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Background: Ubiquitination is one of the most prevalent and complex post-

translational modifications of proteins in eukaryotes, playing a critical role in

regulating various physiological and pathological processes. Targeting

ubiquitination pathways, either through inhibition or activation, holds promise

as a novel therapeutic approach for cancer treatment. However, the expression

patterns, prognostic significance, and underlying mechanisms of ubiquitination-

related genes (URGs) in sarcoma (SARC) remain unclear.

Methods: We analyzed URG expression patterns and prognostic implications in

TCGA-SARC using public databases, identifying DEGs related to ubiquitination

among SARC molecular subtypes. Functional enrichment analysis elucidated

their biological significance. Prognostic signatures were developed using LASSO-

Cox regression, and a predictive nomogram was constructed. External validation

was performed using GEO datasets and clinical tissue samples. The association

between URG risk scores and various clinical parameters, immune response,

drug sensitivity, and RNA modification regulators was investigated. Integration of

data from multiple sources and RT-qPCR confirmed upregulated expression of

prognostic URGs in SARC. Single-cell RNA sequencing data analyzed URG

distribution across immune cell types. Prediction analysis identified potential

target genes of microRNAs and long non-coding RNAs.

Results: We identified five valuable genes (CALR, CASP3, BCL10, PSMD7,

PSMD10) and constructed a prognostic model, simultaneously identifying two

URG-related subtypes in SARC. The UEGs between subtypes in SARC are mainly

enriched in pathways such as Cell cycle, focal adhesion, and ECM-receptor

interaction. Analysis of URG risk scores reveals that patients with a low-risk score

have better prognoses compared to those with high-risk scores. There is a

significant correlation between DRG riskscore and clinical features, immune

therapy response, drug sensitivity, and genes related to pan-RNA epigenetic
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modifications. High-risk SARC patients were identified as potential beneficiaries

of immune checkpoint inhibitor therapy. We established regulatory axes in SARC,

including CALR/hsa-miR-29c-3p/LINC00943, CASP3/hsa-miR-143-3p/

LINC00944, and MIR503HG. RT-qPCR data further confirmed the upregulation

of prognostic URGs in SARC. Finally, we validated the prognostic model’s

excellent predictive performance in predicting outcomes for SARC patients.

Conclusion: We discovered a significant correlation between aberrant

expression of URGs and prognosis in SARC patients, identifying a prognostic

model related to ubiquitination. This model provides a basis for individualized

treatment and immunotherapy decisions for SARC patients.
KEYWORDS

ubiquitination, sarcoma, prognostic signatures, bioinformatics analysis,
immunotherapy response
1 Introduction

Sarcomas are rare, heterogeneous malignant tumors originating

from mesenchymal tissue, comprising less than 1% of all solid

malignancies (1). Current treatments primarily include surgery,

(neo)adjuvant chemotherapy, and/or radiotherapy (2). Despite

standard therapies, clinical outcomes for metastatic or locally

advanced sarcomas remain limited, with conventional treatments

leading to non-durable responses and a survival rate of

approximately 12 to 18 months (3). Immunotherapy has shown

significant success in various solid tumors, providing promising

treatment options (4–6). However, most sarcomas are “cold”

tumors with minimal immune cell infiltration, potentially leading

to poor immunotherapy responses (7). Combined immunotherapy

has demonstrated efficacy in certain sarcoma subtypes, including

alveolar soft part sarcoma, angiosarcoma, and undifferentiated

pleomorphic sarcoma (8–10). Therefore, exploring the

mechanisms of immune infiltration in sarcomas and combining

immune checkpoint inhibitors (ICIs) with targeted therapies or

chemoradiotherapy may offer new strategies for treating sarcomas.

Ubiquitin (Ub) is a small protein composed of 76 amino acids,

widely present in most eukaryotic cells. It plays a crucial role in

various cellular processes, including cell cycle progression, signal

transduction, transcription regulation, receptor down-regulation,

and endocytosis (11). Ubiquitination, an essential post-translational

modification, involves an ATP-dependent cascade reaction,

attaching Ub to substrate proteins (12, 13). While the ubiquitin-

proteasome system primarily degrades intracellular target proteins,

some ubiquitinated proteins perform non-degradative functions,

such as gene transcription, expression, and DNA damage repair.

Abnormal ubiquitination can contribute to tumor development and

progression (14, 15). Tumor metastasis remains a leading cause of

death in sarcomas and other malignancies. The extensive role of

ubiquitination in tumor invasion and metastasis warrants further
02
investigation. This study aims to explore the role of abnormal

ubiquitination in SARC development, providing new insights for

diagnosis and treatment.

In this study, we conducted a comprehensive bioinformatics

analysis of URGs in SARC, examining their expression and

prognostic implications, as well as their relationship with the

tumor microenvironment. We developed a novel prognostic

signature based on five URGs and constructed a ceRNA

regulatory network. Our findings aim to enhance treatment

strategies and prognostic evaluations for SARC.
2 Materials and methods

2.1 Data sources and preprocessing

We obtained transcriptomic data of SARC samples from the

GSE17674 dataset in the GEO database (https://www.ncbi.

nlm.nih.gov/geo/) (16). Differential expression analysis between

44 SARC samples and 18 normal samples was performed using

the “limma” package in R (v3.40.2) (17) (Supplementary Table 1).

Adjusted P-values were used to correct for false positives, with

DEGs selected based on |fold change (FC)| = 1.5 and adj.P-value <

0.05. Volcano plots were generated using the “ggplot2” R package

(v4.2.1). Principal Component Analysis (PCA) plots were created

with the “ggord” package to assess group differences. Using the

GeneCards database (https://www.genecards.org/) (18), we

searched for ubiquitination-related genes (URGs) with the

keyword “Ubiquitination Related Genes.” In the GeneCards

database, each gene is assigned a relevance score to evaluate its

correlation with various elements, including chemical substances

and diseases. A higher score indicates a stronger statistical

correlation between the gene and the relevant components. Genes

with a relevance score greater than 5 were included in the analysis
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(19), resulting in a total of 1,055 ubiquitination-related genes

identified. (Supplementary Table 2). Additionally, 1794 immune-

related genes (IRGs) were obtained from the Immunology Database

and Analysis Portal (ImmPort) (https://www.immport.org/home)

(20) (Supplementary Table 3). We used the “VennDiagram”

package in R(v4.2.1) (21) to visualize the overlap of DEGs, IRGs,

and URGs, identifying differentially expressed URGs (DEURGs).

RNAseq data and clinical information for SARC, including 260

SARC samples and 2 normal samples, were integrated from the

Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) (22).

Protein-protein interaction (PPI) network analysis of URGs was

conducted using STRING (https://string-db.org/, version 11.5)

(23). Data, normalized as Transcripts Per Million (TPM), were

analyzed using the “ggplot2” R package (v4.2.1), and gene

expression data were extracted to construct a data matrix,

analyzed via Wilcoxon test.
2.2 Subtype establishment

We extracted immune-related DEURGs from the TCGA

expression matrix and performed consensus clustering analysis

using the R package ConsensusClusterPlus (v1.54.0) (24). The

maximum number of clusters was set to 6, with 100 repetitions

and 80% resampling of the total samples (clusterAlg = “hc”,

innerLinkage = ‘ward.D2’). Clustering heatmaps were generated

using the R package pheatmap (v1.0.12), retaining genes with

variance above 0.1. Based on URG expression profiles, TCGA

cases were classified into two clusters (K=2), labeled as C1 and C2.
2.3 Identification and enrichment analysis
of differentially expressed genes

Differential expression analysis between C1 and C2 subtypes

was conducted using the Limma package (v3.40.2) in R. DEGs were

identified with the criteria of “Adjusted P < 0.05 and log2(fold

change) > 1.5 or log2(fold change) < -1.5.” Heatmaps were drawn

using the “heatmap” package in R (v4.2.1). Functional enrichment

of DEGs was performed using the “clusterProfiler” R package

(v3.18.0) (25), analyzing Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways. GO

enrichment analysis encompassed Biological Process (BP),

Cellular Component (CC), and Molecular Function (MF). Gene

set enrichment analysis (GSEA) (http://software.broadinstitute.org/

gsea/index.jsp) (26) identified potential biological pathways, with

significant pathways defined by p.adjust < 0.05 and FDR < 0.25.
2.4 Genetic alteration analysis

