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Background: For esophageal squamous cell carcinoma (ESCC), universally

accepted pathological criteria for classification by differentiation degree are

lacking. Tumor budding, single-cell invasion, and nuclear grade, recognized as

prognostic factors in other carcinomas, have rarely been investigated for their

correlation with differentiation and prognosis in ESCC. This study aims to

determine if pathological findings can predict differentiation degree and

prognosis in ESCC.

Patients and methods: This study reviewed tumor slides from 326 patients who

underwent surgery for ESCC between 2007 and 2012. Tumors were evaluated

for subtypes, tumor nest size, tumor stroma, and nuclear grade (nuclear diameter

and mitosis) across different differentiation groups. Overall survival (OS) and

disease-free survival (DFS) were estimated using the Kaplan-Meier method, with

group differences assessed using the stratified log-rank test and Cox proportional

hazards model.

Results: Themean values of tumor budding invasion margins in well, moderately,

and poorly differentiated groups were 25.3%, 30.7%, and 36.3%, respectively.

Mean tumor budding/10HPFs were 8.0, 10.3, and 13.0, respectively. Well-

differentiated tumors showed more keratinizing subtypes, smaller tumor

budding invasion margins, more Grade 1 tumor budding (0-4 cells), absence of

single-cell invasion, larger nuclear diameter (≥5 lymphocytes), higher mitotic

counts, more submucosal invasion, and less lymphovascular invasion.

Conversely, poorly differentiated tumors exhibited opposite characteristics.

Multivariate analyses identified the nuclear diameter as independent prognostic

factors for OS and DFS.
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Conclusions: Pathological features can stratify the differentiation landscape in

ESCC patients. The nuclear diameter (4 lymphocytes) can help predict prognosis

in ESCC than other pathological features.

Implications for practice:We first time report the mean values of tumor budding

invasion margins and tumor budding/10HPF in well, moderately, and poorly

differentiated groups for esophageal squamous cell carcinoma. The landscape of

well differentiation was depicted with more keratinizing subtypes, smaller tumor

budding invasion margins, more Grade 1 tumor budding (0-4 cells), absence of

single-cell invasion, larger nuclear diameter (≥5 lymphocytes), higher mitotic

counts, and less lymphovascular invasion. The nuclear diameter as independent

prognostic factors for prognosis. The findings indicate that pathological features

can stratify the differentiation landscape in ESCC patients and offer novel insight

into definition of well or moderately differentiation.
KEYWORDS

differentiation, pathological features, esophageal squamous cell carcinoma, nuclear
diameter, prognosis
Background

No universally accepted histological classification exists for

esophageal squamous cell carcinoma (ESCC), leading to the

adaptation of lung squamous cell carcinoma (LSCC) grading systems

based on keratinization levels for ESCC. The distinction of well and

moderate differentiation is not so clear thus hard to define the absolute

well or moderate differentiation. Comprehensive pathological analyses

in LSCC have led to a proposed grading system that aids prognosis

prediction (1, 2). However, an equivalent system for ESCC that predicts

clinical outcomes has yet to be established.

Tumor budding, identified by isolated small tumor nests of fewer

than five cells at the invasive tumor edge, is a known prognostic

indicator initially for colorectal cancer (3, 4). Single-cell invasion, a

subtype of tumor budding, correlates with reduced overall survival in

LSCC (1). In contrast, in ESCC, tumor budding relates to lymph node

metastasis and the effectiveness of neoadjuvant chemotherapy but not

single-cell invasion (5, 6). Moreover, the size of tumor nests, with

minimal tumor nest (MTN) size at the invasive tumor front (ITF), is

considered a poor prognostic factor in head and neck squamous cell

carcinomas (7). MTN can be subclassified according to the cell

number, that is the single cell invasion and nest tumor cells

including large nest (≥15 tumor cells), intermediate nest (5–14

tumor cells), small nest (2–4 tumor cells) (1, 8). The ITF, different

biologically from the tumor center, often exhibits epithelial-

mesenchymal transition (EMT), enhancing migration and invasion

capabilities (9–11). Research on ITF in ESCC remains limited.

In terms of nuclear grading, such as mitotic count and nuclear

diameter has been established in breast cancer and lung

adenocarcinoma (12, 13). A higher mitotic count is an independent

predictor of recurrence in lung adenocarcinoma contrasting with LSCC
02
(14). Large nuclear diameters defined as greater than four small

lymphocytes have been associated with worse overall survival in

LSCC (1). Yet, a rigorous investigation into a grading system for

ESCC that predicts clinical outcomes is still lacking. We all know that

tumor progression is intricately linked with its microenvironment. The

tumor-stroma ratio (TSR), the proportion of tumor cells to stromal

cells within a tumor, is a prognostic indicator in several types of cancer,

including colon, breast, cervical, and non-small cell lung cancer. A

threshold to differentiate stroma-poor and stroma-rich always is 50%,

with a stroma-rich environment associated with a poorer prognosis—a

trend consistent across the cancers mentioned above (15–17). Yet, the

relationship between TSR, tumor differentiation, and the clinical

relevance of TSR in ESCC remains unexplored.

