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Background: Cone-beam computed tomography (CBCT) is a convenient

method for adaptive radiation therapy (ART), but its application is often

hindered by its image quality. We aim to develop a unified deep learning

model that can consistently enhance the quality of CBCT images across

various anatomical sites by generating synthetic CT (sCT) images.

Methods: A dataset of paired CBCT and planning CT images from 135 cancer

patients, including head and neck, chest and abdominal tumors, was collected. This

dataset, with its rich anatomical diversity and scanning parameters, was carefully

selected to ensure comprehensive model training. Due to the imperfect registration,

the inherent challenge of local structural misalignment of paired dataset may lead to

suboptimal model performance. To address this limitation, we propose SynREG, a

supervised learning framework. SynREG integrates a hybrid CNN-transformer

architecture designed for generating high-fidelity sCT images and a registration

network designed to correct local structural misalignment dynamically during

training. An independent test set of 23 additional patients was used to evaluate the

image quality, and the results were compared with those of several benchmark

models (pix2pix, cycleGAN and SwinIR). Furthermore, the performance of an

autosegmentation application was also assessed.

Results: The proposed model disentangled sCT generation from anatomical

correction, leading to a more rational optimization process. As a result, the model

effectively suppressed noise and artifacts in multisite applications, significantly

enhancing CBCT image quality. Specifically, the mean absolute error (MAE) of

SynREG was reduced to 16.81 ± 8.42 HU, whereas the structural similarity index

(SSIM) increased to 94.34 ± 2.85%, representing improvements over the raw CBCT

data, which had the MAE of 26.74 ± 10.11 HU and the SSIM of 89.73 ± 3.46%. The

enhanced image quality was particularly beneficial for organs with low contrast

resolution, significantly increasing the accuracy of automatic segmentation in these

regions. Notably, for the brainstem, the mean Dice similarity coefficient (DSC)
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increased from 0.61 to 0.89, and the MDA decreased from 3.72 mm to 0.98 mm,

indicating a substantial improvement in segmentation accuracy and precision.

Conclusions: SynREG can effectively alleviate the differences in residual anatomy

between paired datasets and enhance the quality of CBCT images.
KEYWORDS
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1 Introduction

During radiotherapy, weight loss, tumor shrinkage and

anatomical deformation may cause unwanted dose distribution

and degrade the precision of dose delivery (1). Cone-beam

computed tomography (CBCT) seems to be the most convenient

way to obtain 3D anatomical information on the day of treatment.

The role of recalculating the dose distribution and evaluating the

necessity of replanning during CBCT is essential for adaptive

radiation treatment (ART). However, cone beams generate a large

amount of scatter in projection images, which results in severe

artifacts, including cupping, shading, streaks, and inhomogeneities,

hence reducing Hounsfield unit (HU) accuracy (2).

Many traditional methods have been introduced to improve the

quality of CBCT images, including antiscatter accessories (3), scatter

correction (4) and iterative reconstruction (5). In recent years, a

commercial algorithm named Acuros CTS was proposed by Varian

Medical Systems for clinical applications (6, 7). They corrected scatter

by calculating primary and scatter images in the projection domain,

followed by performing FDK-based reconstruction and statistical

iterative reconstruction, and obtained clearer images and more

accurate HU values. However, the direct use of CBCT in the

adaptive pathway is still limited by the fact that the image quality of

CBCT is considered significantly inferior to that of planning CT (pCT)

in terms of the contrast-to-noise ratio and imaging artifacts (8, 9).

Recently, researchers have focused on improving the quality of

CBCT images via convolutional neural networks (CNNs). Jiang et al.

(10) proposed a deep residual CNN (DRCNN), which uses a residual

U-Net framework, to learn the mapping function between scatter

CBCT and scatter-free CBCT. Li et al. (11) utilized the DRCNN to

convert CBCT images to synthetic CT (sCT) images for

nasopharyngeal carcinoma (NPC) patients, maintaining the

anatomical structure information of the CBCT images while

correcting the HU distribution, similar to pCT images. Liang et al.