Gene Set Cancer Analysis (GSCA) (http://bioinfo.life.hust.edu.cn/

GSCA/#/) integrated expression, mutation, drug sensitivity, and

clinical data from four public sources for 33 cancer types. Somatic

mutations in SARC patients were downloaded and visualized using

the maftools package in R, covering seven mutation types:
Frontiers in Oncology 03
Missense_Mutation, Multi_Hit, Frame_Shift_Del. We analyzed

the correlation between URG mRNA expression and CNV/

methylation, and their impact on survival outcomes, including

Disease Free Interval (DFI), Disease Specific Survival (DSS),

Overall Survival (OS), and Progression Free Survival (PFS). The

cBioPortal (http://www.cbioportal.org/index) (27) was used to

visualize genetic alterations and their effects on survival outcomes.
2.5 Construction of the URG
prognostic model

Kaplan-Meier curves, P-values, and hazard ratios (HR) with

95% Confidence Intervals (CI) were obtained via logrank test

and univariate Cox regression. Significant URGs affecting SARC

prognosis (CALR, CASP3, BCL10, PSMD7, PSMD10) were

identified. Expression and diagnostic efficiency of URGs

were validated in SARC using GSE21122, GSE17674, and

GSE36001 datasets. A prognostic model was developed using

LASSO-Cox regression analysis, with risk scores calculated as:

Riskscore=∑iCoefficient(mRNAi)×Expression (mRNAi). Patients

were categorized into low- and high-risk subtypes based on

average risk scores. Kaplan-Meier analysis and timeROC analysis

assessed survival differences and model accuracy. Subsequently, we

validated the accuracy of the URG risk model using the

aforementioned formula by randomly dividing SARC patients

from the TCGA-SARC dataset into two validation sets: Validation

Set 1 (n = 130) and Validation Set 2 (n = 130). The external

validation cohort included GSE21257, GSE17674, GSE16091, and

clinical SARC tissue samples (28, 29), further confirming the

previous results. Univariate and multivariate Cox regression

analyses, visualized with forest plots, showed each variable’s

impact (including P-value, HR, and 95% CI). A nomogram

predicting 1, 3, and 5-year survival rates was established using the

“rms” R package (v4.2.1).
2.6 Immune cell infiltration and
immunotherapy response analysis

The “ggstatsplot” R package (v4.2.1) analyzed the abundance of

immune cells infiltrating tumors for five prognostic URGs,

including B cells, CD4+ T cells, CD8+ T cells, Neutrophils,

Macrophages, and Myeloid dendritic cells. Reliable immune

scoring was performed using the”immunedeconv” R package

(v4.0.3) (30) and six algorithms: TIMER (31), xCell (32), MCP-

counter (33), CIBERSORT (34), EPIC (35), and quantTIseq (36).

The ssGSEA method in the “GSVA” R package (v4.2.1) (37)

quantified the infiltration levels of 24 common immune cell types.

Differences in immune cell infiltration levels between high- and

low-expression groups were analyzed using the Wilcoxon rank sum

test, and correlations between URG expression and immune cell

infiltration were assessed with Spearman analysis. The ESTIMATE

algorithm estimated immune and stromal cell abundance and

tumor purity. Expression of immune checkpoint genes and HLA

members was analyzed and visualized using the “ggplot2” and
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“pheatmap” R packages (v4.2.1). Spearman correlation analysis,

visualized with the “circlize” package (v0.4.1), examined

relationships between URG expression, immune checkpoints, and

HLA members. TIDE algorithm predicted potential responses to

immune checkpoint blockade (38), validated using GSE91061,

IMvigor210 datasets, and clinical samples.
2.7 TMB, MSI, mRNAsi, and drug
sensitivity analysis

Clinical application of our signature was explored by comparing

TMB and MSI scores between high- and low-risk groups using the

Wilcoxon rank sum test, visualized with “ggplot2” R package

(v4.2.1). Optimal TMB cutoff values were calculated using the

“surv_cutpoint” function in the “survminer” R package (v4.2.1),

dividing patients into low- and high-TMB/MSI groups. Kaplan-

Meier survival curves compared OS between these groups. Drug

response prediction utilized GDSC (https://www.cancerrxgene.org/)

and CTRP (https://portals.broadinstitute.org/ctrp/) databases.

Chemotherapy drug IC50 values were estimated with the

“pRRophetic” R package (v4.0.3) (39), integrating drug sensitivity

and gene expression profiles from GDSC and CTRP databases.
2.8 Single cell analysis

The Tumor Immune Single Cell Center (TISCH, http://

tisch.comp-genomics.org/) (40) was utilized to investigate the

expression of prognostic URGs in different single-cell

subpopulations within the tumor microenvironment (TME) of

SARC patients. TISCH focuses on single-cell RNA sequencing

(scRNA-seq) data specific to the TME, offering detailed cell type

annotations across various cancer types. In this study, the dataset

SARC_GSE119352_aPD1aCTLA4 from TISCH was analyzed,

providing t-SNE plots and heatmaps to illustrate the impact of

URGs on the SARC tumor microenvironment. The dataset

encompasses three primary cell types: immune cells, stromal cells,

and malignant cells.
2.9 Pan-RNA epitranscriptomic
gene selection

The expression differences of m6A, m5C, m1A, and m7G

related genes between high and low-risk groups in 260 SARC

samples were analyzed using the Wilcoxon test and visualized

with the “ggplot2” package in R (v4.2.1). The correlation between

prognostic URGs and these RNA modifications was also examined.

The expression matrices included:
Fron
- m6A genes: RBM15B, VIRMA, HNRNPA2B1, YTHDF3,

IGF2BP3, HNRNPC, RBM15, RBMX, METTL14,

YTHDC2, METTL3, ZC3H13, WTAP, YTHDF1,

YTHDC1, FTO, YTHDF2, ALKBH5.
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- m5C genes: DNMT1, DNMT3A, DNMT3B, MBD1, MBD2,

MBD4, MECP2, TDG, UHRF1, UHRF2, UNG, ZBTB33,

ZBTB38, ZBTB4, TET1, TET2, TET3.

- m1A genes: TRMT10C, TRMT61B, TRMT6, TRMT61A,

ALKBH3, ALKBH1, YTHDC1, YTHDF1, YTHDF2, YTHDF3.

- m7G genes: AGO2, CYFIP1, DCP2, DCPS, EIF4A1, EIF4E,

EIF4E3, EIF4G3, GEMIN5, IFIT5, LARP1, LSM1, NCBP1,

NCBP2, NCBP3, NSUN2, NUDT11, SNUPN, WDR4.
2.10 Prediction of potential microRNA and
long non-coding RNA target genes

Candidate miRNAs were identified and their potential targets

were predicted using ENCORI (http://starbase.sysu.edu.cn/) (41),

RNAInter (http://www.rnainter.org/) (42), miRDB (http://

mirdb.org) (43), and RNA22 (https://cm.jefferson.edu/rna22/

interactive) (44). These selected miRNAs were termed potential

miRNA target genes. Additionally, potential lncRNAs were

predicted using ENCORI and miRNet (http://www.mirnet.ca/)

(45). A regulatory network comprising mRNA-miRNA and

miRNA-lncRNA interactions was constructed using Cytoscape

(version 3.7.1; http://www.cytoscape.org/) (46). The correlations

and prognostic values of these candidate miRNAs and lncRNAs in

SARC were further validated through ENCORI, TCGA-SARC, and

the Kaplan-Meier plotter database.
2.11 Human specimens

The study included tissue samples from 32 pairs of sarcoma and

corresponding normal tissues, specifically comprising osteosarcoma

(n=6), liposarcoma (n=4), leiomyosarcoma (n=6), and

undifferentiated pleomorphic sarcoma (n=16). Additionally, patient

follow-up information was provided by the Chaohu Hospital of

Anhui Medical University. The tissue specimens were formalin-

fixed and pathologically examined for definitive diagnosis. The

study was approved by the Ethics Committee of Chaohu Hospital

of Anhui Medical University (Approval No: KYXM-202403-014),

and informed consent was obtained from all patients. All experiments

complied with relevant guidelines and regulations.
2.12 RT-qPCR

Total RNAwas extracted from cultured cells using high-purity RNA

separation kits (Roche Diagnostics, Mannheim, Germany) and DNase I

(Roche Diagnostics, Sigma-Aldrich), following the manufacturer’s

instructions. RNA was reverse transcribed using the HiScript® II 1st

Strand cDNA Synthesis Kit (MR101-01, Vazyme, Nanjing, China).

