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Background: Bone metastasis from prostate cancer severely impacts patient

outcomes and quality of life. Anoikis, a form of programmed cell death triggered

by the loss of cell-matrix interactions, plays a critical role in cancer progression.

However, its precise relationship with prostate cancer-induced bone metastasis

remains unclear. This study aims to elucidate this relationship, focusing on anoikis-

related gene signatures, molecular pathways, and therapeutic implications.

Methods: We used the TCGA-PRAD dataset for training, with MSKCC and

GSE70769 as validation cohorts. To evaluate immunotherapy efficacy, we

examined IMvigor 210 and GSE91016 datasets, and GSE137829 provided single-

cell insights into prostate cancer. Specific anoikis-related genes (ARGs) were

identified, and Random Survival Forest analysis and multivariate Cox regression

were employed to develop anoikis-linked features. The ‘clustanoikisProfilanoikis’

and ‘GSEA’ packages were used to explore potential ARG-related pathways.

Results: Analyzing 553 samples from TCGA, 231 fromMSKCC, 94 fromGSE70769,

and single-cell data from 6 prostate cancer patients (GSE137829), we constructed

a prognostic model based on 9 ARGs. GSVA revealed upregulation of carcinogenic

pathways, including epithelial-mesenchymal transition, E2F targets, and

angiogenesis, with downregulation of metabolic pathways. Significant

differences in somatic mutations were observed between cohorts, with a

positive correlation between anoikis scores and tumor mutational burden (TMB).

Immune landscape analysis suggested high-risk patients might benefit more from

chemotherapy than immunotherapy based on their risk score. Single-cell analysis

indicated overactivation of carcinogenic pathways in the high anoikis score group.

Conclusion: This study elucidates the complex interplay between anoikis and

bone metastasis in prostate cancer. Our findings highlight the critical role of

anoikis in metastatic progression, enhancing the understanding of key

biomarkers and molecular dynamics. The identified anoikis-related gene

signatures and disrupted pathways offer promising avenues for predictive and

therapeutic strategies in prostate cancer management.
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1 Introduction

Prostate cancer (PCa) represents one of the most prevalent

malignancies and the second leading cause of cancer-related mortality

among men in Western countries (1). Since the 1990s, prostate-specific

antigen (PSA) has been used as a standard test for prostate cancer (2).

However, multiple studies have shown that PSA testing does not confer

a significant reduction in mortality (3). PSA levels also have limited

value in predicting PCa prognosis, with 27-53% of patients experiencing

biochemical recurrence (BCR) after radical prostatectomy or radiation

therapy (4). BCR often precedes progression to advanced castration-

resistant PCa (CRPC), which carries increased risks of distant

metastasis, cancer-specific mortality, and overall mortality (5).

Therefore, there is an unmet need for novel prognostic biomarkers in

PCa to improve risk stratification and clinical decision-making.

Anoikis occurs when tumor cells are detached from the extracellular

matrix (ECM) during metastasis, which has been documented in many

studies in recent years (6). Detachment from ECM causes anoikis, a

specific type of apoptosis. Epithelial and endothelial cells are responsible

for anoikis, which is believed to contribute to tissue homeostasis in

development (7). Apoptosis prevents isolated cells from attaching to

other substrates for aberrant proliferation to protect organisms (8). In

the absence of anoikis, adherent cells may suspend or proliferate in an

environment other than their original ECM (9). Several cancers,

including breast cancer, lung cancer, gastric cancer, and esophageal

cancer, have been associated with ARGs (10–13). According to the

study, FAIM2 overexpression in lung cancer leads to adverse clinical

outcomes, while silencing FAIM2 may decrease tumor cell viability and

resistance to anoikis (14). A novel predictor of the prognosis of

colorectal cancer has been identified in KLF5, a protein that regulates

cell proliferation and anoikis resistance (15). Activating cancer-initiating

cells in HEC-1A cells promotes esophageal cancer epithelial-

mesenchymal transition (EMT), thereby inhibiting apoptosis and

negatively affecting patient outcomes (16). Lee et al. demonstrated

that TMPRSS4 promotes prostate cancer cells to resist anoikis,

thereby improving the survival of circulating tumor cells and

promoting early metastasis, and demonstrated that TMPRSS4

promotes CSC characteristics of prostate cancer by upregulating

SLUG and TWIST1-induced stem cell factor SOX2 (17).