This study, involving a significant number of patients with

surgically resected ESCC, undertook a detailed analysis of

pathological factors, including histologic subtype, tumor budding,

tumor nest size, and nuclear grade, to evaluate their variations

across different degrees of differentiation. We also aimed to

determine whether any of these pathological factors could predict

clinical outcomes—overall survival (OS) and disease-free survival

(DFS)—independently of the pathological stage.
Methods

Patients

This retrospective study received the endorsement of the

Institutional Review Board at Fudan University Shanghai Cancer

Center (FUSCC). Our comprehensive review encompassed all

patients diagnosed with ESCC who were subjected to surgical
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resection from 2007 to 2012. Through diligent examination,

histologic evaluation was deemed feasible for 326 patients,

courtesy of the accessibility to their tumor slides. The

classification of disease stages was meticulously determined,

adhering to the the 7th edition of TNM Staging.
Histologic evaluation and criterion

All available H&E-stained slides underwent a thorough review by

the same experienced pathologist, Dr. L.Z., employing an Olympus

BX51 microscope (Olympus, Tokyo, Japan) with a standard 22-mm

diameter eyepiece. Tumors were graded by the degree of differentiation

into well, moderately, and poorly differentiated, in accordance with the

2004WHO classification of lung carcinomas. In the well-differentiation

criterion, tumor nests displayed prominent keratinization both in

layered formations and within the cytoplasm, alongside noticeable

intercellular bridges, hallmarking their well-differentiated status.

Conversely, poorly differentiated tumors were noted for presenting

squamous structures only in limited regions, indicating a significant

deviation from normal cell differentiation. Moderately differentiated

tumors demonstrated an intermediate level of differentiation that lies

between well and poorly differentiated tumors.
Frontiers in Oncology 03
Histologic subtyping of ESCC was classified according to the

2005 WHO Classification in nasopharyngeal carcinomas; that

identified tumors as nonkeratinizing, keratinizing, and basaloid

squamous cell carcinomas (18). The percentage of keratinizing

pattern, including layered (Figure 1A) and cytoplasmic

keratinization (Figure 1B), was recorded. The keratinizing subtype

was defined as greater than or equal to 5% keratinizing pattern of

the entire tumor whereas nonkeratinizing subtypes were defined as

having less than 5% keratinizing pattern (Figure 1C). The basaloid

subtype was distinctly identified by its pronounced peripheral

palisading of tumor cells, scant cytoplasm and an elevated

presence of hyperchromatic nuclei (Figure 1D). The basaloid

subtype was defined as the percentage of basaloid pattern greater

than 50% as previously recommended (19).

Upon conducting a thorough examination of the entire series of

tumor slides under intermediate-power magnification at ×100,

tumor budding and minimal cell nest were assessed within the

regions demonstrating the highest degree of invasiveness. Tumor

budding was defined as small tumor nests composed of less than

five tumor cells (Figures 2A, B), and they were counted both under 1

and 10 high-power fields (HPFs). Tumor budding invasion margin

was read and recorded under 10 HPFs. Tumor budding was

quantified two ways: (1) the maximum number of tumor budding
FIGURE 1

Histologic subtypes (hematoxylin and eosinstain; original magnification, x200: (A–D). (A) keratinizing subtype with layered keratin. (B) Keratinizing
subtype with cytoplasmic keratinization. (C) Nonkeratinizing subtype. (D) Basaloid subtype.
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per HPF among the 10 HPFs (maximum budding/1 HPF) and (2)

the total number of tumor budding of 10 HPFs (total budding/10

HPFs). In line with methodologies from existing literature, the

smallest invasive tumor nest was classified into cell nest (composed

of >1 tumor cell) and single cell invasion (Figure 2C). The size of the

smallest tumor nest was assessed two ways: (1) the tumor nests in

entire tumor area and (2) the tumor nests infiltrating the

tumor edge.

The primary tumor’s 5-mm thick, hematoxylin and eosin (HE)-

stained slides underwent microscopic analysis. The proportion of

stromal tissue within the most invasive tumor region was

systematically graded in increments of 10%, utilizing a 10×

objective. This grading necessitated the visibility of tumor cells at

all four peripheries of the field being viewed. Based on this analysis,

the tumor-stroma ratio (TSR) was categorized as either stroma-

poor (with less than 50% stroma content) or stroma-rich (with

stroma content equal to or exceeding 50%).

