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Carlos III Health Institute (ISCIII), Spain

REVIEWED BY

David A. Hormuth,
II, The University of Texas at Austin,
United States
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Post–operative glioblastoma
cancer cell distribution in the
peritumoural oedema
Andrei Ciprian Macarie1,2, Szabolcs Suveges2,
Mohamed Okasha3, Kismet Hossain-Ibrahim3, J. Douglas Steele2

and Dumitru Trucu1*

1Division of Mathematics, University of Dundee, Dundee, United Kingdom, 2Division of Neuroscience,
School of Medicine, University of Dundee, Dundee, United Kingdom, 3Department of Neurosurgery,
Ninewells Hospital and School of Medicine, National Health Service (NHS) Tayside, Dundee,
United Kingdom
Glioblastoma multiforme (GBM), the most aggressive primary brain tumour,

exhibits low survival rates due to its rapid growth, infiltrates surrounding brain

tissue, and is highly resistant to treatment. One major challenge is oedema

infiltration, a fluid build-up that provides a path for cancer cells to invade other

areas. MRI resolution is insufficient to detect these infiltrating cells, leading to

relapses despite chemotherapy and radiotherapy. In this work, we propose a new

multiscale mathematical modelling method, to explore the oedema infiltration

and predict tumour relapses. To address tumour relapses, we investigated several

possible scenarios for the distribution of remaining GBM cells within the oedema

after surgery. Furthermore, in this computational modelling investigation on

tumour relapse scenarios were investigated assuming the presence of clinically

relevant chemo-radio therapy, numerical results suggest that a higher

concentration of GBM cells near the surgical cavity edge led to limited spread

and slower progression of tumour relapse. Finally, we explore mathematical and

computational avenues for reconstructing relevant shapes for the initial

distributions of GBM cells within the oedema from available MRI scans. The

results obtained show good overlap between our simulation and the patient’s

serial MRI scans taken 881 days into the treatment. While still under analytical

investigation, this work paves the way for robust reconstruction of tumour

relapses from available clinical data.
KEYWORDS

multiscale modelling, cancer invasion, glioblastoma, chemotherapy, radiotherapy,
surgery, 3D computational modelling, MRI scans
1 Introduction

Glioblastoma multiforme (GBM) is a devastating and highly invasive brain tumour that

presents a significant treatment challenge. Despite the best efforts of medical professionals,

the 5–year survival rate for patients with GBM is only 7.2% (1, 2). To improve treatment

outcomes, researchers have been exploring new approaches to tackling this aggressive
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disease. One promising avenue of investigation is the use of

mathematical models to simulate tumour evolution and explore

potential new treatment strategies (3–7).

GBM is typically treated with surgical resection if possible,

followed by chemoradiotherapy. The Stupp protocol is the standard

of care treatment regimen that involves a total of 60 grays

(abbreviated as Gy, and representing the unit of measurement for

absorbed radiation) of radiotherapy delivered in daily doses of 2 Gy

over 6 weeks, along with the chemotherapy drug Temozolomide

(TMZ). During radiotherapy, patients take 75 mg of TMZ per

square meter of body surface area every day for 7 days a week. After

radiotherapy is completed, TMZ (adjuvant) is given in 6 cycles of

150–200 mg per square meter for 5 days every 28 days (8).

Treating GBM is a formidable challenge due to several factors. Even

after maximal surgical resection and adherence to the Stupp protocol,

approximately 90% of patients experience local recurrences (9–12).

Another significant challenge is the high infiltration and heterogeneity

of GBM, which makes it difficult to identify tumour margins accurately.

GBM grows with microscopic finger–like projections that extend

beyond what MRI scans (the gold standard for brain tumour

imaging) can detect (2). Furthermore, GBM cells invade the brain

through the peritumoural oedema (PTE), a condition in which fluid

accumulates in the extracellular spaces of brain tissue surrounding the

tumour. PTE is formed by tumour cells, reactive astrocytes, and

inflammatory cells. The infiltrating GBM cells in the PTE are

phenotypically distinct from those isolated from the corresponding

mass. Residual GBM cells located at the resection margin are known to

proliferate more quickly and be more invasive than GBM cells found in

the tumour center (9, 13). Therefore, it is crucial to examine the PTE as

this could lead to tumour recurrences (14).