(12) introduced a cycle-consistent generative adversarial network

(cycleGAN) to generate sCT images for head and neck patients.

Subsequently, cycleGANs have been used for patients with pelvic

and/or prostate cancer (13, 14).One common deficiency of the

abovementioned CNN-based models is their disregard of the global

pixel relationships within images, which is primarily due to the

limited receptive fields. These global relationships play crucial roles
02
in achieving high-quality image restoration (15). To address this

problem, the transformer architecture has recently been introduced

to computer vision (16), offering the ability to model long-range

dependencies and nonlocal information. Vision transformers (ViTs)

(17) divide images into patches and employ multihead self-attention

(SA) mechanisms to capture the relationships among patches. Chen

et al. (18) obtained superior performance to that of a cycleGAN in the

CBCT-to-CT translation task by using a transformer-based network.

Nevertheless, the SA mechanisms of ViTs lead to quadratic

computational complexity with respect to the image size, which

poses challenges for low-level tasks that typically handle high-

resolution images. Moreover, while ViTs excel in terms of

capturing the global context and long-range dependencies, they

may struggle to capture fine-grained local details and high-

frequency components such as image edges. Additionally, a ViT

typically requires larger datasets and a more extensive training

process than other methods do for optimal generalization (19).

Another challenge is the local structural misalignment in paired

datasets used for supervised learning. Rossi et al. (20) reported that

the supervised learning approach can obtain better quantitative

evaluation results but produces more blur and artifacts in

qualitative evaluations, which is due to the higher sensitivity of

the supervised training process to the pixelwise correspondence

contained in the loss function. In practice, limited by the utilized

scanning system or ethics, we usually cannot obtain paired images

with perfect pixelwise matches from two modalities. To minimize

the differences between paired images, previous studies (21, 22)

have applied deformable image registration (DIR) to compensate

for the anatomical mismatches resulting from patient position

differences and potential internal anatomical changes. However,

limited by the ability of DIR, the resulting datasets do not represent

ideal pixelwise paired images and may introduce uncertainties in

the training and evaluation processes of the constructed networks.

In this paper, we introduce SynREG to address the challenges

encountered in sCT generation scenarios. Our approach combines a

hybrid CNN-transformer synthesizer to capture both local and

global information and a U-Net-based registration network to

correct residual anatomy mismatches in the training pairs. By

utilizing a supervised learning strategy, SynREG is trained on

diverse anatomical datasets, which allows it to produce high-

quality sCT images across multiple sites.
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2 Materials and methods

2.1 Data collection and processing

Data from 135 patients with abdominal cancer, chest cancer or

head and neck cancer were collected for training purposes in this

study. Planning CT (pCT) and CBCT images were obtained from a

CT simulator (Philips Medical Systems, Cleveland, OH, USA) and a

kV CBCT system integrated on the Halcyon 2.0 system (Varian

Medical Systems, Palo Alto, CA, USA), respectively. All CBCTs

were scanned with a half-bowtie filter and reconstructed by the

traditional filtered backprojection method with a 2-mm slice

thickness, followed by our clinical scanning protocol. Detailed

information about the scanning parameters is listed in Table 1.

Deformable registration was implemented using MIM software

(v.7.0.1, MIM Software Inc., Cleveland, OH, USA) to pair the

pCT images with the CBCT images. The deformed CT volumes

were resampled to the corresponding CBCT voxel spacing and then

cropped to the CBCT dimensions and number of slices. Finally, a

large dataset with 10,084 image pairs was used for training the

model. In addition, data from an additional 23 patients with image

pairs were collected for independent testing.
2.2 SynREG framework

We present the overall framework of our proposed SynREG

algorithm in Figure 1. In our setup, each training sample consists of

a pair of CBCT and pCT images, both with dimensions of 256x256.