Quantitative RT-PCR was performed using AceTaq® qPCR SYBR

Green Master Mix (Q121-03, Vazyme, China). The amplification

conditions were: pre-denaturation at 95°C for 30 seconds,

denaturation at 95°C for 5 seconds, annealing at 60°C for 30 seconds,
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for a total of 40 cycles. Primer sequences (Gene Pharma, China) are

listed in Supplementary Table 8. The mean cycle threshold (Ct) value of

each target gene was normalized to the housekeeping gene GAPDH, and

results were shown as fold change using the DDCt method.
2.13 Cell lines and culture conditions

The cell lines used in this study were 143B, SW982, SW872,

osteoblast cell line (hFOB1.19, Punosai, Wuhan, China), synovial

fibroblast (HFLS, Jennio Biotech, Guangzhou, China), and human

preadipocyte line (HPA-v, Sciencell). All cell lines were cultured in

Dulbecco’s Modified Eagle Medium (DMEM; Gibco, Grand Island,

NY, United States) supplemented with 10% fetal bovine serum

(Gibco, Grand Island, NY, United States), 100 U/ml penicillin, and

100 U/ml streptomycin (Invitrogen, Carlsbad, CA, United States).

The hFOB1.19 cell line was cultured at 34°C in an incubator with 5%

CO2, while the other cell lines were cultured at 37°C with 5% CO2.
3 Results

3.1 Identification of immune-related
differentially expressed URGs in SARC

The flowchart of the study is illustrated in Figure 1. Initially,

3117 differentially expressed genes (DEGs) were identified from the

GSE17674 dataset, comprising 2313 upregulated and 804

downregulated genes (Figure 2A). Principal component analysis

(PCA) indicated distinct transcriptomic profiles between the two

groups (Figure 2B). From the GeneCards database, 1055 URGs were

identified, while the ImmPort database provided 1793 IRGs. A total

of 24 overlapping immune-related differentially expressed URGs

were selected for further analysis (Figure 2C). Additionally, the

correlation of expression profiles of these 24 URGs was explored

using the TCGA database, revealing a significant positive

correlation among most URGs in SARC samples (Figure 2D).

Protein-protein interaction (PPI) network analysis using STRING

demonstrated close interactions among m7G-related proteins,

essential for the molecular mechanisms and metabolism of

malignancies (Figure 2E).
3.2 Identification and analysis of clusters of
URGs in SARC

Based on the expression levels of 24 URGs in SARC, consensus

clustering was performed on 260 SARC samples from the TCGA

database. The optimal number of clusters was determined to be 2

(k=2), classifying SARC patients into two clusters: C1 (N=224) and

C2 (N=36) (Figures 3A–D). Expression differences of the 24 URGs

between the two subgroups were validated using the TCGA dataset.

Compared to the C2 group, the C1 group showed upregulation of

CALR, CANX, HSPA4, HSPA5, PSMD7, PSMD10, TRIM5,

NEDD4, TRAF3, HDAC1, BCL10, AR, TUBB3, GRB2, CASP3,

and CBLB, while IRF3 and ISG15 were downregulated (Figure 3E).
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Kaplan-Meier survival analysis indicated worse overall survival

(OS) for C1 patients compared to C2, although the difference was

not statistically significant (Figure 3F).
3.3 Differential gene expression and
functional enrichment in SARC subtypes

The DEGs between the two SARC subtypes (C1 and C2) included

6152 upregulated and 423 downregulated genes. These differences were

visualized through a volcano plot (Figure 4A) and a heatmap

(Figure 4B). GO and KEGG enrichment analyses of the identified

DEGs were performed (Supplementary Table 4). GO enrichment

analysis revealed that biological processes (BP) were mainly associated

with cell-substrate adhesion, extracellular matrix organization, mitotic

nuclear division, stem cell populationmaintenance, cell cycle G1/S phase

transition, epithelial cell morphogenesis, and collagen fibril organization.

Cellular components (CC) included collagen-containing extracellular

matrix, focal adhesion, spindle, chromosomal region, endoplasmic

reticulum chaperone complex, and collagen trimer. Molecular

functions (MF) focused on extracellular matrix structural constituent,

cell adhesion molecule binding, collagen binding, growth factor binding,

and small GTPase binding (Figure 4C). KEGG pathway enrichment

indicated involvement in pathways such as focal adhesion, ECM-

receptor interaction, PI3K-Akt signaling pathway, phagosome, dilated

cardiomyopathy, and vascular smooth muscle contraction (Figure 4D).

GSEA pathway enrichment suggested associations of URG expression

with cell cycle, focal adhesion, pathways in cancer, ECM receptor

interaction, TGF-beta signaling pathway, GAP junction, ERBB

signaling pathway, and regulation of actin cytoskeleton (Figure 4E,

Supplementary Table 5).
3.4 Genetic alteration analysis

Using the GSCA database, the percentage map of single nucleotide

variants (SNVs) was analyzed, revealing a high mutation frequency for

FLNA. Oncoplot displayed SNVs for the top 7 genes amongURGs, with

APOBEC3G, CBLB, HSPA5, IRF3, NEDD4, TRIM5, and VIM each

showing a 14% mutation frequency (Figure 5A). Missense mutations

were the most common type (Figure 5B). Single nucleotide

polymorphisms (SNPs) were more frequent than deletions

(Figure 5C), with C>T being the most common SNV type

(Figure 5D). The median number of mutations per patient was found

to be 1 (Figure 5E). A box plot showed the number of occurrences for

each variant classification (Figure 5F). By recalculating the number of

mutations and considering multiple hits, the top 7 mutated genes were

identified (Figure 5G). Correlation analysis of URGs CNV and mRNA

expression from the GSCA database indicated a significant positive

correlation, while gene methylation levels showed a negative correlation

with mRNA expression (Figure 5H). Figure 5I showed that for some

URGs, CNV and methylation levels were significantly associated with

poor prognosis in SARC patients. Survival analysis from the cBioPortal

database indicated that genetic alterations in URGs were significantly

associated with shorter OS (p=0.010), PFS (p=0.0448), DFS (p=0.0275),

and DSS (p=7.565e-4) (Figure 5J).
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3.5 Identification of prognostic URGs
in SARC

Univariate Cox regression analysis was used to predict and screen

for prognostic URGs in SARC patients (Figure 6A). OS analysis

showed that high expression of BCL10, PSMD7, PSMD10, and VIM

was associated with lower survival rates. PFS analysis indicated that

high expression of CALR, CASP3, PPIA, and VIM predicted poor

prognosis in SARC. DSS analysis results demonstrated that high
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expression of BCL10 and PSMD10 was significantly associated with

poor prognosis (Figure 6B). Kaplan-Meier survival curves showed that

high expression of CALR (P=0.035, HR=1.54 (1.03-2.30)), CASP3

(P=0.018, HR=1.50 (1.07-2.09)), BCL10 (P=0.007, HR=1.703 (1.16-

2.60)), PSMD7 (P=0.031, HR=1.56 (1.04-2.33)), and PSMD10

(P=0.002, HR=1.91 (1.27-2.87)) was associated with lower survival

rates in SARC patients. The expression levels and diagnostic efficacy of

prognostic URGs were further validated using the GEO database. High

expression levels of prognostic URGs were significantly upregulated in
FIGURE 1

Flowchart of the present study.
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the GSE21122, GSE17674, and GSE36001 datasets compared to the

low-expression group (Figure 6C). In the GSE21122 dataset, the AUC

values for CALR, CASP3, BCL10, PSMD7, and PSMD10 were 0.996,

0.877, 0.855, 0.740, and 0.949, respectively. In the GSE17674 dataset,

the AUC values were 1.000, 1.000, 1.000, 0.996, and 0.966, respectively.