Anoikis-related genes-based prognostic indicators are rarely analyzed in

prostate cancer, despite being associatedwith prognosis formultiple tumors.

Thus, we examined the clinical outcomes of prostate cancer patients who

had combined anoikis-related genes. In our study, we identified a powerful

feature and validated it in two other independent databases. In addition,

we integrated single-cell data to confirm that several carcinogenic pathways

in the high anoikis score group were significantly overactivated.
2 Results

2.1 Consensus clustering of anoikis-
related genes

Figure 1 describes the flowchart of this study. First, the

mutations of anoikis related genes were analyzed. PIK3CA
Frontiers in Oncology 02
mutation frequency was the highest (2%), followed by TSC2,

TLE1, AKT1, MTOR (Figure 2A). The location of anoikis-related

genes in the chromosome is shown in Figure 2B. Accordingly, two

subgroups of PRAD patients were defined based on their expression

profiles of anoikis-related genes (Figure 2C; Supplementary Figure

S1). K-M analysis showed that BCRF survival was significantly

better in cluster 2 than in cluster 1 (Figure 2D). GSVA enrichment

analysis showed that cluster 1 was mainly related to metabolism,

mismatch repair , and cell cycle, such as NEGATIVE

REGULATION OF METAPHASE ANAPHASE TRANSITION

OF CELL CYCLE, BASE EXCISION REPAIR, MISMATCH

REPAIR, DNA REPLICATION, GLYOXYLATE, and

D ICARBOXYLATE METABOL I SM . PYR IM ID INE

METABOLISM. On the contrary, cluster 2 is mainly related to

stem cell proliferation, angiogenesis, and other pathways

(Figures 2E–F). However, cluster 2 shows a better survival

outcome, so the analysis content needs to be further explored.

Taken together, our findings suggest that the two anoikis-associated

subgroups are well separated in terms of prognostic outcome and

biological function.
2.2 Anoikis-based model construction

As a first step, WGCNA identified the gene modules closely

related to the anoikis subtype (647 genes, Figure 3A). The TCGA

cohort was analyzed with univariate Cox regression and 83

prognostic genes were identified (Figure 3B). RSF analysis further

identified 27 candidate genes for model construction based on the

minimum depth method (Figure 3C). Using multivariate Cox

regression, eight important genes were selected to form an anoikis

score, namely THSD4, PIK3R1, SULF1, B4GALT1, CDC20,

COL1A2, S100A10, B4GALNT4, NUAK1.

Patients were stratified into high-risk and low-risk groups based

on the median risk score derived from the anoikis gene signature.

Kaplan-Meier analysis revealed a significant difference in

biochemical recurrence-free (BCRF) survival times between the

high-risk and low-risk cohorts (Figure 3D). The distribution of

risk scores, survival status, and risk level of each patient are

visualized in Figure 3E. The anoikis gene signature demonstrated

consistent prognostic power for 1-year (AUC = 0.74), 3-year

(AUC = 0.768), and 5-year (AUC = 0.781) BCRF survival

(Figure 3F). Additionally, we validated the risk model in two

external datasets, MSKCC and GSE70769, where it maintained

strong prognostic performance (Figures 3G–L). Further analysis

illuminated correlations between higher anoikis scores and more

advanced tumor (T) staging, higher Gleason scores (GS), and

increased likelihood of BCR, implicating this gene signature as a

marker of aggressive disease (Figure 4A). High-risk patients were

also more likely to originate from the poor prognosis cluster 1

identified in our previous work (Figure 4B). Univariate Cox

regression indicated the anoikis score and clinical variables were

significantly associated with BCRF survival. Moreover, the anoikis

score retained independent prognostic value in multivariate analysis

after adjusting for other clinical factors (Figure 4C). ROC curve
frontiersin.org
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analysis verified the superior predictive accuracy of the risk model

