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AGTR1: a potential
biomarker associated with
the occurrence and prognosis
of lung adenocarcinoma
Rui Xiao †, Jiajia Han †, Yongjian Deng, Ling Zhang, Ying Qian,
Nan Tian, Zhen Yang and Lin Zhang*

College of Life Science/Institute of Molecular Medicine, Zhejiang Chinese Medical University,
Hangzhou, Zhejiang, China
Introduction: Lung adenocarcinoma, a disease with complex pathogenesis, high

mortality and poor prognosis, is one of the subtypes of lung cancer. Hence, it is

very crucial to find novel biomarkers as diagnostic and therapeutic targets

for LUAD.

Methods: GSE10072 was used for DEGs and WGCNA, and the intersection genes

were subjected to enrichment analysis through Metascape and GSEA. Key genes

were screened by three machine learning methods. Further, the reliability of key

genes was identified by ROC, COX regression analysis and qRT-PCR. CIBERSORT

and Spearman analysis were used for understanding the relationships of LUAD,

immunity and key genes. In addition, ceRNA networks and potential drugs of key

genes were constructed and predicted.

Results: After overlapping 631 DEGs and key module genes, 623 intersection

genes were obtained. Subsequently, DUOX1, CD36, AGTR1, FHL5 and SSR4 were

further selected using three machine learning methods. Reliability analysis

demonstrated that AGTR1 possesses important predictive value for the

occurrence and prognosis of LUAD. The enrichment analysis showed that

AGTR1 was significantly enriched in the GPCR-related pathways. Immune

infiltration analysis showed that the development of LUAD was related to the

changes of immune cells such as M2 macrophages and neutrophils, which were

regulated by AGTR1. Further, AGTR1 is also involved in regulating immune

chemokines, checkpoints and immune regulatory factors such as PECAM1,

ADARB1, SPP1 and ENO1, all of them playing important roles in immune cell

regulation, tumor cell proliferation and migration. Further, the drug-gene

interaction network screened out 13 potential drugs such as Benazepril,

Valsartan, Eprosartan, and so on.

Discussion: AGTR1 is a potential biomarker for the occurrence and progression

of LUAD, closely related to tumor immunity, proliferation and migration. It can

serve as a new target for the diagnosis and treatment of LUAD.
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1 Introduction

Lung cancer is one of the most highly incident and lethal

malignancies globally, with statistics showing that about 1.8

million people die from lung cancer each year (1). Lung cancer is

divided into two major types: small cell lung cancer (SCLC) and

non-small cell lung cancer (NSCLC), with NSCLC accounting for

approximately 85% of all lung cancer patients (2). Early treatment

strategies for NSCLC preferentially involve anatomical lung

resection combined with lymph node dissection. However, the

postoperative cure rate and survival rate remain low, with 30% to

70% of postoperative patients experiencing tumor recurrence or

metastasis and the therapeutic effect being very unsatisfactory (3).

Lung adenocarcinoma (LUAD) is the most common subtype of

NSCLC, accounting for over 40% of all lung cancer cases, and is

highly heterogeneous (4, 5). LUAD has a long latency period, with

mild early symptoms that are difficult to detect, but with a high

incidence of metastasis and malignancy. It is usually diagnosed in

the later stages, with a lost opportunity for treatment. Despite there

is considerable progress in the treatment of LUAD for the past

few years, from traditional radiotherapy and chemotherapy to

emerging immunotherapy, the lack of systemic treatment and

resistance to radiotherapy and chemotherapy result in a low

survival rate of around 15% for all patients with LUAD (4, 6, 7).

Due to our incomplete understanding of the pathogenesis and

dynamic fluctuations in the tumor gene expression profile,

progress in LUAD treatment has reached a plateau and is in

urgent need of a breakthrough (8). Therefore, providing new

cancer treatment measures and potential biomarkers for LUAD is

of great significance.

The gene expression levels can reveal the status of various

diseases, including LUAD, and serve as important indicators for

basic diagnosis (9). In this study, we employed bioinformatics

techniques to integrate genes associated with LUAD and patient

sample data from Gene Expression Omnibus (GEO) and The

Cancer Genome Atlas (TCGA) for analysis. We used weighted

Gene Co-expression Network Analysis (WGCNA) and machine

learning methods to identify biologically significant biomarkers.

Subsequent validation and functional pathway enrichment were

conducted to verify the key genes. Next, qRT-PCR was used to

verify differences in the expression of biomarkers in normal lung

epithelial cells and LUAD cells. The aim is to seek new diagnostic

biomarkers for LUAD diagnosis and treatment. Additionally,

immune infiltration analysis was employed to explore the

relevance between diagnostic biomarkers and immune cells,

immune checkpoints, and immune chemokines, aiming to

acquire a more profound comprehension of the immune

mechanisms implicated in the progress ion of LUAD.

Furthermore, a competitive endogenous RNAs (ceRNAs)

network was established to elucidate the regulatory mechanisms

of diagnostic biomarkers in LUAD. Lastly, we conducted potential

drug predictions to identify effective drugs that may have a

positive impact on LUAD.
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2 Materials and methods

2.1 Data acquisition and analysis

Figure 1 shows the analysis process of this study. The GEO

(https://www.ncbi.nlm.nih.gov/geo/) database includes gene

expression and regulation data from various species, including

microarray chips, RNA sequencing (RNA-seq), and other high-

throughput sequencing technologies. We downloaded the Series

Matrix File GSE10072, which is a dataset with the richest number of

LUAD samples and the highest number of detected genes, from

GEO database using “lung adenocarcinoma” as the keyword.