In the GSE36001 dataset, the AUC values were 0.851, 0.693, 0.807,

0.877, and 0.982, respectively (Figure 6D). The five prognostic URGs

(CALR, CASP3, BCL10, PSMD7, and PSMD10) demonstrated

consistently good sensitivity and specificity in diagnosing SARC. In
Frontiers in Oncology 07
conclusion, high expression levels of CALR, CASP3, BCL10, PSMD7,

and PSMD10 were identified as potential prognostic biomarkers

for SARC.
3.6 Prognostic model construction

Based on the expression profiles of potential prognostic biomarkers,

a prognostic model for sarcoma (SARC) patients was constructed using
FIGURE 2

Identification of differentially expressed URGs related to immunity. (A) Volcano plot of DEGs between SARC and normal samples in the GSE17674
dataset; (B) Principal component analysis of transcriptome profiles of differentially expressed genes between two groups; (C) Spearson correlation
analysis of 24 URGs expression in SARC; (D) Venn diagram showing the overlap between DEGs, URGs, and IRGs; (E) Protein-protein interaction (PPI)
network of URGs.
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LASSO Cox regression analysis, selecting Lambda.min to produce the

model with higher accuracy (Figures 7A, B). The risk score for overall

survival (OS) in SARC patients was calculated using the formula:

Riskscore=(0.3239)×CALR+(−0.1553)×CASP3+(0.2845)×BCL10

+(−0.1792)×PSMD7+(0.5715)×PSMD10. SARC patients were divided

into two groups based on their risk scores. Higher risk scores correlated

with increased mortality risk and decreased survival time (Figure 7C).

Kaplan-Meier curves indicated that patients with high-risk scores had

significantly lower OS compared to low-risk patients (median survival:

4.2 years vs. 7.2 years, log-rank p = 0.000415, HR = 2.09 (1.388-3.148))
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(Figure 7D). The 1-year, 3-year, and 5-year ROC curves had AUCs of

0.651, 0.642, and 0.681, respectively (Figure 7E). The same analysis was

conducted for progression-free survival (PFS) and disease-specific

survival (DSS). The PFS risk score formula was: Riskscore=

( 0 . 3 9 5 4 ) ×CALR+ ( 0 . 0 9 9 9 ) ×CASP 3+ ( 0 . 1 4 4 ) ×BCL 1 0

+(−0.2606)×PSMD7+(0.2986)×PSMD10. Higher risk scores

were associated with shorter PFS (median survival: 1.3 years

vs. 5 years, log-rank p = 0.000354, HR = 1.859 (1.323-2.611)), with 1-

year, 3-year, and 5-year ROCAUCs of 0.634, 0.7, and 0.664, respectively

(Supplementary Figure 1A). For DSS, the risk score formula was:
FIGURE 3

Identification of shared clusters based on the expression similarity of URGs. (A) Cumulative distribution function (CDF) (k = 2-6); (B) Relative change in
area under the CDF curve (k = 2-6); (C) Consensus clustering matrix (k = 2); (D) Heatmap of URGs expression in different subtypes; (E) Expression of 24
URGs between C1 and C2 subgroups; (F) Kaplan-Meier survival analysis based on two clusters. *p < 0.05, **p < 0.01, ***p < 0.001. n.s., no significance.
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Riskscore=(0.3292)×CALR+(0.1625)×BCL10+(−0.2173)×PSMD7

+(0.6185)×PSMD10. Patients with high risk scores had worse DSS

(median survival: 4.2 years, log-rank p = 3.76e-05, HR = 2.632 (1.661-

4.169)). The 1-year, 3-year, and 5-year ROC AUCs were 0.668, 0.648,

and 0.682, respectively (Supplementary Figure 1B). Thus, our URG-

related risk characteristics are significantly associated with SARC

patient survival.
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3.7 Internal and external validation of the
URGs prognostic signature

To verify the predictive value of the five gene characteristics, we

divided the entire TCGA dataset into validation sets. We found that

URGs exhibited a high predictive accuracy for overall survival (OS) in

both TCGA Validation Set 1 and TCGA Validation Set 2. Risk scores
FIGURE 4

Identification and functional enrichment analysis of DEGs between URGs subtypes. (A) Volcano plot of DEGs between C1 and C2 subtypes;
(B) Heatmap of DEGs between C1 and C2 subtypes; (C, D) GO and KEGG enrichment analysis of DEGs; (E) GSEA enrichment plot.
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were calculated for each patient in TCGA Validation Sets 1 and 2, and

patients were categorized into low-risk and high-risk groups based on

the median score. The distribution of risk scores, survival time, and

URGs expression for each SARC patient is illustrated in Supplementary

Figures 2A, B. In the validation sets, patients in the high-risk group had

significantly poorer OS compared to those in the low-risk group

(Supplementary Figures 2C, D). Finally, the one-year, three-year, and
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five-year survival AUCs for TCGA Validation Set 1 were 0.676, 0.655,

and 0.698, respectively (Supplementary Figure 2E), while the AUCs for

Validation Set 2 were 0.633, 0.614, and 0.661, respectively

(Supplementary Figure 2F). Then, the GSE21257, GSE17674, and

GSE16091 datasets were used as external validation cohorts. Risk

scores were calculated for each patient using the same formula,

yielding results consistent with the TCGA cohort. Risk score
FIGURE 5

Analysis of genetic alterations associated with URGs in SARC. (A) Distribution of mutation types in the first 7 URGs in SARC; (B-D) Variant
classification, variant type, SNV class; (E) Mutation burden per sample; (F) Variant classification summary; (G) Top 7 mutated genes in SARC;
(H) Relationship between CNV, methylation, and URGs expression; (I) Correlation between URGs CNV, methylation, and survival rates; (J) Association
between URGs alterations and shorter OS, PFS, DFS, and DSS in SARC patients.
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distribution, survival time, and URGs expression for each SARC patient

were visualized (Supplementary Figures 2G–I). In the validation set,

patients in the high-risk group had significantly worse OS than those in

the low-risk group (p = 0.040, p = 0.013, and p = 0.041) (Supplementary

Figures 2J–L). The AUCs for 1-year, 3-year, and 5-year OS were 0.658,

0.654, and 0.679 in the GSE21257 dataset, 0.628, 0.730, and 0.763 in the

GSE17674 dataset, and 0.829, 0.587, and 0.424 in the GSE16091 dataset,

respectively (Supplementary Figures 2M–O). These results confirm the

effectiveness of our risk scoring model in predicting SARC

patient survival.
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3.8 Construction of predictive nomogram

We constructed a predictive nomogram to estimate survival

probability. Univariate and multivariate regression analyses

identified age and race as independent prognostic factors for

SARC patients (Figures 8A, B). The nomogram’s predictions for

1-year, 3-year, and 5-year OS showed a good fit with the actual

outcomes in the entire cohort, with a C-index of 0.625 (0.536-1), p =

0.006 for OS and 0.62 (0.527-1), p = 0.012 for DSS (Figures 8C, D,

Supplementary Figure 3).
FIGURE 6

Identification and validation of prognostic URGs in SARC. (A) Univariate Cox regression analysis of prognostic URGs for OS, PFS, and DSS; (B) Survival
curves of high and low expression groups of prognostic URGs; (C, D) mRNA expression of prognostic URGs and ROC curves to evaluate their
diagnostic ability in SARC datasets. *p < 0.05, **p < 0.01, ***p < 0.001.
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3.9 Correlation of risk score with
clinicopathological characteristics

We explored the correlation between high and low-risk groups

and clinicopathological characteristics (Supplementary Table 6).