The CBCT image is initially passed through a synthesizer to

generate an sCT image. Subsequently, a registration subnetwork

(Reg-net) is employed to calculate the deformation vector field

(DVF) between the sCT and pCT images. This allows for the

manipulation of sCT to align with pCT. The synthesizer and Reg-

Net are trained together using batches of paired CBCT and pCT

images, ensuring optimal performance. In the following sections, we

provide more detailed information on our model and the

implemented loss functions.

2.2.1 Hybrid CNN-transformer synthesizer
Due to similar physical processes, CBCT can be viewed as a

potentially degraded version of a CT image. Hence, choosing the

most critical features while eliminating undesirable features in the

channel dimension is crucial for noise suppression and artifact

removal. Inspired by Restormer (23), we employ SA across the

feature dimension instead of the spatial dimension to construct the

fundamental transformer block. Consequently, we introduce a

hybrid CNN-transformer synthesizer that incorporates a stack of
Frontiers in Oncology 03
nine depth convolution-based transformer blocks (DTBs)

organized in a UNet architecture (24) (Figure 2).

Given a CBCT image ICBCT ∈ RH�W�1, the synthesizer first

applies a 1 × 1 convolution to obtain low-level feature maps F0 ∈
RH�W�32, where H �W represents the spatial resolution.

Subsequently, the encoding path of UNet extracts these shallow

features F0 through four consecutive layers of convolution and

downsampling. The features extracted at each layer are relayed to

the corresponding layers of the decoding path via skip connections,

whereas the bottom-level features are passed to the stack of DTBs.

With this design, the skip connections effectively facilitate the high-

frequency features to the decoder, whereas the DTB bottleneck

serves as an effective approach for learning pairwise relationships

among low-frequency features.

A DTB consists of two fundamental components: a multihead

depthwise convolution-transposed attention (MDTA) module and a

multiscale feedforward network (MSFN), as shown in Figure 3.

Within the architecture, the MDTA module applies SA across

channels to compute the cross covariance across the channels and

generate an attention map that implicitly encodes global context

information. This attention map is then used to weight the feature

maps, allowing the model to focus on the most relevant information.

Figure 3A illustrates the architecture of a single-head DTA, which

initially encodes channelwise context through 1 × 1 convolutions,

followed by 3 × 3 depthwise convolutions to capture spatial local

context within each channel. The MDTA extends this foundation by

utilizing multiple parallel heads, each of which independently focuses

on distinct parts of the input. Then, SA across the channels is applied

to generate attention. MDTA has linear complexity, hence reducing

the temporal and memory complexity of the network. The attention

mechanism is generally formulated as Equation (1).

Att(Q,K ,V) = softmax(
QKT

l
)V (1)

where l is a learnable scaling parameter that controls the

magnitude of the dot product of Q and K .

The MSFN module (Figure 3B) is applied after the MDTA

module, and its effectiveness has been verified by Chen et al. (25). It

consists of two multiscale local information extraction operations.

After performing layer normalization, a 1x1 convolution is applied

to expand the channel dimensionality. Then, the expanded features

are fed into two parallel branches, in which 3x3 and 5x5 depthwise

convolutions are employed to enhance the multiscale local

information extraction process. The extracted features derived

from both branches are subsequently concatenated. After another

multiscale information extraction operation, a 1x1 convolution is

used to keep the size of the output tensor matched with that of the

tensor that was initially fed into the MSFN.
TABLE 1 CBCT scanning parameters used for head, thorax and pelvis patients.

CBCT Mode Energy (kV) Exposure (mAs) CTDIvol (mGy) DLP (mGy*cm) Scan time (Sec) Scan diameter (cm)

Head 100 126 3.33 49.9 16.6 28.2

Thorax 125 294 5.88 88.2 30.8 49.2

Pelvis 125 1080 21.6 324 36.7 49.2
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FIGURE 2

The architecture of the hybrid CNN-transformer synthesizer. The synthesizer was constructed on the basis of a U-net structure composed of an
encoder, a transformer bottleneck and a decoder. Each transformer block contains a multihead depthwise convolution transposed attention module
(MDTA) and a multiscale feed forward network module (MS-FFN).
FIGURE 1