GSE10072 includes a total of 107 samples (58 tumor samples and

49 normal samples) and 13227 gene expression data. The specific

clinical information of the sample showed in Supplementary Table

S1. After performing analysis and processing on the data, we

obtained differentially expressed genes (DEGs). The selection

is performed based on a P value less than 0.05 and an absolute

value of log fold change (|log2FC|) greater than 1. Moreover,

volcano plot and heatmap were created using the above data to

visualize the differential expression of DEGs. Additionally, we

accessed TCGA database (https://portal.gdc.cancer.gov/), which is

a comprehensive genomics database focused on various types of

cancer. It is a project based on high-throughput sequencing,

genomic analysis, and clinical data, aimed at understanding the

molecular characteristics, pathogenic mechanisms, and therapeutic

potential of cancer. We obtained a total of 403 LUAD samples, 48

normal samples and 15647 gene expression data from the TCGA

database. The patient clinical information related to LUAD can be

found in Supplementary Table S2. The data obtained from TCGA

will be subsequently used for COX proportional hazards regression

analysis (COX).
2.2 Construction of co-expressed
gene modules

WGCNA is a method used for analyzing gene co-expression

networks. It involves calculating the co-expression patterns between

genes and clustering genes with related functions or involvement in the

same biological processes into functional modules. By studying these

modules, we can discover module genes closely related to LUAD and

understand their positions and functions within the network. We used

R package of WGCNA to build a co-expression network for all genes

from GSE 10072. The soft threshold of GSE 10072 dataset was set as 8.

The weighted adjacency matrix was converted into a Topological

Overlap Matrix (TOM) to appraise network connectivity, and a

clustering dendrogram was constructed by a hierarchical clustering

method based on the TOM matrix (10). The genes were assorted into

different categories based on their weighted correlation coefficients and

the similar expression genes were grouped into identical modules. The

gene modules highly correlated with LUAD were identified and

selected through Pearson correlation analysis. Then, the intersection
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https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://doi.org/10.3389/fonc.2024.1441235
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiao et al. 10.3389/fonc.2024.1441235
genes obtained by taking the overlap between DEGs and module genes

using a Venn diagram.
2.3 Gene function annotation and
enrichment analysis

We performed enrichment analysis and functional annotation

of genes by accessing the Metascape analysis website (11) (http://

metascape:gp/index.html#/main/step1), and the Gene Set

Enrichment Analysis (GSEA) official website (12) (http://

software.broadinstitute:gsea/index.jsp). Metascape is an online

tool for gene functional annotation and enrichment analysis, used

to interpret results from genomics, transcriptomics, and proteomics

research. The intersection genes were submitted to Metascape

analysis website for GO and KEGG analysis. The p-value < 0.01

was considered significant.

GSEA is a commonly used method for gene enrichment analysis

and assesses the enrichment level of a gene set in a predefined

biological process, signaling pathway, or disease by comparing its

relevance to a particular biological process. By conducting GSEA

analysis and applying a filtering criterion of FDR<0.25 and P<0.05,

we identified significantly enriched pathways.
2.4 Selection and validation of key genes

Intersection genes were further sifted for key genes related to

LUAD through random forests (RF), least absolute shrinkage and

selection operator (LASSO) logistic regression, and support vector

machine-recursive feature elimination (SVM-RFE) (9). Among them,

LASSO belongs to the linear regression algorithm, which can

establish a relationship model between two or more variables, and

predict the values of one or more continuous variables by fitting the

data. RF and SVM belong to classification algorithms that can

maximize correct classification on training data and have good

generalization ability on test data by finding the optimal decision

boundary. Within them, RF can effectively reduce overfitting by

constructing a large number of decision trees and average their

results, especially when dealing with high-dimensional data, and

SVM-RFE can find the optimal separating hyperplane for data and

effectively perform complex classification tasks. The “randomForest”

R package was utilized to implement the random forest technique, the

“glmnet” package in R was utilized for LASSO logistic regression

analysis, and we used the R package “e1071” for SVM-RFE in this

study. Then, we obtained key genes by taking the intersection genes

acquired via three different machine learning methods.

The key genes were evaluated based on the analysis of receiver

operating characteristic (ROC) curves, and the area under the curve

(AUC) was calculated to evaluate the predictive capability of a

binary classification model (9). ROC analysis is also employed to

compare the predictive ability of key genes and clinical factors for

prognosis. Using the sample data obtained from GEO, ROC curves

of smoking and key genes were plotted by the “pROC” R package.

Afterwards, COX regression analysis was performed by “survival”

package on the selected data based on TCGA database. Drawing
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survival curves used “survminer” package, and “survivalROC”

package was used to draw survival curves specifically for ROC.

The Cox regression model can estimate the hazard ratio and its

statistical significance for predictive factors on event occurrence.

Finally, we used “ggplot2” and “ggpubr” packages to draw a box plot

to display the expression differences of key genes in the sample data

obtained from TCGA. Through these analyses, we can compare and

identify the key genes with the strongest correlation to LUAD.
2.5 Validation of key gene by qRT-PCR

QRT-PCR was performed to confirm the expression of key gene

in the normal control (NC) and LUAD groups. Normal lung

epithelial cells BEAS-2B cells and LUAD epithelial cell lines

(A549, H1299 and H1975) were acquired from the Cell Bank of

the Chinese Academy of Sciences (Shanghai, China). Among them,

A549 was taken from primary LUAD tissue of a 58 years old white

male. H1299 was derived from a 43 years old white male LUAD

patient with lymph node metastasis. And H1975 was isolated from

cancer tissue of a white female patient with primary LUAD. These

cells were cultivated at 37°C and 5% CO2 and in DMEM and RPMI-

1640 (Gibco, USA) supplemented with 1% penicillin–streptomycin

(Yeasen, Shanghai, China) and 10% fetal bovine serum (Gibco,

USA). All dissected samples were immediately stored in liquid

nitrogen until they were prepared for total RNA extraction (13).