Subgroup survival analysis indicated that high-risk significantly

impacted survival in patients older than 60 years (P < 0.001),

male patients (P < 0.001), white patients (P = 0.002), those with

metastasis (P = 0.044), no radiation treatment (P < 0.001), those

receiving chemotherapy and hormone therapy (P < 0.001), and

those without neoadjuvant treatment (P < 0.001). However, no

significant correlation was found in females (P = 0.083), patients

aged ≤60 (P = 0.174), Asian+Black patients (P = 0.088), primary

+recurrence cases (P = 0.325), and those receiving radiation (P =

0.295) (Supplementary Figures 6A–L).
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3.10 Immune cell infiltration analysis

Using six algorithms, we observed differences in immune cell

infiltration between SARC subtypes C1 and C2. The CIBERSORT

algorithm indicated significant differences in T cell gamma delta,

NK cell activated, T cell CD8+, T cell follicular helper, macrophage

M2, T cell CD4+ memory resting, T cell regulatory (Tregs), myeloid

dendritic cell activated, and B cell memory (Figure 9A). Other

algorithms (TIMER, xCell, MCP-counter, quanTIseq, EPIC) also

showed significant differences in immune infiltration scores

between the subtypes (Supplementary Figures 4A–E). Correlation

analysis between risk scores and immunological scores using the

quanTIseq algorithm revealed significant associations with various

immune cell populations. Risk scores were negatively correlated

with B cells (p = 0.003, cor = -0.186), monocytes (p = 0.015, cor =
FIGURE 7

Construction of prognostic model based on URGs in SARC tissues. (A) LASSO coefficient curves of 5 URGs; (B) Ten-fold cross-validation error rate
plot; (C) Risk score plot for each SARC patient and distribution of survival time and expression of 5 URGs; (D) Overall survival curves for high/low-risk
groups of SARC patients; (E) Time-dependent ROC curves for OS at 1, 3, and 5 years.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1446522
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qin et al. 10.3389/fonc.2024.1446522
-0.151), and positively correlated with neutrophils (p < 0.001, cor =

0.269) and uncharacterized cells (p = 0.032, cor = 0.133) (Figure 9B,

Supplementary Figures 5A–E). The ssGSEA method showed

significant differences in immune cell infiltration between high

and low expression groups of CALR, CASP3, BCL10, PSMD7,

and PSMD10 (Supplementary Figure 7A). Correlation analysis

demonstrated positive correlations between CALR and TFH,

macrophages, neutrophils, and Th2 cells, and negative

correlations with pDC, NK cells, Tgd, mast cells, cytotoxic cells,

and B cells. Similar patterns were observed for the other URGs

(Supplementary Figure 7B). Further analysis of the correlation

between risk scores and three ESTIMATE scores indicated

significant negative correlations between risk scores and

ImmuneScore (P = 0.001, Cor = -0.197), StromalScore (P = 0.005,

Cor = -0.175), and ESTIMATE scores (P = 0.004, Cor = -0.180)

(Figure 9C). Low ImmuneScore and ESTIMATE scores were

associated with poor prognosis (Figure 9D), suggesting a

correlation between URGs and tumor immune infiltration.
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3.11 Immunotherapy response analysis

We analyzed differences in the expression of eight immune

checkpoint-related genes between the two subtypes. Results showed

that CTLA4 (P < 0.05), LAG3 (P < 0.001), and PDCD1 (P < 0.001)

were significantly higher in the C2 subtype compared to the C1

subtype (Figure 10A). Additionally, HLA members (HLA-A, HLA-

DMA, HLA-DMB, HLA-DOB, HLA-DPB1, HLA-DRB1, HLA-E,

and HLA-F) were more highly expressed in the C2 group compared

to the C1 group (Figure 10B). Further analysis revealed significant

positive correlations between prognostic URGs and several immune

checkpoints and HLA members (Figures 10C, D). CALR correlated

positively with HAVCR2 (P = 0.00841, cor = 0.162) and SIGLEC15

(P = 0.000217, cor = 0.226). CASP3 showed positive correlations

with PDCD1LG2 (P = 0.01107, cor = 0.156) and SIGLEC15 (P =

0.00111, cor = 0.200). BCL10 correlated positively with CD274 (P =

0.0424, cor = 0.125), CTLA4 (P = 0.00354, cor = 0.179), HAVCR2

(P = 1.12e-08, cor = 0.343), PDCD1LG2 (P = 0.000496, cor = 0.213),
FIGURE 8

Construction of prognostic nomogram for OS. (A, B) Univariate and multivariate Cox regression analysis of clinicopathological features and URGs for
OS; (C) Nomogram for predicting 1-, 3-, and 5-year OS of SARC patients; (D) Calibration curve of OS nomogram model in the discovery group.
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TIGIT (P = 8.59e-05, cor = 0.24), and SIGLEC15 (P = 3.54e-08, cor =

0.332). PSMD7 correlated positively with CD274 (P = 0.0143, cor =

0.151), CTLA4 (P = 0.0129, cor = 0.153), PDCD1LG2 (P = 0.0366,

cor = 0.129), and SIGLEC15 (P = 5.14e-06, cor = 0.277). PSMD10

showed negative correlations with PDCD1 (P = 0.00751, cor =

-0.164) and HAVCR2 (P = 0.00209, cor = -0.189). Additionally,

URGs expression correlated positively with most HLA members in

SARC (Figure 10D). Using the TIDE database and GSE91061,

IMvigor210 datasets, we predicted URGs ’ response to

immunotherapy. C2 subtype had a better response to immune

checkpoint blockade compared to the C1 subtype (Figure 10E).
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High-risk score patients showed higher predicted response rates to

immunotherapy than low-risk score patients (Figure 10F). The

high-risk group responded better to immune checkpoint blocking

than the low-risk group (Figure 10G). TIDE Dysfunction scores

were higher in the low-risk group (Figure 10H), and TIDE

Exclusion scores were lower in the low-risk group (Figure 10I).

Kaplan-Meier analysis showed that higher TIDE scores were

significantly correlated with poorer overall survival (Figure 10J).

In the GSE91061 and IMvigor210 datasets, URGs accurately

predicted immune therapy response with AUC values of 0.711

and 0.615, respectively (Figures 10K, L). High-risk patients in the
FIGURE 9

Relationship between URGs expression levels in tumor microenvironment and immune infiltration. (A) Comparison of immune scores between C1
and C2 subtypes in TCGA; (B) Correlation analysis between Riskscore and Immunocore; (C) Correlation between Riskscore and three ESTIMATE;
(D) Kaplan-Meier curves of high and low ESTIMATE groups in SARC. *p < 0.05, **p < 0.01, ***p < 0.001.
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GSE91061 cohort had worse overall survival compared to low-risk

patients (p = 0.046, HR = 0.60 [0.36 - 0.99]) (Figure 10M).

Validation in 32 advanced sarcoma patients treated with anti-PD-

1/PD-L1 showed that high expression of prognostic URGs and
Frontiers in Oncology 15
high-risk scores correlated with better immunotherapy response.

ROC analysis confirmed the predictive efficacy of the risk score

(Figures 10N, O). These findings suggest that low-risk score groups

are more likely to respond to immunotherapy.
FIGURE 10

Correlation between expression of prognostic URGs and immunogenicity. (A) Differences in immune checkpoint-related genes in SARC subtypes;
(B) Differences in HLA members between C1 and C2 subtypes; (C) Correlation between prognostic URGs in SARC and immune checkpoint-related
genes; (D) Association between prognostic URGs and HLA members; (E) Differential responses to immune checkpoint blocking in TIDE score
between C1 and C2 subtypes; (F) Prediction of response rates of immunotherapies in patients with URGs high and low riskscore; (G) Differential
reactions of URGs high and low riskscore groups to immune checkpoint blocking in TIDE score; (H, I) Differences of URGs high and low riskscore
groups in TIDE Dysfunction score and TIDE Exclusion score; (J) Correlation of TIDE scores with prognosis of SARC patients; (K, L) Prediction of
immune response and ROC analysis of URGs riskscore for prediction of ICI responsiveness in GSE91061, IMvigor210 dataset; (M) Kaplan-Meier plots
of overall survival for high and low risk patients in GSE91061 dataset; (N, O) URGs expression differences and ROC analysis for prediction of ICI
responsiveness in clinical tissue samples cohort; Riskscore differences and ROC analysis for prediction of ICI responsiveness in clinical tissue samples
cohort. *p < 0.05, **p < 0.01, ***p < 0.001.
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3.12 TMB, MSI, and mRNAsi analysis

We assessed the correlation between risk scores and TMB, MSI,

ESTIMATE, and mRNAsi scores. High-risk patients had higher

TMB, MSI, and mRNAsi scores compared to low-risk groups

(Figures 11A, B). Risk scores positively correlated with TMB (R =

0.189, p = 0.003), MSI (R = 0.189, p = 0.002), and mRNAsi (R =

0.184, p = 0.003) (Figure 11B). Survival analysis indicated that high

TMB (p = 0.039, HR = 1.77 [1.03 - 3.03]) and MSI scores (p = 0.015,

HR = 1.65 [1.10 - 2.47]) were associated with poor OS, but mRNAsi

scores were not significantly associated with prognosis (p = 0.163,

HR = 1.42 [0.87 - 2.32]) (Figure 11C). Combining risk scores with

TMB, MSI, and mRNAsi, we observed that patients with low TMB

+ low risk score had better OS compared to those with high TMB +

high risk score (p = 0.002). Similarly, high MSI + high risk patients

had worse prognosis compared to low MSI + low risk patients (p =

0.003), and low mRNAsi + low risk patients had better OS

compared to high mRNAsi + high risk patients (p < 0.001)