over individual clinical variables. External validation in the MSKCC

and GSE70769 cohorts confirmed the reproducible prognostic

utility of the anoikis gene signature for BCRF prediction

(Figures 4D–F). Taken together, these findings strongly endorse

the anoikis gene signature as a robust and reliable prognostic

indicator for prostate cancer. Further investigation is warranted

to determine the biological mechanisms underlying this model and
Frontiers in Oncology 03
assess its c l inical value in guiding management and

therapeutic decisions.
2.3 Functional enrichment analysis

To examine the potential mechanisms of risk score, GO and KEGG

analyses were conducted. According to Figure 5A, GO analysis shows
FIGURE 1

Flow chart of the main steps of this study.
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that there are mainly pathways associated with GO: 0003823, 0005201,

and 0009897. According to KEGG analysis, differentially expressed

genes were enriched in hsa04512, hsa05144, and other pathways

(Figure 5B). Subsequently, 50 carcinogenic marker pathways were

included in the GSVA, and the results showed that carcinogenic

pathways such as EPI-THELIAL MESENCHYMAL TRANSITION,

E2F TARGETS, and ANGIOGENESIS were up-regulated, while

metabolic-related pathways were down-regulated (Figure 5C).

Significant enrichment of 15 pathways was found in high-risk

cohorts, whereas a significant enrichment of 5 pathways was found in

low-risk cohorts, as shown in Figure 5D. Kaplan-Meier method was

used to analyze the pathways obtained through cross-over, and different
Frontiers in Oncology 04
BCRF survival probabilities of several known carcinogenic path-ways

(ANDROGEN RESPONSE, E2F TARGETS, G2M CHECKPOINT,

MYC TARGETS V1) were observed (Figure 5E). Overall, the risk

score is involved in a variety of biological functions, especially the

carcinogenic pathways in PRAD.
2.4 Analysis of somatic mutations

As you can see in the waterfall diagram, gene mutations differ

between high-risk and low-risk populations (Figures 6A, B). High-

risk cohorts exhibited the most mutations at TP53, while low-risk
FIGURE 2

Consensus clustering of anoikis-related genes. (A)Waterfall plot for mutation analysis of anoikis-related genes. (B) Circle plot showing the location of anoikis-related
genes in chromosomes. (C) Heatmap of NMF cluster analysis. (D) Survival analysis of C1 and C2 subtypes. (E, F) GSVA enrichment analysis of C1 and C2 Isoforms.
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cohorts showed the most mutations at SPOP. In addition, the first 25

mutant genes between the two cohorts also showed co-occurrence or

exclusive mutations (Figure 6C). Mutation enrichment of known

carcinogenic pathways showed that the Hippo, RTK-RAS, TP53, and

WNT signaling pathways were significantly increased in the high-risk

group, while the MYC, NRF2, and TGF-beta signaling pathways were

significantly reduced (Figure 6D). Further analysis also confirmed a
Frontiers in Oncology 05
positive correlation between TMB and anoikis score, with higher

TMB and poorer BCRF survival (Figures 6F, G). The worst prognosis

was associated with high TMB and anoikis scores (Figure 6E).

In summary, the comprehensive analysis revealed the mutational

differences between high-risk and low-risk cohorts, and multiple

significant genes and pathways showed significant mutation

abnormalities between cohorts.
FIGURE 3

Anoikis-based model construction. (A) Heat map showing gene modules analyzed by WGCNA. (B) Dot plot for univariate Cox regression. (C)
Screening modeling genes based on random forest analysis. (D–F) Kaplan – Meier curves, heat maps, and ROC curves for survival analysis of the
training set cohort. (G–I) Kaplan – Meier curves, heat maps, and ROC curves for survival analysis of the MSKCC cohort. (J–L) Kaplan – Meier curves,
heat maps, and ROC curves for survival analysis of the GSE70769 cohort.
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2.5 Immune landscape and treatment
response prediction