Total cellular RNA was extracted by TRIzol (Invitrogen,

Carlsbad, CA, USA). We reverse transcribed RNA to cDNA using

a reverse-transcription kit (Vazyme, Nanjing, China). QRT-PCR

was performed with the SYBR Green Master Mix Kit (Vazyme,

Nanjing, China) on an iQ5 real-time PCR machine (Bio-Rad,

Hercules, CA, USA). All expression levels are based on internal

control (b-Actin). The qRT-PCR cycles were as follows: step1,

preparative denaturation (10 min at 95 °C); step 2, 40 cycles of

denaturation (10 s at 95°C) and annealing (20 s at 60 °C); and step 3,

dissociation, following the manufacturer’s protocol (13). Forward

primer of hub gene was as followed: 5′-CTGCTATGCCC

ATCACCATCTG-3′; reverse primer of hub gene was as followed:

5′-GATAACCCTGCATGCGACCTG-3′. The 2–DDct method was

used to calculate relative gene expression levels.
2.6 Immune cell infiltration analysis

Based on gene expression data, CIBERSORT is a method to

evaluate the relative abundance of different cell types within tumor

tissues (13–15). It applies support vector regression principles to

deconvolute the expression matrix of immune cell subtypes (13, 16).

XCell is a powerful algorithm designed to assess the infiltration levels

of 64 distinct types of stromal and immune cells, encompassing

cellular components such as extracellular matrix cells, epithelial cells,

hematopoietic progenitors, as well as both innate and adaptive

immune cells. The CIBERSORT was utilized to analyze the data of

LUAD samples, allowing for estimation of the associated proportions

of 22 distinct immune-infiltrating cells. Spearman analysis was

implemented to explore the association between gene expression
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and immune cell content. We also analyzed the correlation between

key genes and immune stroma and immunemicroenvironment using

xCell. Furthermore, we conducted correlation analysis for key genes

and immune chemokines, immune checkpoints as well as other

immune regulatory molecules.
2.7 Construction of ceRNA
regulatory network

An increasing amount of researches suggests that long non-coding

RNAs (lncRNAs) function as ceRNAs by competing for binding to

microRNAs (miRNAs), thus exerting a regulatory effect on target genes

expression (2). We predicted target miRNAs of key genes through the

databases miRTarBase (https://mirtarbase.cuhk.edu.cn/). Next, the

miRNet (https://www.mirnet.ca/miRNet/home.xhtml) database

was used to predict the possible lncRNAs that are targeted by the

miRNAs. Subsequently, A ceRNA regulatory network was

constructed by integrating the interaction between miRNAs and

lncRNAs. The ceRNA network was visualized using OmicStudio

(https://www.omicstudio.cn/home).
2.8 Prediction of potential drugs

To explore drug-gene interactions, we applied the Drug-Gene

Interaction database (DGIdb) (https://dgidb.org) and Comparative

Toxicogenomics Database (CTD) (http://ctdbase.org/) to forecast

prospective drugs for the treatment of LUAD, based on key gene

relative with LUAD. The data was shown via Cytoscape software.
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2.9 Statistical analysis

Statistical analysis was executed using R package (version 4.3.1).

Two-tailed tests were used for all data validation, and a significance

level of P < 0.05 or P<0.01 were considered statistically significant.

The relevance analysis was performed by either Pearson correlation

or Spearman correlation, depending on the specific situation.
3 Results

3.1 DEGs Screening in
lung adenocarcinoma

First, we extracted gene expression data from the dataset

GSE10072 in GEO database for subsequent analysis. Then, we

performed sample grouping using GEO2R and conducted DEG

analysis on the samples to identify 631 DEGs, including 206

upregulated and 425 downregulated genes. A volcano plot was

constructed by the “ggplot2” package (Figure 2A) and a heatmap

was generated using the bioinformatics cloud platform (http://

www.bioinformatics.com.cn) (Figure 2B) to visualized the DEGs.
3.2 Identification of co-expression gene
modules in lung adenocarcinoma

WGCNA was employed in GSE10072 dataset to identify gene

modules characterized by co-expression of multiple genes. The

phenotypic data of samples obtained from GSE10072 dataset were
FIGURE 1

Program flowchart for this study.
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collated, and a cluster tree divided into tumor group and normal

group was obtained (Figure 3A). We selected a soft threshold of 8

for constructing a scale-free network (Figure 3B). Next, we

employed dynamic hybrid cutting to build a hierarchical

clustering tree, which resulted in the formation of gene modules

(13, 16). Within the tree branches, we observed a cluster of genes

exhibiting similar expression profiles (Figure 3C). In the clustering

tree, the different branches represent distinct gene modules, while

the different colors represent different modules. Twenty-one

modules were constructed for GSE10072 (Figure 3D). The

modules in salmon, grey60, midnightblue, greenyellow, lightgreen,

black, red, magenta, and lightcyan colors showed significant

associations with LUAD and were chosen as the hub modules for

further analysis. The scatter plots of module genes most highly

associated with LUAD is shown in Figure 3E.
3.3 Functional enrichment analyses of
intersection genes

In order to understand the biological functions of genes, we

conducted Metascape analysis on the intersection genes

(Supplementary Table S3) obtained from DEGs and module genes.

GO and KEGG pathway analyses were conducted using Metascape.

We sorted the results in ascending order based on the False Discovery

Rate (FDR), and select the top 20 biologic functions, respectively. GO

analysis revealed that they were implicated inmany aspects, including

vasculature development, response to growth factor, response to

hormone, extracellular matrix, multicellular organismal-level

homeostasis, circulatory system process (Figures 4A–C). KEGG

analysis of intersection genes showed pathways involved Pathways

in cancer, Focal adhesion, Cell adhesion molecules, p53 signaling

pathway (Figures 4D–F).