(Figure 11D). These results suggest that high-risk groups are

more likely to have an immune response and respond

to immunotherapy.
3.13 Drug sensitivity analysis

We analyzed drug sensitivity using the GDSC and CTRP

databases and found significant correlations between risk scores

and drug sensitivity (Figures 12A, B). Spearman correlation analysis

showed negative correlations between risk scores and the sensitivity

to Bleomycin (50 uM), CP466722, Docetaxel, Genentech Cpd 10,

GSK1070916, Methotrexate, Navitoclax, TG101348, and Vorinostat

(Figure 12C). High-risk SARC showed significantly higher

sensitivity to these drugs compared to the low-risk group

(Figure 12D). These drugs may be potential therapeutic options

for SARC.
3.14 Single-cell RNA data analysis

The tumor microenvironment (TME) consists of extracellular

matr ix (ECM), cancer-associated fibroblasts (CAFs) ,

myofibroblasts, immune cells, and other factors. Using two GSE

datasets (SARC_GSE119352_aPD1aCTLA4), we evaluated the

expression of CALR, CASP3, BCL10, PSMD7, and PSMD10 at

the single-cell level. The single-cell RNA sequencing analysis

annotated various immune cells, including Conventional CD4 T

cells (CD4Tconv), proliferating T cells (Tprolif), CD8 T cells

(CD8T), Natural killer cells (NK), Dendritic cells (DC),

Monocytes/Macrophages (Mono/Macro), and Fibroblasts

(Figures 13A, B). Prognostic URGs were expressed in all immune

cells, with the highest expression in Fibroblasts, followed by Tprolif,

Mono/Macro, and DC (Figure 13C). We further explored the

relationship between URGs and cancer-associated fibroblasts
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(CAFs), tumor-associated macrophages (TAMs), and their

biomarkers, finding extensive correlations (Figures 13D, E).

Additionally, we analyzed the impact of URGs expression on

EMT by examining correlations with EMT-related markers

(SNAI1, SNAI2, TWIST1, CDH2, VIM, MMP2, MMP9, MMP3),

revealing significant associations (Figure 13F). These results suggest

that URGs-mediated EMT may be related to fibroblast activation.
3.15 Pan-RNA epigenetic modification-
related gene expression

We investigated whether URGs expression was associated with

pan-RNA epigenetic modifications, analyzing the differential

expression of related genes between high- and low-risk groups.

Results showed significant differences in m6A, m5C, m1A, and

m7G modification genes between the groups, with higher

expression in the high-risk group (P < 0.01, Supplementary

Figure 8A). TCGA dataset analysis revealed significant

correlations between prognostic URGs and these modification

genes, notably with DNMT3B, EIF4G3, HNRNPA2B1, HNRNPC,

IGF2BP3, ZBTB33, YTHDF2, WDR4, UNG, UHRF1, and YTHDF3

(Supplementary Figure 8B), all of which were associated with poor

SARC prognosis (Supplementary Figure 8C). This indicates a close

relationship between URGs expression and methylation

modifications in SARC.
3.16 Prediction and validation of upstream
key miRNAs

In this study, we conducted a comprehensive prediction and

validation of upstream regulatory miRNAs for CALR, CASP3,

BCL10, PSMD7, and PSMD10 by integrating data from various

miRNA research databases. Initially, we identified 22 pairs of

CALR-miRNA and 14 pairs of BCL10-miRNA by intersecting the

ENCORI, RNA22, and RNAInter databases. Subsequently, through

the intersection of ENCORI, RNAInter, and miRDB databases, we

obtained 36 pairs of CASP3-miRNA, 21 pairs of PSMD7-miRNA,

and 16 pairs of PSMD10-miRNA. These data were utilized to

construct a potential miRNA-gene network using Cytoscape

software (Figures 14A, B). Furthermore, based on the classical

mechanism of miRNA-mediated gene expression regulation, we

expected a negative correlation between mRNA-miRNA

interactions. Subsequently, we employed the Pan-cancer

subproject of ENCORI database to screen for expression

correlations and prognostic implications of these candidate

miRNAs in SARC. Our analysis revealed significant negative

correlations for 1 pair of miRNA-BCL10, 2 pairs of miRNAs-

CALR, 2 pairs of miRNAs-CASP3, and 5 pairs of miRNAs-

PSMD10 (Figure 14C, Supplementary Figure 9). Additionally, we

validated the prognostic significance of these potential miRNAs in

SARC using the Kaplan-Meier Plotter database. The results
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demonstrated that low expression of hsa-miR-29c-3p and hsa-miR-

143-3p was significantly associated with adverse prognosis

(Figure 14D). Combining the results of correlation analysis and

survival rate analysis, we identified hsa-miR-29c-3p and hsa-miR-

143-3p as potential miRNAs in SARC. Collectively, these findings

suggest that CALR-hsa-miR-29c-3p and CASP3-hsa-miR-143-3p

may serve as crucial pathways mediating SARC development and

correlating with patient prognosis.
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3.17 Prediction and validation of key
lncRNAs binding to potential miRNAs

Previous studies have indicated that lncRNAs can bind to

miRNAs, thereby modulating the expression of target genes and

exerting biological effects. Building upon these findings, we further

predicted upstream lncRNA targets of miRNAs to establish a

miRNA-lncRNA axis. Through the intersection of ENCORI and
FIGURE 11

Analysis of TMB, MSI, and mRNAsi. (A) Distributions of patients with TMB, MSI, and mRNAsi scores in high and low risk groups; (B) Correlation
between risk scores model and TMB, MSI, mRNAsi; (C) Kaplan-Meier curves of high and low TMB, MSI, mRNAsi groups in SARC; (D) Kaplan-Meier
curves of four groups classified by risk score and TMB, MSI, mRNAsi in SARC. *p < 0.05, **p < 0.01, ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1446522
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qin et al. 10.3389/fonc.2024.1446522
miRNet databases, we predicted potential lncRNAs binding to hsa-

miR-29c-3p and hsa-miR-143-3p, identifying 52 lncRNAs targeting

hsa-miR-29c-3p and 54 lncRNAs targeting hsa-miR-143-3p

(Supplementary Figure 10A). To enhance visualization, we

constructed a miRNA-lncRNA regulatory network using

Cytoscape software (Supplementary Figure 10B). According to the

competitive endogenous RNA (ceRNA) hypothesis, lncRNAs can

competitively bind to miRNAs to increase mRNA expression.

Therefore, we examined the expression correlation of lncRNAs

with hsa-miR-29c-3p and hsa-miR-143-3p using the ENCORI

database. Our analysis revealed 1 lncRNA (LINC00943)

significantly correlated with hsa-miR-29c-3p and CALR, and 4

lncRNAs (LINC00944, LINC01806, SMIM25, MIR503HG)

significantly correlated with hsa-miR-143-3p and CASP3

(Supplementary Table 7, Supplementary Figures 10C, D).

Subsequently, using the TCGA database, we assessed the

prognostic value of these lncRNAs in SARC. The results indicated
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that high expression of LINC00943, LINC00944, and MIR503HG

was associated with adverse prognosis (Supplementary Figure 10E).

Finally, we established a key mRNA-miRNA-lncRNA triple

regulatory network associated with SARC prognosis, comprising 2

mRNAs (CALR, CASP3), 2 miRNAs (hsa-miR-29c-3p, hsa-miR-

143-3p), and 3 lncRNAs (LINC00943, LINC00944, MIR503HG)

(Supplementary Figure 10F).
3.18 Cellular experiments and clinical
sample validation

In cellular experiments, we observed significantly upregulated

mRNA expression of CALR, CASP3, BCL10, PSMD7, and PSMD10

in sarcoma cell lines compared to their corresponding normal cell

lines (Figure 15A). Furthermore, we employed RT-qPCR to assess the

expression of the five prognostic URGs in 32 SARC tissues and
FIGURE 12

Drug sensitivity analysis. (A, B) Predictive antitumor drugs based on the risk scores model in SARC from the GDSC and CTRP datasets; (C, D)
Correlation analysis of IC50 score and risk scores model, and distribution of IC50 scores in the high and low groups. *p < 0.05, **p < 0.01,
***p < 0.001.
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normal tissues. Consistent with cellular expression levels, we found

significant upregulation of CALR, CASP3, BCL10, PSMD7, and

PSMD10 in SARC tissues compared to normal tissues (Figure 15B).