Evaluation of nuclear features was performed at ×100

magnification to identify the regions exhibiting the most

pronounced abnormal nuclear characteristics. The initial step

involved scanning all tumor slides to select at least three HPFs

showcasing the largest nuclear diameters. The criteria for nuclear

size were aligned with LSCC, wherein nuclei considered ‘large’

exceeded the size of four small lymphocytes. Mitotic count was

evaluated in the zones displaying the highest mitotic activity and

was calculated per 10 HPFs (2.37 mm2 area) (20).
Frontiers in Oncology 04
Statistical analysis

The analysis of the relationships between variables was

conducted employing the c2 test for those that are categorical,

and the two-sample t-test was utilized for variables that are

continuous. This study delved into two critical endpoints: OS and

DFS. The calculation of both OS and DFS was executed through the

Kaplan-Meier method. The examination of the associations

between pathological factors and the survival rates was

thoroughly conducted using the log-rank test.

OS was defined as the period extending from the surgical

intervention to either the unfortunate event of death or the last

recorded follow-up. DFS was specifically defined concerning the

time until disease progression. Multivariate analyses were expertly

conducted using the Cox proportional hazards regression model

with Forward LR method. For each of the two outcomes, the

multivariate models incorporated all significant factors that were

identified through rigorous univariate analyses. Any associations

between pathological factors were checked, and if there were any

strong associations discovered, only one factor was included into

the model for analysis.

All statistical tests conducted in this study were two-sided,

adhering to a 5% significance level as the threshold for

determining statistical significance. Statistical analyses were

performed using R (version 3.0.1; R Development Core Team)

with the “maxstat,” “survival,” and “cmprsk” packages.
FIGURE 2

Tumor budding and single cell invasion (hematoxylin and eosin-stain; original magnification, ×40: A, ×400: (C, D). (A) Tumor budding identified in
invasive tumor edge. (B) Higher magnification of a square box showing tumor budding composed of less than five tumor cells (arrows). (C) Single
cell invasion of tumor cells in stroma (arrows). (D) Large nuclei defined as greater than four small lymphocytes in diameter.
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Results

Patient clinical characteristics

The study included 326 patients with a median age of 60 years

(range, 37–76 years). The majority was male (87.7%). Pathological

stages II and III were the most common, accounting for 54% and

40.2% of patients, respectively. Regarding the N stage, 39.9% of

patients were classified as N0, while 60.1% had positive lymph node

metastasis (N+). Nearly half (50.6%) exhibited moderate

differentiation, with well and poor differentiation at 21.5% and

27.9%, respectively. The tumor lesion located in the middle thoracic

esophagus account for 57.7% of cases. Vascular and perineural

invasions were reported in 43.6% and 51.2% of patients.

Throughout the study, 56.4% of patients (n = 184) experienced a

recurrence, and 50.6% (n = 165) died from related and unrelated

causes. The median follow-up was 42.2 months (range, 0.11–110.3

months), with a 5-year overall survival (OS) rate of 47%. The

patient characteristics and their associations with prognosis were

summarized in Table 1.
Associations between histological and
nuclear factors and differentiation

Pathological features’ correlations were analyzed across

different differentiation groups. In the well-differentiated group,

94.3% exhibited a keratinizing pattern, compared to 52.2% in the

poorly differentiated group. Nonkeratinizing patterns were

significantly more prevalent in poorly differentiated tumors

(45.7%) than well-differentiated ones (5.7%). Basaloid patterns

were rare, found in only three patients, all within the moderately

differentiated group.

The mean tumor budding invasion margin was significantly

higher in the poorly differentiated group than in the well-

differentiated group (36.3% vs. 25.3%, P<0.05, Table 2). Similarly,

the number of tumor budding cells over 10 HPFs was more

significant in poorly differentiated tumors (13 vs. 8.8, P<0.05).

Based on tumor budding grading used in colon cancer (G1: 0-4

cells, G2: 5-9 cells, G3: ≥10 cells, Supplementary Figure S1), the

proportion of G3 in poorly differentiated tumors was nearly double

that in well-differentiated tumors (55.6% vs. 31.8%) under 10 HPFs

(P<0.05, Table 2). The G1/G2/G3 grades distribution across well,

moderate, and poorly differentiated groups showed no clear pattern,

suggesting that ESCC tumor budding grading may differ from

colon cancer.