GSEAwas used to analyze and evaluate signal pathways related to

intersection genes. We sorted the results in descending order based
Frontiers in Oncology 05
on the Normalized Overlap Measure p-value (NOMp-val). The

signaling pathways included GPCR ligand binding, metabolism of

lipids, signaling by GPCR, innate immune system, cytokine signaling

in immune system, developmental biology and so on (Figures 4G–L).
3.4 Identification and validation of
key genes

By Venn diagram (Figure 5A), we obtained the same region

between DEGs and hub module genes, and identified 623

intersection genes. We utilized RF in conjunction with feature

selection to establish the relationship between the error rate, the

number of classification trees, and the genes sorted in descending

order of relative relevance (9) (Figure 5B). Using RF, we respectively

identified sets of 45 genes (Figure 5C). Based on the optimal lambda

value of 0.007991898, a Lasso regression model is constructed. We

employed LASSO regression analysis to choose 48 predicted genes

out of the univariate variables that demonstrated statistical

significance (Figures 5D, E). SVM-RFE used an iterative process

to construct an SVM model and calculate the relevance ranking of

genes associated with LUAD in order to select the most important

614 genes (Figure 5F). By intersection genes obtained from three

machine learning methods (Figure 5G), we identified five key genes:

DUOX1, CD36, AGTR1, FHL5, and SSR4.

To evaluate the reliability of the key genes identified by machine

learning methods, we plotted ROC curves. The ROC curves of

AGTR1, CD36, DUOX1, FHL5 and SSR4 yielded excellent AUCs

of 0.999, 0.998, 0.998, 0.998, and 0.998, respectively (Figure 6A).

When the AUC value under the ROC curve is closer to 1, it indicates

a stronger correlation between the gene and LUAD. In addition, as a

key clinical factor inducing LUAD, smoking only showed an AUC

value of 0.518, which is much lower than the AUC values of the five

key genes. By conducting Cox regression analysis based on clinical

data obtained from TCGA database, key genes that exert a significant
FIGURE 2

Acquisition of DEGs. The DEGs were shown on the volcano plot (A) and the heatmap (B) for the GSE10072 datasets.
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influence on the survival and prognosis of LUAD were verified. We

obtained the risk score table through Cox univariate regression

analysis on five key genes, in which the p value of SSR4 was found

to be greater than 0.05, which was not statistically significant. Then

we plotted the ROC curves related to survival for the other four key

genes. The AUC values of AGTR1, CD36, DUOX1, and FHL5 were

0.738, 0.614,0.596, and 0.597, respectively (Figures 6B–E). On

account of the AUC values, we have identified AGTR1 as the key

gene for further analysis. Then, based on the risk score table, survival
Frontiers in Oncology 06
curve of AGTR1 was plotted. When the survival time was the same,

the survival probability of the low-risk group was higher (Figure 6F).

A box plot was plotted based on sample information acquired from

TCGA to represent the differential expression of AGTR1 between

normal and LUAD samples, showing that AGTR1 was significantly

downregulated in the tumor group (Figure 6G). Subsequently, the

qRT-PCR results showed that the expression of AGTR1 is

significantly lower in the LUAD group (A549, H1299 and H1975)

compared to the NC group (Figure 6H).
FIGURE 3

Identification of the hub module via WGCNA. Sample dendrogram classified by tumor and normal samples (A), scale-free fit index and the average
connectivity of soft threshold power (B) and hierarchical clustering tree of genes based on topological overlap (C) were obtained in GSE10072.
The correlation between module genes and LUAD in GSE10072 (D). A scatter plot of the salmon module in GSE10072 (E).
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3.5 Infiltration of immune results

CIBERSORT was utilized to describe immune infiltration trend

of immune cells. To ulteriorly investigate the distinction in immune

cell types between LUAD and normal samples, we estimated the
Frontiers in Oncology 07
abundance of immune cells based on the gene expression matrix

obtained from GSE10072. Compared to normal samples, LUAD

samples showed a higher abundance of memory B cells, resting

dendritic cells, eosinophils, M1 macrophages, plasma cells, CD4

memory activated T cells, follicular helper T cells, gamma-delta T
FIGURE 4

Functional enrichment analysis results of intersection genes. Enrichment analysis by Metascape for intersection genes, including GO and KEGG (A-F).
The bar graphs used a discrete color scale to represent statistical significance (A, D). the colors of different points in (B, E) represent different
biological functions and pathways. In (C, F), the darker colors indicating higher levels of statistical significance. Dot size indicates the degree of
enrichment, and the larger the dot, the higher the enrichment level of the gene in (B, C, E, F). GSEA used to analyze and evaluate signal pathways
related to intersection genes (G-L).
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cells and regulatory T cells. In contrast, M2 macrophages, resting

mast cells, monocytes, neutrophils, resting natural killer cells and

CD8 T cells were under expressed in LUAD samples. Correlation

heatmap (Figure 7A) and Boxplot (Figure 7B) were employed to

show the differences in the abundance of immune cells from

different groups. What’s more, we showed the relativity between

AGTR1 and immune cells through lollipop plot (Figure 7C).