The limited effectiveness of traditional GBM treatments

underscores the need for innovative approaches (4, 15). In recent

years, mathematical models have emerged as a promising tool for

gaining insights into GBM tumour growth and progression (7, 16–21).

By incorporating clinical data and biological parameters,

mathematical models can provide a more comprehensive

understanding of tumour behaviour than traditional experimental

techniques alone (22, 23). However, most of these studies, whether 2D

or 3D, are limited to simulating tumour growth on one spatio–

temporal scale, i.e., focused on modelling tumour growth based

mostly on the macro–scale dynamics (24–28). Nevertheless,

significant progress has been made in developing multiscale moving

boundary modelling and computational frameworks for tumour

growth (3, 6, 7, 29–31). As detailed below, the combination of these

modelling approaches paves the way for the work discussed here.

In this work we aim to explore the distribution of GBM cells

within the oedema. The underlying motivation for this is the

understanding of the relationship between the spatial distribution

of cancer cells within oedema that remain post–surgery and the

likelihood of post–surgical tumour recurrence. This will combine

novel mathematical multiscale moving boundary modelling with

NHS clinical data assimilation using MRI scans from a single

patient with diagnosed GBM. We explore two scenarios: the first

utilizes a standard mollifier to describe cell distribution inside the

oedema, while the second uses a Gaussian distribution.
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This paper presents a multiscale moving boundary model for

simulating GBM evolution, incorporating treatment effects and

clinical data. After introducing our multiscale modelling for GBM

progression, we formulate our tumour relapse hypothesis and

outline the mathematical and computational strategy for clinical

data inversion (i.e., assimilate MRI images within our modelling

to enable tumour recurrence predictions). Details about

prospectively collected MRI scans (from GBM patients at Ninewells

Hospital) alongside their pre–processing pipeline are also

included. The manual tumour segmentation was carried out under

the supervision of consultant neurosurgeons, Dr. Kismet Ibrahim

(referred here as KHI) and Mr. Mohamed Okasha (referred here

asMO). Finally, we describe the multiscale numerical scheme involved

in approximating the mathematical model computationally,

and present the simulation results as well as discuss future

research avenues.
2 Materials and methods

This section details the mathematical model that we developed to

simulate the evolution of GBM within a three–dimensional fibrous

brain environment. Our framework expands the work of Suveges

et al. (7) by incorporating the effects of various treatment modalities

such as surgery, chemotherapy, and radiotherapy. Furthermore, we

postulate our hypothesis and formulate a minimisation problem.

Finally, we leverage clinical data from T1, T1+C, T2, and DTI scans to

account for factors like brain structure, tumour location and extent,

and oedema.
2.1 Mathematical multiscale model for
GBM progression

2.1.1 Macro–scale dynamics
Following the work from Trucu et al. (3) Suveges et al. (7)

Shuttleworth and Trucu (32), we denote by Ω(t) the expanding 3–

dimensional (3D) tumour region that progresses over the time interval

[0,T] within a maximal tissue cube Y⊂R3. At anymacro–scale spatio–

temporal point (x,t) ∈ Y ×[0,T], we consider a cancer cell population,

denoted by c(x,t), which interacts with a two–phase heterogeneous

ECM (consisting of: a non–fibre l(x,t) and fibre F(x,t) ECM phases

(7)), while consuming the available nutrients, denoted by s(x,t), which
are present in the environment. The fibre ECM density, F(x,t),

accounts for all fibrous proteins such as collagen and fibronectin.