The overall framework of the proposed SynREG approach mainly includes a synthesizer and a registration network for achieving enhanced image
quality and correcting residual anatomical mismatches.
A B

FIGURE 3

The architecture of (A) the depthwise convolution transposed attention (DTA) module and (B) the multiscale feed forward modules (MS-FFN). Where

and © refer to the multiplication and concatenation operations, respectively.
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2.2.2 Registration network
The Reg-Net employed in this study is based on the work of

Kong et al. (26). Its objective is to acquire prior knowledge about the

DVF from the input sCT and pCT images. The DVF represents the

displacement of each pixel, and by warping the sCT using the

calculated DVF, the resulting registered sCT (referred to as rsCT)

can be optimized to minimize its differences from the pCT via the

pixelwise intensity loss function.

Reg-Net is a modified version of the U-Net architecture that

consists of seven downsampling blocks, three residual blocks, and

seven upsampling blocks. In each downsampling block, features are

extracted at various levels with different numbers of filters, namely,

32, 64, 64, 64, 64, 64, 64 and 64. The upsampling process is the

counterpart of the downsampling process and incorporates skip

connections to collect the corresponding blocks at each level.

Finally, Reg-Net outputs DVFs across the horizontal and vertical

dimensions, ensuring accurate reconstruction of a high-resolution

DVF representation.

2.2.3 Loss functions
The synthesizer employs a perceptual loss for computing the

feature similarity between sCT and pCT images at multiple levels.

To extract deep multilevel features and structural information, we

introduce the deep image structure and texture similarity (DISTS)

index as the perceptual loss because it unifies texture similarity and

structural similarity into a single index. The loss function is

formulated as Equation (2).

Lperceptual = D(x, y;a , b)

= 1 −  om
i=0oni

j=1 aijl ~x(i)j ,~y(i)j ) + bijk(~x
(i)
j ,~y(i)j

� �� �
(2)

where x and y represent the sCT and pCT images, respectively. i

represents the convolution layers, and j represents the channel in

the i th convolution layer. aij and bij are positive weights, which are

pretrained via a variant of the visual geometry group (VGG)

network. l(Än) and k(Än) are the defined texture similarity and

structure similarity, respectively. The details of the DISTS index

were described by Ding et al. in 2020 (27).

Reg-Net has three loss functions, including intensity loss,

structural similarity loss and smoothing loss. Here, we use the

Charbonnier loss (28) as the intensity loss, which compares the

intensity difference between the rsCT and pCT images (referred to

as x and y, respectively) and is formulated as Equation (3).

Lintensity =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjy − xjj2 + e2

q
(3)

where e is a constant that is set to 10−3.

Structural similarity is measured using locally normalized cross-

correlation (LNCC) (29), which emphasizes the anatomical similarity

between rsCT and pCT images, and defined as Equation (4).

Lstructure =
1

N − 1o
N
i=1

(xi − mxi )(yi − myi )

sxisyi

(4)
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where N is the number of samples and where (mxi ,  myi ) and

  (sxi ,  syi ) denote the means and standard deviations of xi
and yi, respectively.

The smoothing loss is defined in Equation 5 to evaluate the

smoothness of the deformation field and minimize its gradient.

Lsmooth = Ex,  y½‖mR(x,   y) ‖2� (5)

The total loss of the proposed SynREG approach is Equation (6).

L = Lperceptual + l1Lintensity + l2Lstructure + l3Lsmooth (6)
3 Experiments

3.1 Implementation details

The CBCT/CT image pairs obtained from 136 patients were

randomly divided into a training set and a validation set at a ratio of

0.9 to 0.1. The training set comprised 9,076 pairs of images, whereas

the validation set consisted of 908 pairs. Both the CBCT and CT

images had an HU value threshold range set to [-1000, 2200], with

any values outside this range being set to the nearest threshold

values. The HU values were subsequently normalized and mapped

to the range of (-1, 1). During the training process, a patch with

256x256 dimensions was randomly cropped from each processed

image and used as a network input. Additionally, data

augmentation techniques such as random flipping and rotation

were applied with a probability of 0.3.