Among them, megakaryocytes, M2 macrophages, and neutrophils

showed positive correlation with the expression level of AGTR1,
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while plasma cells and B cells showed negative correlation with the

expression level of AGTR1. Afterwards, the scatter plots showed a

strong correlation of AGTR1 with immune stroma (R=0.804,

P<0.001) (Figure 7D) and immune microenvironment (R=0.711,

P<0.001) (Figure 7E). Immune chemokines and immune regulatory

factors analysis showed that, the expression levels of S1PR1,

PECAM1, and ADARB1 were positively associated with AGTR1,

while the expression levels of SPP1, ENO1, and ECT2 were

negatively related to AGTR1 (Figure 7F). Immune checkpoint
FIGURE 5

Detection of key genes using three machine learning methods. Venn diagram of key module genes versus DEGs (A). The error rate confidence
intervals for random forest model (B). Sorting 45 gene importance using the Gini index (C); As the lambda value varies, the variables whose
coefficients are compressed to zero later are considered more important (D). The mean squared error plot of a LASSO model with error bars
representing standard errors showed 48 genes were obtained (E); Based on SVM-RFE to screen 614 key genes (F). Three machine learning
approaches to obtain the intersection of genes and obtain key genes (G).
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analysis showed that the expression levels of STXBP6, PECAM1,

and ADARB1 were positively associated with AGTR1, while the

expression levels of SPP1, ENO1, and ECT2 were negatively related

to AGTR1 (Supplementary Figure S1).
3.6 Construction of a ceRNA network

We built a ceRNA regulatory network to explore the regulatory

mechanisms of AGTR1. The miRTarBase database was used to

predict miRNAs related to AGTR1 and finally acquired 6 miRNAs

(hsa-miR-34a-5p, hsa-miR-155-5p, hsa-miR-410-3p, hsa-miR-155-
Frontiers in Oncology 09
3p, hsa-miR-26b-5p, hsa-miR-124-3p). Afterwards, based on the

miRNAs obtained above, relevant lncRNAs were identified using

the miRNet database. The lncRNAs could be found for 5 miRNAs

(hsa-miR-34a-5p, hsa-miR-155-5p, hsa-miR-410-3p, hsa-miR-26b-

5p, hsa-miR-124-3p), and 149 pairs of miRNA-lncRNAs were

obtained at last (Figure 8A).
3.7 Potential drugs of key gene

To seek potential drugs for treating LUAD, we searched the

DGIdb and CTD databases for potential drugs targeting AGTR1.15
FIGURE 6

Screen the key genes with the highest correlation to LUAD through ROC curve, Cox regression analysis and box plot. ROC curve to validate the
ability of predicting key genes (A). Generated ROC curves using a risk scoring table for AGTR1, CD36, DUOX1, and FHL5 (B–E). Survival curve for
AGTR1 (F). Box plot was used to describe the difference in expression levels of AGTR1 between LUAD samples and normal samples, *** p < 0.001 vs.
normal group. (G). The mRNA level of AGTR1 in NC group and LUAD cell lines (A549, H1975, H1299), ** p < 0.01 vs. NC group (H).
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FIGURE 7

Infiltration of immune cells results. The differences in the abundance of immune cells in different groups (A). Relative cellular fraction of 22 immune
cell in LUAD and normal samples by Cibersort, * p < 0.05 vs. control group, ** p < 0.01 vs. control group, *** p < 0.001 vs. control group, **** p <
0.0001 vs. control group, nc is p > 0.05 vs. control group. (B). The lollipop plots showed the association between AGTR1 and different immune cell
(C). Scatter plots are used to show the association of AGTR1 with immune stroma and microenvironment (D, E). Among them, “Stromal score” refers
to the abundance score of stromal cells in the tumor microenvironment (D), the “Microenvironment score” refers to the abundance score of all
types of cells in the tumor microenvironment, including immune cells, stromal cells, tumor cell and so on (E). The lollipop plots showed the
correlation of AGTR1 with immune chemokines and immune regulatory factors (F).
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and 118 drugs targeting AGTR1 were discovered in these databases

(Figure 8B), respectively. There are a total of 13 overlapping

targeted drugs included Cyclosporine, Candesartan, Benazepril,

Valsartan, Eprosartan, Dexamethasone, Nitrendipine, Captopril,

Perindopril, Indomethacin, Olmesartan Medoxomil, Telmisartan

and Irbesartan in two databases.
4 Discussion

Lung cancer is one of the types of cancer with the highest

mortality rate, with the LUAD subtype accounting for about 50% of

all lung cancer deaths (17). Although there has been some progress
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in LUAD treatment for the past few years, the general survival rate

of LUAD patients is still significantly bleak. Therefore, it remains

crucial to delve into therapeutic targets aimed at enhancing the

survival rate of LUAD patients. Furthermore, studying the patterns

of cell invasion associated with LUAD immunity can help us

understand how LUAD affects the immune system. In this study,

we constructed co-expression gene modules and used machine

learning methods to screen the key genes associated with LUAD.

The reliability of key genes was assessed through functional

enrichment, ROC analysis, and COX regression analysis. QRT-

PCR further revealed differences in the expression of key genes in

LUAD and normal cells. In addition, immune infiltration analysis

was utilized to understand the interaction between LUAD and the
FIGURE 8

Construction of CeRNA network and acquisition of potential drugs. The ceRNA network constructed by AGTR1 and its related miRNA and lncRNA
(A). The drug-gene network of AGTR1. Drugs marked in pink obtained from DGIdb database, drugs marked in green obtained from CTD database,
and the drugs marked in purple were overlapping targeted drugs in two databases (B).
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immune response, as well as the relationship between key genes

associated with LUAD and immune response. A CeRNA network

was created to explore the regulatory mechanisms of key genes and

we further sought the potential drug targets.

With the development of high-throughput sequencing

technology, many bioinformatics algorithms and public databases

provide analytical tools and scientific basis for exploring cancer

treatment and finding potential therapeutic targets (15). Through

the analysis of gene expression data from LUAD group and normal

group based on GSE10072, we found 631 DEGs, including 206

upregulated and 425 downregulated genes. Furthermore, 9 hub

modules highly associated with LUAD were obtained by WGCNA.