High-risk groups had a higher number of T cell regulatory (Treg)

cells than low-risk groups based on immune landscape analysis

(Figure 7A). Most immune functions increased relatively in the

high-risk group (Figure 7B). The expression of immunosuppressive

receptors and immunosuppressive ligands was also higher in high-

risk patients (Figure 7C). Additionally, the TIDE algorithm

determined that there were no significant differences in

immunotherapy response between high-risk and low-risk patients

(Figure 7D). The prediction results of the IMvigor210 cohort and the

GSE91061 cohort showed no difference in the effect of

immunotherapy (Figure 7E). To evaluate chemotherapy response
Frontiers in Oncology 06
in PRAD patients with different Anoikis scores, the oncopredict R

package was used. Our results showed that the IC50 values of high-

risk patients in several chemotherapy molecules were significantly

lower, including WIKI4, WEHI−539, MIM1, AZD7762, JQ1,

Tozasertib, Axitinib (Figure 7F). Overall, immune landscape

analysis showed that risk score was associated with different

immune responses, and chemotherapy may be more effective than

immunotherapy for high-risk patients.
2.6 scRNA-seq data analysis

After sample pretreatment, the cells were aggregated and annotated

into 10 major clusters of fibroblasts, epithelial cells, malignant cells,
FIGURE 4

Analysis of anoikis score. (A) Pie chart for anoikis score versus clinical traits analysis. (B) Sanky chart for prognostic survival in patients at risk. (C)
Forest plot for multivariate Cox regression analysis of risk scores in the three cohorts. (D) ROC analysis of anoikis score in the training set cohort. (E)
ROC analysis of anoikis score in the MSKCC cohort. (F) ROC analysis of anoikis score in the GSE70769 cohort.
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myofibroblasts, plasma cells, myeloid cells, T cells, endothelial cells, B

cells and mast cells (Figure 8A). The expression of signature genes in

cell subsets suggests that our clustering was successful (Supplementary

Figure S2A). The distribution of cell types in each sample is shown in

Supplementary Figure S2B. Subsequently, we divided all cells into high

and low groups according to anoikis-related AUC scores (Figure 8B).

The high anoikis score group showed an increased number and

intensity of intercellular interactions based on ligand-receptor signals

(Figures 8C, D). In comparison with the low anoikis score group, the

VEGF signaling pathway network and CCL signaling pathway

networks were enhanced in the high anoikis scores group

(Figures 8E, F). Overall, patients in the high anoikis score group and

the low anoikis score group showed differences in intercellular
Frontiers in Oncology 07
communication, whereas several carcinogenic pathways were

significantly overactivated in the high anoikis score group.
2.7 Validating the ARG-based signature
model genes

To further demonstrate the accuracy of the, we used three

prostate cancer cell lines (PC3 (RRID: CVCL_0035), DU145 (RRID:

CVCL_0105), and LNCaP (RRID: CVCL_0395)) and a normal

prostate epithelial cell line, RWPE-1 (RRID: CVCL_3791).

B4GALNT4 and NUAK1 were validated in the model,

respectively. the mRNA of B4GALNT4 was sequentially highly
FIGURE 5

Functional enrichment analysis. (A) Circle plot for GO enrichment analysis. (B) Circle plot for KEGG enrichment analysis. (C) Bar graph of GSVA
analysis of 50 oncogenic marker pathways. (D) GSEA enriched pathway analysis. (E) Survival curves for different BCRFs in four pathways: androgen
response, E2F target, G2M check-point, MYC target V1.
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expressed in LNCaP, PC3 and DU145, and lowly expressed in

RWPE-1 (Figure 9A). In addition, the mRNA of NUAK1 was

similarly highly expressed in the prostate cancer cell lines

(sequentially PC3, DU145, and LNCaP) (Figure 9B).
3 Discussion

Prostate cancer poses a major threat to men’s health worldwide

(18). While prostate-specific antigen (PSA) is widely used for

diagnosis and prognostication, it has limitations in accuracy and

timeliness. Thus, there is an urgent need for robust biomarkers to

improve prediction of prostate cancer prognosis. Recent evidence

indicates that apoptosis, a form of programmed cell death, critically

regulates the biological behaviors of various cancers (19, 20). For

instance, CPT1A which controls fatty acid oxidation can confer
Frontiers in Oncology 08
anoikis resistance and promote colorectal cancer metastasis (21).