Lastly, based on the prognostic model constructed from the TCGA-

SARC dataset, we validated the predictive performance of this model

using clinical tissue samples. Patients were stratified into high-risk and
Frontiers in Oncology 19
low-risk groups based on calculated risk scores. Survival analysis

revealed that patients with higher risk scores had shorter overall

survival compared to those with lower risk scores (p=0.039, HR= 3.13

(1.06 - 9.21), (Figure 15C), consistent with results from TCGA and

GEO databases. The area under the ROC curve (AUC) for 1, 3, and 5

years were 0.954, 0.927, and 0.882, respectively (Figure 15D).
FIGURE 13

Expression of prognostic URGs in different immune cell types in SARC. (A) Clustering of cell types in scRNA-seq data, t-SNE plot showing the
expression of different immune cells in SARC tissues; (B) Feature plots of CALR, CASP3, BCL10, PSMD7, PSMD10 obtained from scRNA-seq data;
(C) Heatmap of CALR, CASP3, BCL10, PSMD7, PSMD10 from scRNA-seq data; (D-F) Correlation between URGs and CAFs, TAMs, and EMT-
related markers.
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Furthermore, time-dependent AUC curve analysis demonstrated the

performance of the URGs prognostic signature in predicting OS in the

clinical sample validation cohort (Figure 15E). Finally, decision curve

analysis (DCA) showed the clinical utility of the URGs prognostic

signature in predicting survival rates (Figure 15F). These findings

collectively confirm the predictive performance and clinical utility of

the prognostic model constructed above, indicating its enhanced

credibility and effectiveness in predicting prognosis for SARC patients.
4 Discussion

Ubiquitination and deubiquitination, as a reversible process,

can modulate the lifespan and function of substrate proteins, thus

widely participating in various physiological processes such as cell

proliferation, apoptosis, autophagy, endocytosis, DNA damage

repair, and immune responses, among others, with aberrant

dysregulation implicated in tumorigenesis (47–49). Many key

enzymes in the ubiquitination process are considered potential

therapeutic targets for cancer treatment (50, 51). However, the

mechanistic role of ubiquitination regulatory factors in SARC

(sarcoma) remains less elucidated. To gain deeper insights into
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the expression patterns, prognostic value, and potential

mechanisms of Ubiquitination-Related Genes (URGs) in SARC,

we conducted bioinformatics analysis on public sequencing data

and performed experimental validation using RT-qPCR to guide

future research on URGs in SARC.

In this study, we first screened differentially expressed URGs

related to immunity, categorized into two subtypes, C1 and C2, and

obtained Differentially Expressed Genes (DEGs) between these

subtypes, further exploring the potential oncogenic mechanisms

of URGs. We found that URGs participate in signaling pathways

such as cell cycle, focal adhesion, ECM-receptor interaction, PI3K-

Akt signaling pathway, and TGF BETA signaling pathway. These

pathways have been reported to be closely associated with tumor

invasion and metastasis. Increasing evidence suggests that the cell

cycle regulation pathway integrates with other hallmarks of cancer,

including metabolic rewiring and immune evasion (52). b-
Carboline dimers inhibit tumor proliferation by suppressing cell

cycle arrest via insertion into cell cycle protein-A2 (53). Focal

adhesion turnover plays a crucial role in cell migration (54), and

Focal adhesion kinase mediates pro-migration and anti-apoptotic

properties, serving as a potential therapeutic target in sarcomas

(55). The ECM-receptor interaction pathway is the most enriched
FIGURE 14

Identification of the most promising miRNAs associated with SARC prognosis. (A) Prediction of potential miRNAs for prognostic URGs from ENCORI,
RNA22, RNAInter, and miRDB databases; (B) Construction of potential miRNAs gene network using Cytoscape software; (C) Correlation of potential
miRNAs (hsa-miR-29c-3p, hsa-miR-143-3p) with prognostic URGs (CALR, CASP3); (D) Prognostic value of miRNAs (hsa-miR-29c-3p, hsa-miR-143-3p).
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signaling pathway, playing crucial roles in tumor shedding,

adhesion, degradation, motility, and proliferation, involved in

colorectal cancer development and metastasis (56). The PI3K/Akt

pathway is considered one of the most important oncogenic

pathways in human cancers, with ZIP10 driving osteosarcoma

proliferation and chemoresistance through activation of the PI3K/

AKT pathway mediated by ITGA10 and highly correlated with

clinical prognosis (57, 58). Transforming growth factor-beta

(TGFb) is a multifunctional cytokine that regulates crucial

cellular processes, including epithelial-mesenchymal transition

(EMT) (59). GDF15 may promote osteosarcoma cell metastasis

by regulating the TGF-b signaling pathway, associated with poor

prognosis and serving as a potential prognostic and lung metastasis-

predictive biomarker (60). CALR is a multifunctional protein that

plays critical roles in calcium homeostasis and protein folding

within the endoplasmic reticulum. Additionally, CALR is crucial

in immune cell death and macrophage migration. Its exposure on

the surface of dying tumor cells acts as an “eat-me” signal for

macrophages, promoting phagocytosis and immune clearance of

cancer cells. Dysregulation of CALR can impair this immune

recognition, leading to immune evasion by tumor cells (61).

Moreover, CALR’s role in modulating immune responses, such as

macrophage recruitment and polarization, further emphasizes its

involvement in immune-related cancer processes (62). CALR
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dysregulation is also linked to its interaction with TGF-b
signaling pathways, influencing immune suppression and tumor

progression (63). CASP3 is one of the most critical proteins in

executing apoptosis. It not only mediates cell death but also

contributes to tumor cell invasion and metastasis by regulating

matrix metalloproteinases (MMPs), which degrade the extracellular

matrix, promoting cancer cell migration (64). CASP3 is also

implicated in modulating the tumor microenvironment through

interactions with immune cells, making it a potential target for

enhancing immune therapies (65). BCL10 is involved in activating

the NF-kB signaling pathway, a key regulator of cell proliferation

and survival. In cancer, BCL10 dysregulation leads to enhanced

tumor growth and immune evasion by promoting pro-survival

signals. For example, BCL10 has been implicated in the activation

of AKT signaling, which supports cancer cell survival and

migration, particularly in liver and gastric cancers (66).

Additionally, BCL10 has been shown to contribute to the

inflammatory tumor microenvironment by modulating immune

responses, making it a candidate for targeted therapies (67). PSMD7

and PSMD10 are subunits of the 26S proteasome complex, essential

for degrading ubiquitinated proteins. Dysregulation of these

proteins leads to impaired degradation of proteins involved in cell

cycle regulation and DNA repair, thereby promoting cancer

progression. PSMD7 is particularly important in maintaining
FIGURE 15

Cellular experiments and clinical sample validation. (A) Differential expression of five prognostic URGs in sarcoma cell lines and normal cell lines; (B)
Relative expression of prognostic URGs in normal tissues and SARC tissues; (C) Overall survival curve of SARC patients in high/low-risk groups; (D)
Time-dependent ROC curve for 1-, 3-, and 5-year OS for URGs; (E) Time-dependent AUC curve showing URGs prognostic signature performance in
the clinical sample group; (F) DCA curves for URGs prognostic signature in the clinical sample group. *p < 0.05, **p < 0.01, ***p < 0.001.
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chemoresistance, as seen in its role in stabilizing RAD23B in gastric

cancer, contributing to resistance against cisplatin treatment (68).

PSMD10, on the other hand, plays a role in EMT and cell migration,

further promoting cancer cell invasion and metastasis, especially in

breast cancer (69).