We further obtained 5 key genes (DUOX1, CD36, AGTR1, FHL5,

and SSR4) by applying RF, Lasso and SVM-RFE based on the

intersection genes from DEGs and hub module genes. Among the

above five key genes, DUOX1 (log2FC=-2.1765235), CD36

(log2FC=-2.4169837), AGTR1 (log2FC=-1.6991027) and FHL5

(log2FC=-1.1938571) were significantly downregulated gene

(log2FC<-1), while SSR4 (log2FC=1.0115043) was significantly

upregulated gene (log2FC>1), which indicated a potential

correlation of these 5 key genes with LUAD. Subsequently, the

five key genes were validated to exist in salmon module (cor=0.97,

p<1e-200), which was the module with the highest correlation with

LUAD among the 9 modules obtained fromWGCNA. The Module

Memberships of five key genes in salmon module were greater than

0.7, among them AGTR1, CD36, FHL5 and DUOX1 had Module

Membership greater than 0.8, which demonstrated the crucial role

of the five key genes in salmon module. AGTR1, CD36, FHL5 and

DUOX1 had gene significance greater than 0.8 in lung tumor, while

SSR4 had gene significance greater than 0.7, which revealed that

these key genes were strongly associated with LUAD.

Then, further validation was conducted on the 5 key genes. The

ROC results revealed that the AUC values of the five key genes are

all greater than 0.9, which indicated a strong correlation between

key genes and LUAD. We also compared the effects of smoking and

5 key genes on LUAD using ROC analysis, and the results revealed a

higher relationship between the 5 key genes and LUAD.

Subsequently, we performed Cox univariate regression analysis on

five key genes and their risk scores were calculated, which suggests

that DUOX1, CD36, AGTR1, FHL5 are risk factors for survival and

prognosis. Next, their ROC curves were plotted. Among them,

AGTR1 had the largest AUC value of 0.738 among the four key

genes, and the AUC values of the other three genes were all less than

0.7, which reveals that AGTR1 is a key feature of survival and

prognosis in LUAD patients. Further, according to the risk score,

the survival curve of AGTR1 indicated that the high-risk group

exhibited notably greater mortality compared to the low-risk group.

In addition, AGTR1 was also significantly down-regulated in LUAD

samples obtained from TCGA. The qRT-PCR results showed that

AGTR1 was downregulated in A549, H1975, and H1299 cell lines.

A549, H1975, and H1299 cell lines were derived from tumor tissues

of LUAD patients with different degrees of metastasis and genders,

which indicated that AGTR1 is downregulated in LUAD cells with

different genetic backgrounds. So AGTR1 was identified as a key

gene for further analysis in this study.
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genes of DEGs and hub module genes were mainly related to

response to hormone, circulatory system process, vasculature

development, pathways in cancer, Relaxin signaling pathway,

GPCR ligand binding, signaling by GPCR, metabolism of lipids,

innate immune system and so on. Cancer cells are “transformed

cells” with a series of genetic and epigenetic mutations that enable

them to self-renew, proliferate, lose control of apoptosis, migrate,

invade, and ultimately form tumors (18). Abnormal activation of

pathways in cancer can lead to abnormal proliferation and

dysregulation of apoptosis control in LUAD cells (19). In this

process, abnormal lipid metabolism may provide the necessary

energy and metabolic substrates for the growth, invasion, and

metastasis of LUAD cells. Recent studies have found that

accumulation of iron-dependent lipids through peroxidation can

cause regulated cell death which is associated with the occurrence of

LUAD (20). During the process of proliferation and migration of

tumor cells, oxygen and nutrients are also necessary substances for

the development of LUAD, which rely on vasculature development

and circulatory system process. They can not only provide sufficient

oxygen and nutrients for LUAD cells from surrounding tissues, but

also provide migration channels for tumor migration (21). During

the occurrence of LUAD, cancer stem cells (CSCs) can effectively

invade blood vessel lumen and survive in circulation. CSCs migrate

to other sites through the bloodstream, and then de-differentiate

into CSCs with tumorigenic potential (22). Hormone response also

plays a crucial part in LUAD cell proliferation and invasion.

Researches has shown that estrogen can upregulate osteopontin

(OPN) expression and promote lung cancer cell migration and

growth by activating the MEK/ERK signaling pathway through

Estrogen Receptor Beta (ERb) (23, 24). Moreover, INSL4, a member

of the relaxin family, promotes the proliferation and aggressiveness

of LUAD cells by upregulating the MAPK and AKT signaling

pathways (25). In addition, during the proliferation and invasion

of tumors, the immune system plays a crucial defensive role by

detecting and eliminating abnormal cells, including LUAD cells,

while abnormal immune recognition promotes tumor development.

GPCR ligand binding and signaling by GPCR are currently a hot

topic in cancer immunology research, and some members of GPCR

have been found to act as prognostic factors in diversified cancers.

By activating downstream genes in GPCR ligand binding and

signaling by GPCR, immune infiltration and anti-tumor effects of

immune cells can be promoted in LUAD tissues (26). In addition,

GPCRs have several key functions including regulation of cell

motility, growth, and differentiation, which also have an impact

on LUAD development (27). In summary, the intersection genes

take part in the proliferation and migration of LUAD cells, and also

participate in immune processes, which showed a high correlation

with LUAD.

Further enrichment analysis reveals that AGTR1 has a strong

correlation with LUAD. AGTR1 is a member of the seven-

transmembrane-spanning G-protein coupled receptor

superfamily. Multiple studies showed that the renin-angiotensin

system (RAS) plays an important role in lung cancer (28). AGTR1

gene is an important component of the RAS system, which can
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encode the angiotensin II receptor type 1 (AT1R). High expression

of AGTR1 has been found to be linked with less lymph node

metastasis and mesenchymal-epithelial transition factor (MET)

mutations. It is also related to the anti-tumor immune

microenvironment characterized by immune cell infiltration (28).