IQGAP1 has also been shown to enhance viability and inhibit

anoikis by activating Src/FAK signaling in hepatocellular

carcinoma, suggesting its potential as a marker for metastasis and

prognosis (22). Additionally, CCN2 suppresses lung cancer

progression through anoikis pathways involving DAPK (23).

Hence, targeting anoikis-related genes may provide promising

therapeutic and prognostic opportunities in cancer.

In the present study, we identified a total of 27 anoikis-related

genes (ARGs) and developed a robust ARG-based signature model

with significant prognostic utility in prostate cancer. This 9-gene

model comprised THSD4, PIK3R1, SULF1, B4GALT1, CDC20,

COL1A2, S100A10, B4GALNT4 and NUAK1, all of which have

established functional relevance in cancer. For instance, THSD4 is

downregulated in prostate cancer and cooperates with other genes

to drive malignant transformation (24). Clinical sequencing by
FIGURE 6

Analysis of somatic mutations. (A) Waterfall plot of gene mutation frequency in high-risk patients. (B) Waterfall plot of gene mutation frequency in
low-risk patients. (C) Heatmap for correlation analysis between mutated genes. (D) Mutant gene pathway analysis between high and low-risk groups.
(E) Scatter plot for correlation analysis between TMB and risk score. (F) Survival analysis between patients in high and low TMB groups. (G) Survival
analysis between high and low TMB patients and high and low-risk patients.
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Chakraborty et al. revealed alterations in PIK3R1 as a potential key

regulator of the insulin-PI3K-glycolysis pathway in prostate cancer

(25). SULF1 was demonstrated to antagonize Wnt3A-induced

growth and disrupt cellular architecture in prostate cancer models

(26). B4GALT1 was identified as a unique tumor suppressor

silenced by AKR1C3 activation, thereby facilitating castration-
Frontiers in Oncology 09
resistant prostate cancer progression (27). Additionally, while

CDC20, COL1A2 and S100A10 possess recognized pro-oncogenic

activities, the precise roles of B4GALNT4 and NUAK1 in prostate

cancer warrant elucidation. Functional characterization of these

ARGs could unveil novel mechanisms driving disease progression

and metastasis. Critically evaluating their clinical utility as
FIGURE 7

Immune profile and prediction of response to treatment. (A) Violin plot for immune cell infiltration analysis. (B) Boxplots for immunologic function
assays. (C) Heatmap of correlation analysis between immunosuppressive receptors and immunosuppressive ligands and risk scores. (D) Violin plot for
immunotherapy response analysis in high-risk and low-risk groups. (E) Bar plots of immunotherapy response analysis for the IMvigor210 cohort and
GSE91061 cohort. (F) Drug sensitivity analysis between patients in high and low-risk groups. (*:p<0.05, **:p<0.01, ***:p<0.001).
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prognostic biomarkers and therapeutic targets will enable

personalized management. Our findings provide a compelling

rationale for investigating this anoikis gene signature, given the

predictive power of these 9 ARGs for improving prostate cancer risk

assessment, prognostication, and informing clinical decision-

making. Future studies validating this signature in independent

cohorts and delineating the molecular pathways are warranted to

realize its full translational potential.