The adaptive moment estimation (Adam) optimizer was

employed for optimization with the momentum parameters set to

b1   =   0:5 and b2   =   0:999.  A superconvergence cosine annealing

strategy with a warm-up learning rate was implemented during

training (30). Initially, the learning rate was set to 0.0001, and it

gradually increased to a maximum of 0.1 at epoch 50. Then, it

gradually decreases to zero by epoch 200 following a cosine function.

During the training process, l1, l2 and l3 in the loss function

were empirically set to 5, 1 and 1, respectively. The intensity loss

between the pCT and rsCT images was calculated for the validation

data every 10 epochs. The model that achieved the minimum

intensity loss was saved as the best model.
3.2 Image quality evaluation metrics

To quantitatively evaluate the image quality of the images

generated by each model in comparison with the reference pCT

images, we employed commonly used metrics such as the mean

absolute error (MAE), root mean square error (RMSE), peak signal-

to-noise ratio (PSNR), and structural similarity index measure

(SSIM). These metrics are defined by Equations (7)–(10).

MAE(I1, I2) =  
1

ninj
oninj

x,y I1(x, y) − I2(x, y)j j (7)
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RMSE(I1, I2) =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ninj
oninj

x,y I1(x, y) − I2(x, y)j j2
s

(8)

PSNR(I1, I2)   =   10� log10(
P2

RMSE(I1,   I2)
2 ) (9)

SSIM(I1, I2)   =  
(2mI1mI2 + c1)(2sI1,I2 + c2)

(m2
I1
+ m2

I2
+ c1)(s 2

I1
+ s 2

I2
+ c2)

(10)

where I1 and I2  represent two different images used for

comparison purposes; I(x, y) is the HU value of pixel (x, y) in

image I; ninj is the total number of pixels in image I; P is the

maximum HU range of the image; and m s , c1 and c2 are the same

as those defined above.
3.3 Segmentation evaluation

Automatic segmentation is an important aspect of clinical

work that can improve the efficiency of the ART workflow. In this

study, a commercial AI-based autocontour module of UIH TPS

(v.1.0, United Imaging Healthcare Co., Shanghai, China) and a

well-known open-source tool, TotalSegmentator (TS) (31), whose

accuracy and robustness have been tested on diverse datasets,

were adopted to evaluate the segmentation results. Considering

the limited field of view (FOV) of CBCT, we selected the

brainstem and parotids from the head cases and the bladder

and rectum from the pelvis cases for testing. We generated

automatic segmentations on the pCT, CBCT and sCT images.

The segmented pCT contours were regarded as the ground truths,

and the contours from the other image modalities were

compared. The Dice similarity coefficient (DSC) and mean

distance to agreement (MDA) were used to evaluate the

segmentation accuracy. A higher DSC and lower MDA indicate

better consistency between the segmented contours and the

ground truths.
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3.4 Statistical analyses

To determine if the data from the two groups were significantly

different, we adopted the paired t test if the data were normally

distributed; otherwise, the Wilcoxon signed-rank test, a

nonparametric test for paired samples, was adopted. A statistical

significance level of p < 0.05 was used.
4 Results

4.1 Comparison with other
benchmark models

SynREG was compared with three other image benchmark

models: pix2pix (32), cycleGAN (33) and SwinIR (34). The results

demonstrate that our method outperforms these benchmarks,

exhibiting a remarkable ability to generate high-quality sCT

images that capture intricate textures and faithfully preserve

anatomical structures. As evidenced by the yellow arrows in

Figure 4, the sCT images generated by SynREG show the detailed

texture of the bronchi and the precise shape of the tumor, both of

which are crucial for accurate clinical diagnosis and

tumor delineation.

Table 2 presents the quantitative results on the test dataset,

revealing significant improvements in both the MAE and SSIM,

with p values less than 0.01. Furthermore, Figure 5 illustrates the

performance metrics for individual sites, demonstrating substantial

reductions in the MAE and RMSE, along with notable increases in

the SSIM for all sites. This finding reveals the generalizability of

our model.