In addition, AGTR1 participates in pathways of GPCR ligand

binding and signaling by GPCR to mediate cell growth and

proliferation (27). These results suggest that AGTR1 may impact

on the occurrence and development of LUAD through

multiple pathways.

The relationship between immune cells and LUAD was

described using immune infiltration analysis. The results of this

study showed that compared to normal samples, LUAD samples

exhibited higher abundance of memory B cells, plasma cells and

resting dendritic cells. In contrast, M2 macrophages, neutrophils

and resting natural killer cells were under expressed in LUAD

samples. The involvement of immune dysfunction in the

pathogenesis of lung cancer has been extensively studied (29).

Memory B cells and plasma cells both originate from activated B

cells and play a significant role in immune defense in the body.

Memory B cells are key reservoirs for plasma cell generation (30).

Memory B cells store the information of antibodies produced after

the first contact with antigens. Once they encounter the same

pathogen again, memory B cells can rapidly differentiate into

plasma cells and produce a large number of antibodies to cope

with pathogen invasion, thus achieving the effect of immune

protection (31). This mechanism plays an important role in

LUAD. Dendritic cells (DC cells) recognize pathogens in the

innate immune system and activate immune cells in the adaptive

immune system (32, 33). DC cells can detect homeostatic

imbalances, and process antigens to present them to T cells for

activating T cell responses (2, 29). Macrophages are a major type of

immune cell that is divided into M1 and M2 types. Among them,

M2 macrophages are often involved in the repair and recovery of

wound or inflammatory sites (34). M2 macrophages can participate

in anti-inflammatory responses and repair damaged tissues. They

can be activated by immune complexes, TLR ligands,

glucocorticoids, or IL-10, to exert their anti-inflammatory

functions and alleviate tissue damage (35). Neutrophils, a form of

white blood cell, are the body’s initial defense against infections.

They can quickly reach the site of infection or inflammation and kill

pathogens through immune stress such as phagocytosis and

digestion (36). The function of neutrophils is relatively complex.

These cells can not only promote lung cancer carcinogenesis

through angiogenesis and metastasis, but also limit tumor growth

by producing anti-tumor and cytotoxic mediators (29). Natural

killer cells (NK cells), a type of lymphocytes, have a crucial role in

defending the body against viral infections and tumor cells (37).

When NK cells come into contact with target cells, they send toxin

vesicles into the target cells through cell spikes, which causes the

target cells to dissolve. In addition, NK cells also secrete IFN-g, IL-2,
and other multiple cytokines, which regulate and promote the

activities of other immune cells, thereby improving immune

response and inhibiting tumor development (38). In summary,
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and resting dendritic cells play a normal defensive role in LUAD,

and the immune response of M2 macrophages, neutrophils and NK

cells to the tumor is suppressed, which promoted the progression

of LUAD.

Further correlation analysis revealed that AGTR1 exhibits a

strong correlation with the immune stroma, immune

microenvironment, and immune cells. In immune cells, AGTR1

exhibited a positive correlation with M2 macrophages and

neutrophils, while displaying a negative correlation with memory

B cells and plasma cells. These immune cells that are correlated with

AGTR1 are consistent with those that exhibit abundance differences

between the case and control groups. As a receptor for angiotensin

II (Ang II), which is a biologically active substance produced by a

part of RAS, AGTR1 can activate macrophages by binding with Ang

II, resulting in the production of inflammatory mediators such as

cytokines and chemical mediators. This leads to exacerbated

inflammatory response and triggers immune reactions, ultimately

inhibiting tumor formation (39). Ang II is also present in

neutrophils, and when it binds with AGTR1, it can enhance the

activity of neutrophils, thus eliminating tumor cells (40). In

conclusion, AGTR1 can regulate the macrophages and

neutrophils through its ligand Ang II, thereby influencing the

occurrence and development of LUAD. Our research indicates

that downregulation of AGTR1 leads to a decrease in M2

macrophages and neutrophils, suppressing their immune

functions and facilitating the progression of LUAD. However,

memory B cells and plasma cells still exhibit high expression in

LUAD, which suggesting that AGTR1 does not affect the activation

of memory B cells and plasma cells, and their role in tumor

immunity. Further validation through immune chemokine,

immune checkpoint and immune regulatory factors analysis

revealed that AGTR1 shows a positive correlation with PECAM1

and ADARB1, and a negative correlation with SPP1 and ENO1.

Platelet endothelial cell adhesion molecule 1 (PECAM1), also

named CD31, is a differentiation antigen expressed on the surface

of granulocytes, monocytes, and platelets (41). Research has shown

that PECAM1 expression is positively correlated with neutrophils

and macrophages. PECAM1 can also regulate the expression of

vascular endothelial growth factor (VEGF), which plays a crucial

part in the development of LUAD (42). Adenosine deaminase

RNA-specific B1 (ADARB1), also named ADAR2, is an

adenosine-to-inosine (A-to-I) RNA editing enzyme that has been

found to play a crucial role in the development of cancer. Research

suggests that according to research, there is a positive correlation

between ADARB1 and NK cell expression in cancer, which plays a

part in inhibiting the development and metastasis of LUAD (43,

44). Secreted phosphoprotein-1 (SPP1), also known as osteopontin.