Single-cell invasion and tumor nest presence were assessed in ITF

areas, with single-cell invasion rates of 60.9%, 74.5%, and 72.5% in

well, moderate, and poorly differentiated groups, respectively. Tumor

nest presence were 39.1%, 25.5%, and 27.5%, respectively, with no

significant difference between groups (P=0.10, Table 2). Nuclear

diameter varied significantly across differentiation groups, with small

diameters (≤4 lymphocytes, Supplementary Figure S2) observed in

41.4%, 97%, and 93.4% of well, moderate, and poorly differentiated
Frontiers in Oncology 05
tumors, respectively. Large diameter defined as ≥5 lymphocytes

(Figure 2D) occur 58.6%, 3% and 6.6% in well, moderate and poorly

differentiated groups, respectively (P<0.001, Table 2).

Mitotic counts varied significantly among differentiation groups

(P<0.05), with mean counts of 25, 14.9, and 17.6 in well, moderate,

and poorly differentiated groups, respectively. Using 15 as the cutoff

value, based on criteria from LSCC, higher mitotic counts were

more frequent in well-differentiated tumors (60%) than lower

counts (40%). However, in middle differentiation group, more

mitotic counts were reduced in comparison of less mitotic counts

(40.1%vs. 59.9%). No difference of mitotic counts was observed in

poor differentiation group (Table 2).

The mean stroma proportion in three groups was 24.1%, 25.5%,

and 23.6%, respectively, showing no significant difference.

According to previous research in LSCC, TSR was categorized as

stroma poor (<50% stroma) or stroma rich (≥50% stroma). This

analysis revealed no significant difference in TSR across

differentiation groups in ESCC, with similar proportions of

stroma poor or rich among well, moderate, and poorly

differentiated groups (Table 2).

Significantly more submucosa invasion (T1 stage) was observed

in the well-differentiated group compared to the poorly

differentiated group (18.6% vs. 2.2%, P<0.05). Muscularis propria

invasion (T2 stage) was more common in poorly differentiated

tumors (60%) than in well-differentiated ones (28.6%). However,

the incidence of adventitia invasion (T3 stage) did not significantly

differ between groups. As a recurrence risk factor, perineural

invasion rates were similar across all differentiation groups: 54.3%

in well, 46.6% in moderate, and 57.6% in poorly differentiated

tumors, indicating no significant difference. Lymphovascular

invasion, a predictor of recurrence and metastasis, was nearly

double in the poorly differentiated group compared to the well-

differentiated group (55.4% vs. 27.1%, Table 2).
Correlations between histological and
nuclear factors and
clinicopathological features

All the correlation analysis was summarized in Supplementary

Table S1. Keratinizing subtypes were associated with more G1

tumor budding in the ITF, larger nuclear diameters, and N0 stage

(P<0.05). Nonkeratinizing subtypes correlated with more G2/G3

tumor budding, smaller nuclear diameters, and positive lymph node

status (N+). G1 tumor budding was linked to poor stroma and the

absence of lymphovascular invasion (P<0.05). Single-cell invasion

in ITF correlated with smaller nuclear diameters, deeper invasion,

and more lymphovascular invasion (P<0.05). Smaller nuclear

diameters were associated with fewer mitotic counts, deeper

invasion, and increased lymphovascular invasion (P<0.05).

No significant correlations were found between mitotic counts

and TSR, invasion depth, perineural invasion, lymphovascular

invasion, T stage, or N stage. Fewer mitotic counts were only

correlated with smaller nuclear diameters. Stroma’s poor status
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was associated with tumor budding, superficial invasion, absence of

perineural invasion, early T stage (T1 + 2 vs. T3 + 4), and more

lymph node metastasis. TSR was the only histological or nuclear

factor correlating with the T and N stage.

In our current analysis, no significant correlation of single cell

invasion in ITF and T stage and N stage (T1-2 vs. T3-4, P=0.11 and

N(0) VS. N (+), P=0.05, respectively, Supplementary Table S1),

suggesting a lack of significant correlation between single-cell

invasion and TNM staging.
Frontiers in Oncology 06
Histological and nuclear features and their
associations with OS and DFS

The OS curve based on differentiation was showed in Figure 3.

The associations between the histological, nuclear features and

prognosis were summarized in Table 3. A notable result was the

improved OS and DFS associated with the presence of

keratinization (P = 0.03 and 0.04, respectively, Figures 4A, D).

Regarding the invasion margin, with a mean value of 31% and using
TABLE 1 Patient characteristics and their associations with prognosis.

