Radiol (NY).
(2018) 43:786–99. doi: 10.1007/s00261-018-1517-0

28. Shen YT, Chen L, Yue WW, Xu HX. Artificial intelligence in ultrasound. Eur J
Radiol. (2021) 139:109717. doi: 10.1016/j.ejrad.2021.109717

29. Yasaka K, Akai H, Abe O, Kiryu S. Deep learning with convolutional neural
network for differentiation of liver masses at dynamic contrast-enhanced CT: A
preliminary study. Radiology. (2018) 286:887–96. doi: 10.1148/radiol.2017170706
frontiersin.org

https://doi.org/10.1016/j.eclinm.2023.102050
https://doi.org/10.1016/j.eclinm.2023.102050
https://doi.org/10.3389/fphys.2022.974245
https://doi.org/10.1007/s00330-020-06870-1
https://doi.org/10.3390/ijerph17165993
https://doi.org/10.3389/fonc.2022.852746
https://doi.org/10.1109/EMBC.2019.8856367.7
https://doi.org/10.3389/fbioe.2022.853845
https://doi.org/10.1002/uog.v37.2
https://doi.org/10.1016/j.ejogrb.2014.03.025
https://doi.org/10.1016/j.ejogrb.2014.03.025
https://doi.org/10.3390/ijerph20031724
https://doi.org/10.1109/ICCV48922.2021.00081
https://doi.org/10.1109/ICCV48922.2021.00081
https://doi.org/10.1016/j.bspc.2020.102036
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1007/s00261-018-1517-0
https://doi.org/10.1016/j.ejrad.2021.109717
https://doi.org/10.1148/radiol.2017170706
https://doi.org/10.3389/fonc.2024.1440881
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Achieving enhanced diagnostic precision in endometrial lesion analysis through a data enhancement framework
	1 Introduction
	2 Materials and methods
	2.1 Patients
	2.2 Data processing
	2.3 Data enhancement framework
	2.3.1 Image feature cleaning
	2.3.2 Soften label

	2.4 Model architecture and training strategy
	2.5 Devices and software
	2.6 Statistical analysis

	3 Results
	3.1 Case inclusion and grouping
	3.2 Impact of innovative strategies
	3.3 Prediction model performance
	3.4 Model visualization

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