It is expressed in macrophages and enhances the migratory and

invasive capabilities of LUAD cells by upregulating the expression

of COL11A1. SPP1 is also enriched in cell adhesion, PI3K-Akt

signaling pathway, and ECM-receptor interaction in the study of

LUAD, which reveals that SPP1 plays an important role in LUAD

(42, 45). Enolase 1 (ENO1), also known as alpha-enolase, is a
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multifunctional cancer protein which is widely expressed in

multiple cell types. The glycolytic function of ENO1 is involved

in relieving cell energy regulation, maintaining tumor proliferation,

and inhibiting apoptosis of cancer cells. ENO1 can also induce

regulatory T cells (Tregs) to promote cancer development by

suppressing anti-tumor immune responses. Additionally, ENO1

may mediate the PI3K/AKT pathway and its downstream

signaling pathways to affect tumor cell activity (46). Therefore,

our study showed that downregulation of AGTR1 could

downregulate the expression of PECAM1 and ADARB1, which

suppresses the immune functions of neutrophils, macrophages, and

NK cells, while upregulating the expression of SPP1 and ENO1,

which promotes the immunosuppressive function of Tregs cells.

Furthermore, the dysregulation of PECAM1 and SPP1 affects cell

migration, which promoted the development of LUAD.

Nevertheless, the specific regulatory mechanisms of AGTR1 on

PECAM1, ADARB1, SPP1, and ENO1 have not been discovered yet

and require further investigation.

In summary, in our study, based on WGCNA, machine learning

methods, ROC and COX analysis, the key gene related to LUAD,

AGTR1, was identified. Further functional enrichment and immune

analysis revealed that AGTR1, as a receptor of Ang II, inhibits the

growth and proliferation of LUAD cells through GPCR ligand binding

and signaling by GPCR. Additionally, AGTR1 also activates M2

macrophages and neutrophils by binding with Ang II, which is

crucial for tumor immune response. Further analysis reveals a strong

correlation between AGTR1 and immune checkpoints, as well as

immune chemokines. Hence, downregulation of AGTR1 in LUAD

leads to immune suppression and it also promotes the growth and

proliferation of LUAD cells, which facilitating the development of

LUAD. Based on these findings, AGTR1 is considered to be an

important biomarker in LUAD and a potentially valuable therapeutic

target for further research.

Next, to gain deeper insights into the regulatory mechanism of

AGTR1 on LUAD, we constructed a CeRNA regulatory network. In

this study, we identified six miRNAs associated with AGTR1.

Current studies have shown that as a tumor suppressor, has-miR-

124-3p may inhibit the progression of a variety of tumors, including

NSCLC (47, 48). Has-miR-155-5p is up-regulated in LUAD tissues,

which may affect the occurrence and prognosis of LUAD (49). In

addition, hsa-miR-34a-5p can induce cell cycle arrest and apoptosis

by regulation of p53, and can participate in the tumorigenesis of

prostate cancer cells through the SIRT1/TP53 axis (50). Has-miR-

410-3p has anti head and neck squamous cell carcinoma effects

(51). But the role of these miRNAs on LUAD is unclear. Moreover,

we also reversely predicted lncRNA associated with microRNA.

LncRNA HCG18 has been reported to act as an oncogene in LUAD

and enhance LUAD development by targeting the miR-34a-5p/

HMMR axis (52). LncRNA TTN-AS1 can facilitate the malignant

progression of LUAD by regulating miR-142-5p/cyclin-dependent

kinase 5 signaling pathway (2, 13). Some studies indicate that

targeting PCBP1-AS1 enhances the therapeutic responsiveness of
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(13, 53). In conclusion, the ceRNA network further confirmed the

influence of AGTR1 on the occurrence and prognosis of LUAD.

In addition, we also predicted potential effective therapeutic drugs

for LUAD. We obtained 13 overlapping potential agents targeting

AGTR1 from the DGIdb and CTD databases, all of which have been

used in the clinic. Cyclosporin can reduce secondary brain injury by

inhibiting mitochondrial permeability transition (54). Candesartan,

Benazepril, Valsartan, Eprosartan, Olmesartan Medoxomil,

Telmisartan, Irbesartan, Captopril and Perindopril are commonly

used angiotensin-converting enzyme inhibitor (ACEI) or angiotensin

receptor antagonist (ARB), which can be used to treat cardiovascular

diseases such as hypertension and heart failure (55–63). What’s more,

Nirendipine can be combined with ACE to treat diseases such as

hypertension (64). Indomethacin can be used to improve recovery in

patients with traumatic brain injury (65). Among them, Candesartan,

Benazepril, Valsartan, Epsartan, Olmesartan Medoxomil, Telmisartan,

and Irbesartan have relatively minor side effects, including headache,

dizziness, and hyperkalemia. They usually do not cause dry cough and

are more tolerable for chemotherapy patients. Therefore, they may

become a promising potential chemotherapy drug for treating LUAD

by targeting AGTR1. However, no relevant studies on LUAD have

been found for these drugs. Our findings may provide a basis for

exploring effective drugs to treat LUAD.
5 Conclusions

In this study, five key genes, AGTR1, CD36, DUOX1, FHL5 and

SSR4, associated with LUAD were identified through WGCNA and

three machine learning methods. Furthermore, AGTR1 is

considered as a key gene through ROC, COX and qRT-PCR

analysis. Functional and immune analysis revealed that AGTR1 is

strongly associated with hormone response and circulatory system,

and can inhibit the development of LUAD by regulating cell growth

and proliferation. In addition, AGTR1 may well exert inhibitory

effects on LUAD by regulating immune cells, immune chemokines,

immune checkpoints, and immune regulatory factors. Therefore,

AGTR1 can be a novel potential biomarker for diagnosis and

treatment of LUAD. However, the pathogenic molecular

mechanism of AGTR1 in LUAD needs to be further explored

through cell, animal, and clinical experiments, which helps us

further clear out the role of AGTR1 in LUAD and investigate the

pathogenesis of LUAD.
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