Figure 6 highlights the visual improvements achieved by

SynREG for multisite cases. The original CBCT image exhibits

severe noise, spatial nonuniformity and various artifacts, including

beam hardening artifacts and streak artifacts. However, the sCT

images generated by our method exhibit remarkable visual
FIGURE 4

Comparison of the sCT images generated by the SynREG model and other benchmark models. The yellow arrows highlight the areas with apparent visual
differences. The upper row shows an example slice in the lung window/level, whereas the lower row shows the same slice in the soft tissue window/level.
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performance, effectively reducing noise and eliminating artifacts.

This finding demonstrates the robustness and effectiveness of our

proposed method in generating clinically relevant sCT images.
4.2 Ablation experiments

To investigate the impact of Reg-Net and varying loss

combinations on model performance, we evaluated four distinct

configurations: M1, M2, M3 and M4. M1 serves as a baseline,

employing only the synthesizer subnetwork and the L1 loss; M2

incorporates the SynReg architecture in conjunction with the L1

loss; M3 incorporates the SynReg with perceptual loss; and M4, our

proposed method, leverages both perceptual loss and L1 loss within

the SynReg framework. The quantitative results from these

experiments are presented in Table 3. Reg-Net contributes to

improving the MAE and SSIM of the model by mitigating local

structural misalignments. The perceptual loss enhances the PSNR
Frontiers in Oncology 07
and SSIM by generating high-fidelity images, though it may not

directly contribute significantly to reducing the MAE. Our proposed

method, M4, integrates all of these components effectively,

achieving superior results.
4.3 Training on an individual dataset versus
the entire dataset

When focusing on the head and neck dataset alone, our model

trained on this dataset achieved a mean MAE of 14.18 HU,

significantly reducing the intensity error for those cases. However,

when applied to the thorax and pelvis cases, no MAE reduction was

observed, with values of 38.84 HU and 28.14 HU, respectively. This

highlights the model’s limited generalizability when trained on a

single dataset. Conversely, the model trained on the entire dataset

(synREG) consistently improved the MAE across anatomical sites.

Notably, it achieved a lower MAE of 13.67 HU for head and neck

cancer patients, emphasizing the importance of diverse and

representative data for robust, generalizable models.
4.4 HU calibration

Figure 7A shows the HU calibration performance. By referring

to the pCT image as the reference image, the HU difference relative

to the sCT image was significantly improved. In the high-frequency

areas (i.e., edges) of the sCT image, the HU differences were greater

than those in other areas, indicating intrinsic anatomical

differences. The HU profiles of the yellow line in Figure 7A
TABLE 2 Quantitative comparison of the test dataset among different
benchmark models.

MAE (HU) RMSE (HU) PSNR (dB) SSIM (%)

CBCT 26.74 ± 10.11 87.17 ± 27.43 33.86 ± 2.79 89.73 ± 3.46

Pix2Pix 18.17 ± 8.29 64.45 ± 27.23 35.53 ± 3.07 91.97 ± 2.89

CycleGAN 18.32 ± 8.66 66.84 ± 27.64 36.18 ± 3.06 93.60 ± 2.97

SwinIR 17.97 ± 8.52 66.49 ± 28.31 36.40 ± 3.18 93.65 ± 2.98

Ours 16.81 ± 8.42 64.10 ± 27.82 36.59 ± 3.12 94.34 ± 2.85
The reported values are the average ± STD results.
FIGURE 5

Comparison of the MAEs, RMSEs, PSNRs and SSIMs produced for the CBCT and sCT images at individual sites, including the head, thorax and pelvis,
in the test dataset.
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obtained across bone, soft tissue and air are shown in Figure 7B.