Overall Survival Disease Free Survival

N (%) 5-Year
OS

P N (%) 5-Year
DFS

P

Sex 0.07 0.27

Male 286 87.7 44.7 286 87.7 34.1

Female 40 12.3 58.2 40 12.3 47.2

Age 0.99 0.45

≤60 180 55.2 49.7 180 55.2 37.1

>60 146 44.8 44.6 146 44.8 33.8

T stage

T1-2 138 42.3 52.7 0.18 138 42.3 39.5 0.53

T3-4 188 57.7 43.0 188 57.7 33.1

N stage <0.01 <0.01

N0 130 39.9 68.1 130 39.9 57.4

N(+) 196 60.1 32.4 196 60.1 19.1

Differentiation <0.01 0.001

High 70 21.5 67.6 70 21.5 54.3

Middle 165 50.6 45.2 165 50.6 34.3

Low 91 27.9 33 91 27.9 25.8

Site(7th) 0.69 0.94

Upper thoracic 68 20.9 44.3 68 20.9 33.7

Middle thoracic 188 57.7 45.2 188 57.7 35.3

Low thoracic 70 21.5 54.6 70 21.5 38.8

TNM stage <0.01 <0.01

I 19 5.8 79.4 19 5.8 75.2

II 176 54 59.2 176 54 48.3

III 131 40.2 26.4 131 40.2 12.9

Vascular invasion 0.001 0.002

Yes 142 43.7 36.9 142 43.7 28.1

No 183 56.3 55.9 183 56.3 42

Perineural invasion 0.012 0.05

Yes 167 51.5 40.5 167 51.5 31.1

No 157 48.5 52.9 157 48.5 40.4
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TABLE 2 Pathologic features under differentiation landscape.

Differentiation

Well Middle Poor

N % Average N % Average N % Average P

Subtype

Keratinizing 66 94.3% 129 78.7% 48 52.2% <0.05

Nonkeratinizing 4 5.7% 34 20.7% 42 45.7%

Basaloid pattern 0 0.0% 1 0.6% 2 2.2%

Tumor budding invasion margin(%) 25.3 30.7 36.3 <0.05

Tumor budding (1HPF) 3.0 3.1 3.8 <0.05

G1 52 78.8% 135 81.8% 59 64.8% <0.05

G2 13 19.7% 30 18.0% 30 33.0%

G3 1 1.5% 0 0.0% 2 2.2%

Tumor budding (10HPFs) 8.8 10.3 13.0 <0.05

G1 26 39.4% 47 28.8% 21 23.3% <0.05

G2 19 28.8% 54 33.1% 19 21.1%

G3 21 31.8% 62 38.1% 50 55.6%

Tumor nest-edge

single cell present 42 60.9% 123 74.5% 66 72.5% NS

nest cells 27 39.1% 42 25.5% 25 27.5%

Tumor nest-entire

single cell present 48 69.6% 140 84.8% 76 83.5% <0.05

nest cells 21 30.4% 25 15.2% 15 16.5%

Nuclear diameter

≤4 Lymc. 29 41.4% 160 97.0% 85 93.4% <0.001

≥5Lymc. 41 58.6% 5 3.0% 6 6.6%

Mitotic count 25.0 14.9 17.6 <0.05

<15 28 40.0% 97 59.9% 45 50.6% <0.05

≥15 42 60.0% 65 40.1% 44 49.4%

Tumor-Stroma Ratio(%) 24.1 25.5 23.6 NS

<50% 60 85.7% 146 88.5% 77 84.6% NS

≥50% 10 14.3% 19 11.5% 14 15.4%

Invasion depth

submucosa 13 18.6% 17 10.4% 2 2.2% <0.05

muscularis propria 20 28.6% 90 54.9% 54 60.0%

adventitia 37 52.9% 57 34.8% 34 37.8%

Perineural invasion

No 32 45.7% 87 53.4% 39 42.4% NS

Yes 38 54.3% 76 46.6% 53 57.6%

(Continued)
F
rontiers in Oncology
 07
 fron
tiersin.org

https://doi.org/10.3389/fonc.2024.1442212
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Deng et al. 10.3389/fonc.2024.1442212
a cutoff of 40%, no significant differences in 5-year OS and DFS

were observed. Similarly, no significant difference in 5-year OS and

DFS was noted when using 5 buds/HPF as the cutoff. However, with

a cutoff of 5 buds per 10 HPFs, patients with high-grade tumor

budding (≥5 buds/10 HPFs) exhibited significantly worse 5-year

DFS compared to those with low-grade budding (<5 buds/10 HPFs;

P = 0.05, Figures 4B, E). A beneficial trend toward better 5-year OS

was observed, although it was not statistically significant.

The analysis also revealed that the presence of single-cell

invasion in the ITF did not significantly impact 5-year OS and

DFS (P > 0.05, Table 3). Nuclear diameter, categorized into small

(≤4 lymphocytes) and large (>5 lymphocytes), showed that patients

with larger nuclear diameters had better OS and DFS than those

with smaller diameters. Specifically, the 5-year OS rate for patients

with larger nuclear diameters was 53.6%, compared to 32.7% for

those with smaller diameters (P = 0.006, Figures 4C, F). Larger

nuclear diameters were also associated with the absence of

lymphovascular invasion.