The prognostic model of URGs we constructed is closely

associated with the clinical outcomes of SARC, identifying five

prognostic ubiquitination-related genes (CALR, CASP3, BCL10,

PSMD7, PSMD10). Some studies have shown that these hallmark

genes are closely related to tumors. CALR is a widely expressed and

highly conserved protein involved in tumorigenesis, proliferation,

migration, adhesion, and mediates phagocytosis, signal

transduction, and immune cell death (70, 71). Additionally,

mediating macrophage migration and polarization can significantly

predict immunotherapy response (72). CASP3 is an important

component of cell apoptosis, and its aberrant function may play a

key role in cancer pathogenesis (73), involved in regulating the

migration, invasion, and metastasis of colon cancer cells (74). One

of the functions of BCL10 protein is to activate NF-kB, thereby
promoting cell growth, and its aberrant expression is associated with

the occurrence and development of lymphoma (75). Studies have

shown that high expression of BCL10 promotes liver cell proliferation

and migration via activation of the AKT signaling pathway, reducing

cell apoptosis, and is associated with poor prognosis of the tumor

microenvironment (76). Previous research has reported that the

overexpression of the deubiquitinase PSMD7 promotes gastric

cancer cell proliferation, invasion, and cisplatin resistance by

stabilizing RAD23B (77). PSMD7 is associated with cell cycle

regulation and disease progression in breast cancer, indicating poor

prognosis (78). PSMD10 is an important regulatory factor in EMT

and cell migration (79). In recent studies, dysregulation of PSMD10

promotes tumor progression and significantly affects tumor cell

proliferation and migration (80, 81).

Additionally, we constructed a predictive model using LASSO

Cox regression for the five selected genes. Kaplan-Meier curves

showed that patients with high-risk scores in the model had poorer

prognosis compared to those with low-risk scores. ROC curves for

1-year, 3-year, and 5-year survival probabilities also revealed the

good specificity and sensitivity of this prognostic model. According

to univariate and multivariate Cox analysis, the model was

confirmed as an independent prognostic factor for SARC.

Furthermore, we developed a signature-based predictive

nomogram to forecast clinical outcomes of SARC patients.

Targeting the tumor microenvironment (TME) is a hot topic in

cancer therapy, withmany studies reporting the role of ubiquitination

in tumor immunology (82, 83). Increasing evidence suggests that

immune cell infiltration plays a crucial role in the development and

metastasis of SARC (84, 85). Therefore, we evaluated the potential of

URGs to reflect TME and the prognostic value of different types of

immune cells. In this study, immune-related prognostic URGs were

positively correlated with the abundance of certain immune cells,

including B.cells.memory, NK.cells.activated, Monocytes,

Macrophages, and Mast.cells.resting, which were associated with

improved clinical prognosis in SARC. Thus, the mechanisms by

which URGs and immune cell phenotypes influence the prognosis of
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SARC patients may require further evidence and discussion. Tumor-

associated macrophages (TAMs) typically resemble M2 macrophages

and suppress anti-tumor immunity through various mechanisms,

including inhibiting T-cell responses (86). TAM abundance in the

TME is often associated with poor prognosis in various solid tumors

(87, 88). Accumulating preclinical and clinical evidence suggests that

targeting TAMs can significantly enhance the efficacy of conventional

and immunotherapies, making them important targets for cancer

treatment (89). Additionally, cancer-associated fibroblasts (CAFs) are

a key stromal cell type in the TME, composed of heterogeneous and

plastic populations that promote tumor growth and metastasis (90).

CAFs have emerged as therapeutic targets to improve anticancer

treatments (91). Epithelial-mesenchymal transition (EMT) is equally

critical in the metastatic cascade (92). CAFs promote tumor EMT

through interaction with cancer cells, playing a crucial role in tumor

metastasis and dissemination (93, 94). In our study, we found that

prognostic URGs were closely correlated with TAMs, CAFs-related

markers, and significantly positively correlated with EMT-related

markers. Therefore, URGs may affect invasion, metastasis, and

chemotherapy resistance of SARC patients by altering the

expression of TAMs, CAFs, and other immune cells in the TME.

In recent years, immunotherapy has rapidly developed, with

immune checkpoint inhibitors (ICIs) as representatives widely used

in the treatment of various cancers. In some SARC patients,

antibodies targeting PD-1 and CTLA-4 have shown significant

efficacy in clinical applications (9, 95). In this study, we explored

the correlation between URG expression and immune checkpoint

genes and HLA members. HLA loss leads to weakened antigen

presentation ability, which may promote immune escape (96). Our

study found that CTLA4, LAG3, and PDCD1 were highly expressed

in the C2 group, and some HLA members were significantly higher

in the C2 group than in the C1 group, consistent with the

infiltration of antigen-presenting cells observed in this study.

Moreover, we found that patients with high scores in the C2

group had higher TIDE scores, indicating that patients with high

scores in the C2 group might benefit from ICI treatment. Overall,

these results strongly suggest that URGs influence immune cell

infiltration and are associated with the efficacy of SARC

immunotherapy. Therefore, URGs could serve as potential targets

for SARC immunotherapy. However, further exploration and

analysis of predictive biomarkers in clinical patients are needed to

improve the clinical outcomes of SARC.

Some sarcomas respond to immune checkpoint inhibitors, but

predictive biomarkers are not well understood. Tumor mutational

burden (TMB) and microsatellite instability (MSI) in the tumor

microenvironment are associated with anti-tumor immunity and

can predict the efficacy of tumor immunotherapy. Given that we

have demonstrated the correlation between URGs and the

prognosis and immune cell infiltration of SARC patients, we

assessed the association between URGs and TMB and MSI. In

our study, we found that TMB and MSI scores were significantly

higher in the high-risk group than in the low-risk group, and

patients with high TMB and MSI scores had shorter overall survival

in SARC, suggesting that high TMB and MSI scores were

unfavorable for the overall survival of SARC patients.
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Additionally, prognostic URGs were positively or negatively

correlated with various chemotherapy and targeted drugs.

However, further experiments are needed to verify these results.

These findings provide new potential therapeutic targets for the

treatment of SARC.

Disruption of DNA methylation regulatory mechanisms is

highly associated with tumorigenesis and is becoming a novel

biomarker for tumors (97, 98). Currently, there is a lack of

exploration of the relationship between URG methylation and the

prognosis of SARC patients, and the utility of DNA methylation

analysis as a predictive biomarker for immunotherapy response in

sarcomas is also unclear, which is one of the purposes of this study.

We confirmed that URG methylation status was negatively

correlated in SARC. Studies have shown that m6A, m5C, m1A,

and m7G modifications are reversible epigenetic RNA processes

that play important roles in the development of malignant tumors

(99). We further explored the correlation between URGs and genes

related to pan-RNA epigenetic modifications. URGs were positively

correlated with the expression of most pan-RNA epigenetic

modification regulatory genes and were associated with poor

prognosis in SARC patients. In conclusion, URG methylation

status may be a promising predictive factor for OS in SARC

patients. However, more research is needed to confirm this result.

In this study, we made another significant finding by exploring

the CALR/hsa-miR-29c-3p/LINC00943, CASP3/hsa-miR-143-3p/

MEG3, and MIR503HG regulatory axes, which may contribute to

the invasion and metastasis of SARC. It has been reported that the

downregulation of hsa-miR-29c-3p is associated with the

progression of squamous cell carcinoma of the throat, closely

correlated with clinical pathological parameters and poor

prognosis (100). Lu et al. (101) demonstrated that circCSNK1G3

can induce the expression of HOXA3 through the sponge effect of

has-miR-143-3p, thereby promoting the occurrence and metastasis

of lung adenocarcinoma. The upregulation of LINC00943 regulates

the proliferation of gastric cancer cells and sensitivity to

chemotherapy, and is also associated with poor prognosis in

gastric cancer patients (102). Overexpression of LINC00944

promotes tumor occurrence and is significantly associated with

the staging and poor prognosis of renal cell carcinoma (103). A

previous study indicated that MIR503HG is involved in the

metastasis of non-small cell lung cancer cells (104). Our study

suggests that these mRNA-miRNA-lncRNA networks are

associated with the prognosis of SARC patients. All of these

pieces of evidence indicate that these regulatory axes may play

important roles in the progression of SARC. However, further

experimental research is warranted to confirm these results.
5 Conclusion

In summary, based on the URGs prognosis model constructed

in this study, our results demonstrate a significant correlation

between high URGs expression and the clinical prognosis of

SARC patients, as well as with DNA methylation and
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immunotherapy. We have also identified related regulatory axes

that may play crucial roles in the invasion and metastasis of SARC.

These findings suggest that URGs could serve as potential

prognostic biomarkers and predictive factors for immunotherapy

in SARC patients.
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