Furthermore, the HU distributions of the example case are shown in

Figure 7C. Our model effectively mapped the intensity distribution

of the CBCT image to the pCT image.
4.5 ROI contouring

The DSC and MDA values obtained for 15 patients, including 8

head patients and 7 pelvis patients, are presented in Tables 4, 5,
Frontiers in Oncology 08
respectively. Thorax cases were excluded because of the limited

FOV of the CBCT scanning system, preventing full organ scanning.

Table 4 presents the DSC outcomes achieved with the UIH and

TS tools, revealing a consistent enhancement in segmentation

accuracy across most regions when sCT images were used instead

of CBCT. Notably, the brainstem mean DSC significantly improved

from 0.61 to 0.89. Additionally, Table 5 shows that the mean MDA

values of the brainstem significantly decreased from 3.72 mm when

CBCT was used to 0.98 mm when sCT was used. For the parotid

glands, we also observed positive trends, highlighting the role of

sCT in improving contour accuracy through image quality

enhancement. Although the DSC and MDA values for the

bladder and rectum do not significantly change, sCT images still

provide slightly higher segmentation accuracy in these regions.
5 Discussion

In this study, we employed a deep learning approach to

translate multisite CBCT images to sCT images. To utilize paired

data with local structural misalignment for training, we proposed

SynREG, which disentangled the sCT generation and anatomical
FIGURE 6

Examples of image slices obtained for the head, thorax and pelvis cases. The display window ranged from -400 HU to 400 HU.
TABLE 3 Quantitative results of the ablation experiment.

MAE
(HU)

PSNR
(dB) SSIM (%)

M1 (Syn Only + L1) 18.54 ± 8.81 34.55 ± 3.06 91.80 ± 2.77

M2 (SynReg + L1) 17.48 ± 8.09 35.87 ± 2.93 93.96 ± 2.84

M3 (SynReg + Lperceptual) 17.89 ± 8.44 36.32 ± 3.27 94.38 ± 2.96

M4 (SynReg + Lperceptual + L1) 16.81 ± 8.42 36.59 ± 3.12 94.34 ± 2.85
The compared models (M1–M4) are trained with different settings.
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correction processes via a synthesizer and a Reg-Net, respectively.

With this approach, we can train the model in a supervised manner,

which has demonstrated the advantages of efficiency in data and

computation due to its explicit learning objective (35). Moreover,

the transfer learning ability of a supervised pretraining model can

be further enhanced when models are trained on increasingly

expansive datasets (36). In this study, we trained a singular model

capable of generating sCT images for the head, thorax and pelvis.

Figures 4, 5 demonstrate the efficacy of our proposed model in

enhancing image quality across all sites through quantitative and

qualitative evaluations. The quantitative results (Table 2) indicate

that SynREG outperforms the other unsupervised benchmark

models and outperforms the model trained solely on the head

and neck dataset.

Although CBCT and pCT images share anatomical similarities,

simple HU mapping is not sufficient for generating sCT images
Frontiers in Oncology 09
because noise and artifacts may easily introduce nonlinearity in the

intensity profile mapping process. To capture more complete local

and global relationships for high-quality image restoration and

generation. We introduced a hybrid CNN-transformer model to

enhance the representation ability of the model while saving

computer resources . Tradi t ional ViTs require many

computational resources and large datasets. Various self-attention

computation methods, such as local window attention (37, 38),

channel dimension attention (39), and sparse self-attention (40),

have been proposed to reduce model complexity. SwinIR (34)

utilizes a swin transformer to perform image restoration.

Compared with vanilla ViT, the swin transformer employs a

shifted window mechanism to combine local attention with global

attention, enabling the capture of global context information while

maintaining computational efficiency. Despite its strengths, the

patch embedding utilized in the Swin transformer encounters
A

B C

FIGURE 7

(A) HU differences between the CBCT, sCT and rsCT images and the pCT image for a head case example. (B) HU profiles of the yellow line in (A). (C)
HU distributions within the range of [-400, 400] for the example cases across all image modalities.
TABLE 4 Comparison of the mean Dice coefficients for automatic segmentation of various organs between CBCT and sCT images.