The mean value of mitotic count and TSR in ESCC are 17.8 and

24.7%. No significant difference in 5-year OS and DFS was observed

based on mitotic counts and the TSR, using cutoff values 15 for

mitotic counts and 50% for TSR according to the criteria in the
Frontiers in Oncology 08
LSCC (P>0.05). The presence of lymphovascular invasion and

perineural invasion were associated with a worse OS and DFS in

univariate analysis (P<0.05, Table 3).
Multivariate analysis of OS and DFS

In the univariate analysis, factors such as histological subtype,

nuclear diameter, perineural invasion, and lymphovascular invasion

were strongly associated with OS (P < 0.05). The same factors and

tumor budding were associated with DFS (P < 0.05). These risk

factors were included in the multivariate analysis for OS and DFS,

which identified the nuclear diameter as independent factors

affecting both OS and DFS. The study did not find independent

prognostic significance for tumor budding or single cell invasion.

The analysis results were summarized in the Table 4.
Discussion

We identified pathological features across differentiation

landscapes in ESCC. Characteristics such as the keratinizing
FIGURE 3

The overall survival (OS) according to the differentiation.
TABLE 2 Continued

Differentiation

Well Middle Poor

N % Average N % Average N % Average P

Lymphovascular invasion

No 51 72.9% 92 56.1% 41 44.6% <0.05

Yes 19 27.1% 72 43.9% 51 55.4%
fron
Bold values mean P<0.05.
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subtype, smaller tumor invasion margins, more G1 tumor budding,

absence of single cell invasion, larger nuclear diameters, higher

mitotic counts, shallower infiltration, and less lymphovascular

invasion were more likely to occur in well-differentiated ESCC.

But poorly differentiated ESCC exhibited conversely.
Frontiers in Oncology 09
Regarding tumor budding invasion margin, previous few studies

have reported in ESCC. In our study, the invasion margins for well,

moderate, and poorly differentiated ESCC were 25.3%, 30.7%, and

36.3%, respectively, providing valuable data for pathologists

determining the degree of differentiation. A universally accepted
TABLE 3 Pathologic features and their associations with prognosis.

OS DFS

N % 5-year OS P N % 5-year DFS P

Subtype

Keratinizing 242 74.5% 48.7% 0.03 241 74.4% 37.8% 0.04

Nonkeratinizing/Basaloid 83 25.5% 39.6% 83 25.6% 28.2%

Tumor budding invasion margin(%) 0.49 0.73

<40 199 61.0% 48.6% 198 60.9% 39.2%

≥40 127 39.0% 44.1% 127 39.1% 29.8%

Tumor budding (1HPF) 0.60 0.23

<5 246 76.4% 47.5% 190 59.2% 39.1%

≥5 76 23.6% 43.3% 131 40.8% 29.6%

Tumor budding (10HPFs) 0.21 0.05

<5 94 29.5% 49.1% 93 29.2% 43.0%

≥5 225 70.5% 45.7% 225 70.8% 33.0%

Tumor nest-edge

single cell present 231 71.1% 46.3% 0.99 231 71.3% 35.3% 0.81

nest cells 94 28.9% 48.0% 93 28.7% 35.7%

Nuclear diameter

≤4 Lymc. 274 84.0% 44.6% 0.07 274 84.3% 32.7% 0.006

≥5 Lymc. 52 16.0% 59.0% 51 15.7% 53.6%

Mitotic count 0.54 0.82

≤15 173 53.9% 45.7% 173 54.1% 35.7

>16 148 46.1% 48.8% 147 45.9% 35.6

Tumor-Stroma Ratio(%)

<50% 283 86.8% 46.4% 0.42 282 86.8% 35.1% 0.23

≥50% 43 13.2% 50.6% 43 13.2% 39.3%

Invasion depth

submucosa/muscularis propria 196 60.5% 48.7% 0.54 195 60.4% 35.4% 0.65

adventitia 128 39.5% 44.4% 128 39.6% 36.3%

Perineural invasion

No 157 48.5% 52.9% 0.01 157 48.6% 40.4% 0.05

Yes 167 51.5% 41.3% 166 51.4% 29.9%

Lymphovascular invasion

No 183 56.3% 55.9% 0.001 182 56.2% 42.0% 0.002

Yes 142 43.7% 36.9% 142 43.8% 28.1%
fron
OS, overall survival; DFS, disease free survival.
Bold values mean P<0.05.
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cutoff for tumor budding in ESCC has yet to be established.We found

mean values of tumor budding per HPF in well, moderate, and poorly

differentiated tumors to be 3.0, 3.1, and 3.8, respectively, and the

values under 10 HPFs to be 8.8, 10.3, and 13, respectively.