Through an unbiased gene set variation analysis (GSVA), we

identified biological pathways associated with the anoikis gene

signature in prostate cancer. Enrichment of established oncogenic

pathways including epithelial-mesenchymal transition (EMT), E2F

targets, and angiogenesis was observed in the high-risk group,

whereas metabolic pathways were downregulated. These pathways

have known roles in driving prostate cancer progression. For

example, EMT and DNA repair pathway activation can increase

therapeutic resistance and invasiveness (27), while E2F inhibition
Frontiers in Oncology 10
triggers replication stress representing a potential treatment

approach (28). Moreover, angiogenesis is a recognized key factor

enabling irreversible tumor growth (29, 30). Intriguingly, our GSVA

screen also revealed involvement of cholesterol/lipid metabolism

and extracellular matrix organization pathways, which have

emerging links to prostate cancer through dysregulated lipid

metabolism and matrix remodeling (31–33). By systematically

delineating the functional interactions between anoikis-related

genes and impacted pathways, our findings provide a foundation

to uncover novel mechanisms of treatment resistance in prostate

cancer. Elucidating how this gene signature influences oncogenic

signaling and metabolic programs could illuminate new therapeutic

targets and strategies to overcome resistance. Future experimental

validation is warranted to realize the full translational potential of

these biological insights.

Recently, novel immunotherapeutic approaches have

emerged for prostate cancer management (31). The tumor
FIGURE 8

ScRNA-seq data analysis. (A) UMAP plot for single-cell dimensional cluster analysis. (B) Expression of anoikis score in single cell subsets. (C) Bar
graph of cell content for samples from the high and low anoikis score groups. (D) Network diagram for cellular communication analysis. (E) The
difference in VEGF signal between high and low anoikis scores. (F) The difference in CCL signal between high and low anoikis scores.
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microenvironment comprising stromal cells, vasculature and

immune infiltrates plays a crucial role in cancer progression

and metastasis (32). Multiple studies have demonstrated that

immunosuppressive cells can promote tumor growth and

metastasis within the microenvironment (33–35). However, the

lack of understanding of the prostate cancer microenvironment

and immune landscape has resulted in suboptimal responses

to immunotherapy in patients. Additionally, numerous

immunotherapies effective in preclinical studies have failed in

clinical trials, underscoring the limitations of current prostate

cancer models (36). To evaluate the utility of our risk signature

in predicting immunotherapy response, we analyzed immune-

associated cell infiltration in tumors with high versus low risk

scores (37, 38). Our findings suggest this approach of

stratifying immunotherapy response holds promise, pending

experimental validation. Future research is warranted to

systematically characterize the immuno-phenotypes associated

with anoikis gene expression, which could guide more precise

immunotherapeutic strategies and improve outcomes for

prostate cancer patients. Large scale validation studies,

especially those incorporating assessments before and after

immunotherapy, are essential to firmly establish the clinical

utility of this gene signature in immune response prediction.

Although our proposed model demonstrates promising results in

predicting prostate cancer prognosis, there remain several limitations

that need to be addressed before it can be widely applied in clinical

practice (39). Firstly, as the current study utilizes public databases for

analysis, the model has not been verified on real-world patient data.

Further validation on clinical samples is required to confirm its

prognostic power. Secondly, while gene expression profiling can

identify potential prognostic biomarkers, additional experiments

such as immunohistochemistry, immunofluorescence and analysis
Frontiers in Oncology 11
of clinical variables are necessary to elucidate the underlying

mechanisms and interactions between the identified genes and

prostate cancer progression. Thirdly, the potential biological

pathways and downstream effects of the prognostic gene signature

remain to be fully characterized through in vitro and in vivo

functional studies (40). In addition, we also note the role of

epigenetic modifications in prostate cancer, where histone

methylation modifications promote epithelial cell migration,

proliferation, etc., as well as play a role in the expression of anti-

apoptotic genes to enhance the viability of prostate cancer cells. We

will consider the more comprehensive role of Anoikis in relation to

prostate cancer in future studies (41). Finally, as prostate cancer is a

highly heterogeneous disease, the model may need to be optimized

and tailored to specific molecular subtypes (42). Extensive analysis on

large cohorts reflecting diverse patient populations will help improve

its generalizability and clinical utility. In summary, though promising,

the current prognostic model requires more rigorous validation and

mechanistic investigation before its effects on guiding patient

management and improving prostate cancer survival outcomes can

be realized. We propose several follow-up studies to address these

limitations and bring the model closer to clinical application.
4 Materials and methods