Brain Stem Parotide_L Parotide_R Bladder Rectum

CBCT sCT CBCT sCT CBCT sCT CBCT sCT CBCT sCT

Dice

UIH 0.63 0.89 0.89 0.91 0.87 0.90 0.63 0.70 0.68 0.68

TS 0.59 0.89 0.88 0.91 0.88 0.91 0.60 0.70 0.68 0.69

Mean 0.61 0.89 0.88 0.91 0.88 0.91 0.62 0.70 0.68 0.68
fro
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inherent limitations in capturing local details, particularly for the

preservation of fine details (41), as shown in Figure 4. Hence, we did

not opt for patch embedding and instead adopted a depthwise

convolutional transposed attention mechanism, which proves to be

more effective for enhancing the representation of fine details and

for generating high-quality images. Additionally, this approach

offers the advantage of linear computational complexity, making

it a more efficient solution for our task.

The segmentation of target structures and organs at risk is a

crucial component of the radiotherapy workflow. Most deep

learning-based autosegmentation models applied in radiotherapy

are trained with CT and/or MR images, significantly enhancing the

efficiency and accuracy of the task (42). However, owing to the

limited generalization ability of autosegmentation models, it is not

advisable to train a model on one image modality and directly apply

it to another modality, as this often leads to suboptimal performance.

Our results demonstrate that the DSC of CBCT is the lowest.

This can be attributed to data distribution differences caused by

different image modalities (Figure 7C), as well as the inferior

quality of CBCT images. Following the conversion of CBCT to

sCT images, both the data distribution disparity and image

quality were enhanced, resulting in an increase in the DSC

value. Notably, for the brainstem, which has low contrast and is

overwhelmed by noise in CBCT images, the increase in DSC was

primarily due to the essential image quality enhancement
Frontiers in Oncology 10
process. On the other hand, for the bladder and rectum, which

have higher contrast and can be easily discriminated in CBCT

images, the relatively lower DSC was primarily due to the

structural mismatches caused by variations in bladder and

rectum fullness. Therefore, the increase in DSC yielded by sCT

was not significant for these regions. Similarly, the MDA results

also supports these findings.

Supervised learning often relies on high-quality datasets for

optimal model performance. Our method mitigates the need for

precisely matched paired images by disentangling image generation

from anatomical correction. This approach is capable of handling

most scenarios and generating high-quality sCT images. However,

we also encountered unreliable results in certain scenarios,

especially for cavities. As shown in Figure 8, while the bladder

structure of the CBCT image was effectively preserved, the

appearance of a cavity on the sCT image was unreliable. This is

because performing image registration in cases with large

deformations remains a significant chal lenge, thereby

compromising dataset quality. Exploring ways to enhance dataset

quality and/or incorporating a more targeted loss function are

potential approaches to address this limitation and achieve a

more accurate clinical implementation model.

In this study, we used a joint learning framework called SynREG

to address the challenge of training a model with imperfectly

aligned CBCT−CT paired data. Our approach involved proposing
TABLE 5 Comparison of the mean distance to agreement (MDA) for automatic segmentation of various organs between CBCT and sCT images. (mm).

Brain Stem Parotide_L Parotide_R Bladder Rectum

CBCT sCT CBCT sCT CBCT sCT CBCT sCT CBCT sCT

MDA

UIH 3.51 0.98 1.00 0.77 0.98 0.79 3.45 3.41 3.60 3.07

TS 3.93 0.98 1.05 0.77 0.98 0.79 3.53 3.42 3.66 3.05

Mean 3.72 0.98 1.03 0.77 0.98 0.79 3.49 3.42 3.63 3.06
fro
FIGURE 8

An instance of hallucinations on an sCT image. The area highlighted by the yellow box indicates the location of the hallucinations, which are not
present in the CBCT image.
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a hybrid CNN-transformation model for sCT generation and a

registration network for anatomical correction. Additionally, we

explored the feasibility of training a singular model for generating

multisite sCT images. Our quantitative and qualitative findings

demonstrated the superior performance of our method and its

potential application in ART.
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