Referring to tumor budding grades in colon cancer, our analysis

showed that more G3 tumor budding per 10 HPFs occurred in

poorly differentiated tumors (55.6% vs. 31.8% in well-differentiated

tumors). We can see that the poor differentiation is associated with

more giant tumor budding invasion margins and more tumor

budding cells (under 10 HPFs), nearly double that in well-
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differentiated tumors. In prognostic analysis, fewer tumor buds

under 10 HPFs correlated with better DFS. Previous research has

identified tumor budding as a prognostic factor in endometrioid

endometrial cancer, colon cancer, and gastric cancer (21–23).

However, the cutoff value varies across studies, even within the

same pathological tumor type for LSCC (1, 24). Kadota et al. defined

low (0–9 buds/10 MPF) and high tumor budding (≥10 buds/10

MPF), while Weichert et al. categorized budding into low (0/10

MPF), intermediate (1–14 buds/10 MPF), and high (≥15 buds/10

MPF) groups.
FIGURE 4

Prognosis based on pathological features. (A–D) overall survival (OS) and disease free survival (DFS) under different subtype; (B–E) OS and DFS under
different tumor budding; (D–F) OS and DFS under different nuclear diameter.
TABLE 4 Multivariate analysis of overall survival and disease free survival.

OS DFS

HR 95%CI P HR 95%CI P

Subtype Keratinizing vs. Nonkeratinizing 1.23 0.87-1.76 0.242 1.14 0.82-1.60 0.446

Tumor budding <5/HPF vs. ≥5/HPF 0.96 0.65-1.41 0.823 0.88 0.61-1.27 0.476

Tumor budding <5/10HPF vs. ≥5/10HPF 1.19 0.82-1.74 0.368 1.36 0.94-1.95 0.104

Nuclear diameter ≤4 Lymc. vs. ≥5 Lymc. 0.59 0.36-0.96 0.035 0.48 0.28-0.80 0.005

Perineural invasion No vs. Yes 1.29 0.92-1.80 0.14 1.16 0.85-1.59 0.358

Lymphovascular invasion No vs. Yes 1.10 0.78-1.55 0.585 1.04 0.75-1.43 0.823

Pathological stage II vs. I 0.23 0.09-0.63 0.004 0.14 0.05-0.45 0.001

III vs. I 0.39 0.28-0.53 <0.001 0.40 0.30-0.54 <0.001
fr
HPF, High power field; Lymc., lymphocytes.
Bold values mean P<0.05.
ontiersin.org

https://doi.org/10.3389/fonc.2024.1442212
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Deng et al. 10.3389/fonc.2024.1442212
Regarding the classification of MTN, they were divided into

four categories: large nest (≥15 tumor cells), intermediate nest (5–

14 tumor cells), small nest (2–4 tumor cells), and single-cell

invasion (1, 24). Our analysis focused on MTN at the ITF. It

revealed that single-cell invasion was more common than tumor

nests in ESCC (mean value 70.9% vs. 29.1%). Previous research has

demonstrated that a markedly lower 5-year DFS for patients

exhibiting single-cell invasion compared to those presenting with

small cellular clusters in lung cancer (1, 25).

Tumors that exhibit single cell invasion are identified as

exceedingly malignant that is different from less malignant invasive

cancers, which may present with either large or small tumor nest

components. Our findings indicated that single-cell invasion is more

prevalent in poorly and moderately differentiated tumors than in

well-differentiated ones (72.5-74.8% vs. 60.9%), aligning with

observations in LSCC. However, the employing small tumor

clusters of ≤15 tumor cells as a histologic risk model in head and

neck squamous cell carcinomas did not serve as a prognostic

indicator for ESCC in our study (7).The difference of OS and DFS

either based on the single cell invasion or the tumor nest presence

were both not significant. This is the first time to identify the clinical

significance of the single cell invasion and tumor nest in the ESCC. Of

course, the value of single cell invasion in the ESCC warrants further

validation. Notably, Kadota et al. identified single-cell invasion as an

independent prognostic factor. However, it did not hold the same

significance in stage I patients, suggesting a correlation between

single-cell invasion and tumor stage (1). In the current analysis, the

single cell invasion in the ITF did not correlate with T stage

categorical variable (T1-2 vs. T3-4) and N stage. In other words,

single cell invasion did not show significant correlation with TNM

stage. Maybe this is the reason that single cell invasion did not play as

the independent prognostic factor. Consistent with another research,

single-cell invasion was also associated with lymphovascular invasion

in our cohort. The incidence of single-cell invasion was significantly

higher in specimens with lymphovascular invasion than those

without (92.1% vs. 78.3%), highlighting its potential role in

assessing tumor aggressiveness and metastatic potential (2).