4.1 Data preprocessing

We downloaded RNA transcriptome data from 501 PRAD

tumors and 52 normal tissues in the TCGA database, along with

corresponding clinical data. Download standardized RNA

expression data and complete clinical data for 231 PRAD patients

from the MSKCC database, and 94 PRAD patients from the GEO
FIGURE 9

Validating the ARG-based signature model genes. (A, B) The expression of B4GALNT4 and NUAK1 in RWPE-1, LNCaP, PC3 and DU145
(**:p<0.01, ***:p<0.001).
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database. Adjust the batch effect through the ‘sva ‘R package. The

IMvigor 210 cohort of bladder cancer patients receiving anti-PD-L1

treatment was obtained through the ‘ IMvigor210 Core Biologies ‘ R

package, and the GSE91016 data set receiving anti-PD-1 and anti-

CTLA4 treatment was also obtained to predict the efficiency of

immunotherapy. In addition, we registered the single-cell RNA

sequencing (scRNA-seq) dataset (GSE137829) for six PRAD

patients and performed quality control, cell clustering, and

annotation using the ‘Seurat ‘R package.
4.2 Consensus clustering analysis

From the MSigDB database, 27 anoikis-related genes were

identified (Supplementary Table S1). The PRAD samples were

subdivided according to these genes using the non-negative matrix

factorization (NMF) method in the R package ‘ NMF ‘. We used the

K-M survival curve to compare biochemical recurrence-free (BCRF)

survival between sub-groups. Two gene sets were extracted from the

MsigDB database to estimate the difference in biological function and

immune activity between subgroups using gene set variation analysis

(GSVA) with the ‘ GSVA ‘R package. The statistically significant cut-

off for GSVA is p.adjust < 0.05.
4.3 Generation of anoikis-
related signatures

To establish anoikis-related features, we used WGCNA to find gene

modules significantly associated with anoikis-related subgroups and

extract corresponding genes. We used the TCGA cohort as the

training set, while the MSKCC and GSE70769 datasets were the

validation sets. A univariate Cox analysis was performed to examine

prognostic genes (p<0.05). Using the ‘ randomForestSRC ‘Rpackage, the

prognostic genome was further reduced using Random Survival Forests

(RSF). A smaller value indicates greater predictability when variables

were sorted by minimum depth in RSF analysis. Using multivariate Cox

regression analysis, the best features associated with anoikis were

identified based on their respective coefficients (b) and gene expression

levels (Exp). The formula is used to calculate each patient’s anoikis-

related risk score. Using the median of their anoikis scores, we further

categorize the patients into two groups. Kaplan-Meanoikis was used to

determine prognostic differences between the two groups. In addition, we

examined the correlation between anoikis score and clinical features,

including age, PSA level, TN stage, and Gleason score (GS). Cox analyses

were performed univariately and multivariate to evaluate the prognostic

significance of Anoikis scores. Similarly, we collected the MSKCC and

GSE70769 cohorts to check the risk score’s predictive ability.
4.4 Functional enrichment analysis

Genes that are differentially expressed between low-risk and high-

risk cohorts have been identified as potential mechanisms behind

anoikis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analysis were performed using
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the R package clustanoikisProfilanoikis. The R package ‘ loop ‘ shows

GO and KEGG terms with p 0.05. The MSigDB was analyzed using

GSVA to determine the differences in the carcinogenic marker

pathways (h.all v7.1.symbols) between the two cohorts. For the same

signature pathway, gene set enrichment analysis (GSEA) was

conducted using the ‘GSEA ‘R package (FDR < 0.25, NES > 1,

p.adjust < 0.05). The prognostic significance of GSVA and GSEA

overlapping marker pathways was determined using the K-M method.
4.5 Somatic mutation analysis