Previous studies have typically used a 50% cutoff value to

differentiate stroma-poor and stroma-rich tumors. In Wang’s

comprehensive study, it was meticulously observed that the three-

year OS and DFS rates exhibited a marked increase in the stroma-

poor cohort (26). In our analysis, no significant correlation between

TSR and prognosis might be attributed to differences in sample sizes

between studies (95 in Wang Kai’s study versus 326 in ours). Most

specimens in our cohort were stroma-poor (86.8%) compared to

stroma-rich (13.2%), based on the 50% cutoff. The proportion

difference between stroma-poor and stroma-rich in Wang’s

research was 68.4% to 31.6%, which was not as pronounced in

our analysis. TSR, a crucial component of the tumor

microenvironment, may facilitate tumor cell proliferation and

contribute to tumor progression (27, 28).

Regarding nuclear features, such as nuclear diameter and

mitotic count, established grading systems exist for kidney and
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breast cancers (29, 30). In the current analysis, we found more large

nuclei in well differentiation and more small nuclei in poor

differentiation. The small nuclear diameter was significantly

associated with lymphovascular invasion. And patients with small

nuclear diameter had worse DFS and OS. The results was same with

lung adenocarcinoma but different from the LSCC where large

nuclei was independently associated with a worse OS; but this was

done after stratifying by pathologic stage (1). Our results showed

that nuclear diameter may predict prognosis in multivariate

analysis. In further analysis, the nuclear diameter will be verified

in large cohort of pathologic specimen.

For mitotic count, using a cutoff of 15/HPF, we observed that a

higher mitotic count was more likely in well-differentiated tumors

and associated with larger nuclear diameters. Yet, the mitotic count

did not serve as a prognostic factor for OS and DFS in ESCC,

echoing findings in LSCC (1, 2). In contrast, lung adenocarcinoma

studies have shown that the recurrence-free probability of patients

with high mitotic count (≥5/10 HPF) was the lowest followed by

intermediate (2-4/10 HPF) and low (0-1/10 HPF, P<0.001) (20). We

can see that the cut-point is different in lung squamous cell

carcinoma and adenocarcinoma (15 vs.5). The mean value of

mitotic counts in the ESCC is 17.8. If we choose 5 as the cut-

point, the sample size in each group varied significantly thus

analyzed deviation will be significant.

In the multivariate analysis of OS and DFS, except for TNM

stage, only nuclear diameter was identified as independent

prognostic factors. Pathological characteristics such as pathologic

subtype, and tumor budding despite showing significant prognostic

value in univariate analyses, did not emerge as prognostic factors in

the multivariate analysis for ESCC. Although in the LSCC, total

tumor budding (HR = 1.04), single cell invasion in the entire tumor

(HR = 1.47), and single cell invasion in the tumor edge (HR = 1.49)

were found to be independent prognostic factors for worse

prognosis. However, tumor budding and single cell invasion were

significantly associated with other prognostic factors (such as TNM

stage and lymphovascular invasion), and the HRs hovering close to

1 suggest limited clinical utility (1). This highlights an urgent call for

further identification of tumor budding and single-cell invasion in

clinical prognostication.

There are some limitations in the present study. Our

investigation is a retrospective study. There was no opportunity

to evaluate the basaloid squamous cell carcinoma because of the

rare incidence. The single cell invasion in ESCC did not play as the

prognostic factor like in the grading systems for the LSCC and other

cancers. The point has been to be validated in different, larger

cohorts in future.

In conclusion, our research delineated the pathological features

across different differentiation landscapes in ESCC. Well-

differentiated tumors were likelier to exhibit a keratinizing

subtype, more G1 tumor budding, larger nuclear diameter, higher

mitotic counts, superficial tumor infiltration, and less

lymphovascular invasion. Conversely, poor differentiation was

characterized by more G2/3 tumor budding. The average tumor
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budding invasion margin was 25.3% in well-differentiated tumors,

compared to 36.3% in poorly differentiated ones. These findings can

aid pathologists in determining tumor differentiation. In the

prognosis multivariate analysis, nuclear diameter based on the

cut-off value with 4 lymphocytes proved to be more predictive of

OS and DFS than other pathological features, including subtype,

tumor budding, single-cell invasion, and tumor stroma.
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Tumor budding grade according to the colon cancer criteria. (A) G1; (B) G2,

(C) G3.
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Nuclear diameter. The circle represents four lymphocytes. The red arrows
represent small nuclear diameter. The black arrows represent large

nuclear diameter.
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Correlations between pathologic features.
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