Somatic mutations in PRAD patients were extracted from the

TCGA database. The ‘ maftools ‘ R package explored specific

somatic mutation variants in different risk score groups. Next, we

studied the coexistence or exclusion of mutations, oncogenes, and

enrichment of known carcinogenic pathways between the two

cohorts. The tumor mutation burden (TMB) reflecting the total

mutation count of each PRAD patient was calculated and its

correlation with the anoikis score was tested. In addition, we

analyzed the predictive value of TMB and Anoikis score for

survival outcomes in the Anoikis score risk cohort.
4.6 Immune landscape and treatment
response prediction

In high-risk and low-risk groups, we compared immune cell

abundance, immune function, and immune checkpoints. On the

basis of RNA expression profiles of PRAD patients, the tumor

immune dysfunction and rejection algorithm (TIDE) predicts

potential immunotherapy responses. The IMvigor210 and

GSE91061 datasets were also used to determine the correlation

between the Anoikis score and the efficacy of potential

immunotherapy. In addition, we investigated the chemotherapy

responses of the two groups of patients, and the ‘ oncopredict ‘ R

package predicted the sensitivity of each patient to chemotherapy.
4.7 scRNA-seq data analysis

Next, we use the GSE137829 dataset to study the single-cell

characteristics of PRAD. The software Seurat (version 4.3.0) were

then used to process and evaluate the gene expression matrix. Based

on the number of identified genes per cell (500–7000) and the

percentage of mitochondrial genes expressed (10%), we performed

Seurat-based filtering of the cells. Additionally, the ribosomal and

mitochondrial genes were taken out of the gene expression matrix.

After quality inspection, 21,292 high-quality cells with an average of

2419 genes per cell were kept. Then, we calculated the activity of risk

score-related gene sets at the single cell level through the ‘AUCell ‘R

package. After dividing all cells according to AUC, we classified

them into two groups: high and low. By using the R software

package CellChat, signaling pathways were analyzed between

participants with high anoikis scores and those with low

anoikis scores.
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4.8 qRT-PCR

Prostate cancer cell lines (PC3 (RRID: CVCL_0035), DU145

(RRID: CVCL_0105) and LNCaP (RRID: CVCL_0395)) and

normal prostate epithelial cell line RWPE-1 (RRID: CVCL_3791)

were purchased from Shanghai Zhongqiao Xinzhou Biotech Co.

and cultured in DMEM medium containing 10% FBS and 1%

penicillin-streptomycin (Solarbio, Beijing, China). FBS and 1%

penicillin-streptomycin in DMEM medium (Solarbio, Beijing,

China). For isolation of total RNA, TRIzol reagent (from

Invitrogen, Carlsbad, CA, USA) was used and RNA was reverse

transcribed to cDNA using ReverTra Ace qPCR RT premix and

gDNA Remover kit. cDNA was extracted from the RNA by SYBR

Premix Ex Taq II on a Mx3005P Real-Time Fluorescence

Quantitative PCR System (from Stratagene, San Diego, CA, USA).

qRT-PCR was performed and GAPDH was selected as an

endogenous control for mRNA. The reaction conditions were

pre-denaturation at 95°C for 10 min, denaturation at 95°C for

5 s, and annealing at 60°C for 30 s, for a total of 45 cycles.

Amplification of target and internal endogenous reference genes

was performed separately for each sample. Each set of samples

contained 3 replicate wells. Data were analyzed using the 2^(-DDCt)
method. The primer sequences are detailed in Supplementary File 1.
5 Conclusions

This comprehensive study unravels the intricate relationship

between anoikis and bone metastasis in prostate cancer. Our findings

shed light on the critical role of anoikis in driving metastatic

progression, contributing to our understanding of the underlying

biomarkers and molecular mechanisms. The identified anoikis-

related gene signatures and dysregulated molecular pathways hold

promise as potential targets for prognostication and therapeutic

interventions in the management of prostate cancer.
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SUPPLEMENTARY FIGURE 1

The optimal number of clusters was determined by co-occurrence,

dispersion, and contour indices, and the optimal number of clusters
selected was 2.

SUPPLEMENTARY FIGURE 2

Single cell dimension reduction cluster analysis. (A) Bubble plots showing
expression of signature genes in cell subsets. (B) Distribution of cell types in

each sample.
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