On the other hand, the non–fibre ECM density, l(x,t), comprises of

non–fibrous proteins (for example, amyloid fibrils), extracellular Ca2+

ions, enzymes and polysaccharides (7). Following the methods

introduced in Suveges et al. (7), we also incorporate the structure of

the brain by extracting data from the modified DTI scan, T1 and T2

brain scans. Finally, we denote by u(x,t) the global tumour vector

which embodies the cancer cell population and the fibre and non–fibre

ECM components, given by

u(x, t) : = (c(x, t), l(x, t), F(x, t))T :
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Therefore, the total space occupied by the macroscopic tissue and

tumour volume is denoted by r(u) and is defined as

r(u) = r(c(x, t), l(x, t), F(x, t)) : = c(x, t) + l(x, t) + F(x, t),

for all (x, t) ∈ W(t)� ½0,T�.

2.1.1.1 Nutrients: s(x, t)
As in this study we focus on avascular tumours, the uptake of

nutrients that are available in the outside tissue and are absorbed

through the outer tumour boundary plays an important role in the

overall tumour development. This nutrients absorption is assumed

here to occur at the constant rate ds > 0 and is enabled in the

model through the presence of nutrient Dirichlet boundary

condition at the evolving tumour boundary ∂Ω(t). Furthermore,

the spatio-temporal nutrient transport is assumed to be in

diffusion equilibrium, with an autonomous transport diffusion

coefficient Ds = Ds=(c + F + p0) that takes account of both the

presence of the cancer and ECM fibres distributions as well as the

baseline permeability p0 > 0 (which is here assumed to be a media

constant), while Ds > 0 is a constant standing for the maximal

diffusive nutrients transport possible in the tissue. Thus, the

nutrients dynamics is mathematically given by:

0 = ∇ � (Ds∇)s − ds cs ,  on W(t), ∀t ∈ ½0,T�,
s (x, t) = snor , ∀x ∈ ∂W0(t),∀t ∈ ½0,T�,

(1)

where snor is the normal level of nutrients in the outside tissue and is

considered to be constant, while ∂Ω0(t) represents the outside tumour

boundary as defined in Appendix 1 in Supplementary Material. Similar

to Suveges et al. (33), certain tumour regions become necrotic as soon

as the nutrients level s drop below a critical necrotic threshold denoted

sn > 0, while sp > 0 represents a nutrient for optimal cancer

proliferation regime. Hence, we have the following relationship

between these three values: snor > sp > sn.
Further, considering here a simpler context than the one in

Suveges et al. (33) by focussing only on two nutrient effects (namely,

on cell proliferation and cell death rates), we assume that: (1) very

low nutrient levels impede cell proliferation (having no

proliferation at all in the necrotic regions); and (2) extremely high

nutrient levels cannot increase cell proliferation rate by more than a

certain maximal proliferation rate Yp,max > 0 which corresponds to

nutrient levels s ≥ sp. Thus, mathematically, these two assumptions

are accounted for in the modelling via the following nutrient–

dependent proliferation function:

Yp(s ) : =

0, if s ≤ sn,

Yp,max , if s ≥ sp,

F(s ,Yp,max , 0,sp − sn), otherwise,

8>><
>>: (2)

where F(s , :, :, : ) describes the smooth transition between the two

extrema and is defined to be:

F(s ,Fmax ,Fmin,FL) : =

Fmax−Fmin
2 cos p(s−sn−FL)

sp−sn

� �
+ 1

h i
+Fmin,

(3)

where FL controls the phase shift of the cosine function.
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Finally, the effect that the nutrients absence/presence have on

cancer cell death is characterised via a functionYd(s) that is of similar

type as the one given in Equation 2. Specifically, here we consider a

maximal death rateYd,max > 0 in necrotic regions, while we assume no

death for cancerous cells when the level of nutrients is s ≥ sp. Thus,
using again the transition function from Equation 3, the effect over the

death rate of cancer cells is mathematically expressed as:

Yd(s ) : =

Yd,max , if s ≤ sn,

0, if s ≥ sp,

F(s ,Yd,max , 0, 0), otherwise :

8>><
>>: (4)
2.1.1.2 Cancer cell dynamics: c(x,t)

The spatio–temporal dynamics of the cancer cell population

considered in this work accounts for available movement

characteristics enabled by T1 and DTI scans (34), based on which

the fully anisotropic diffusion tensor, denoted by DT (7, 35–37). In

addition to that, the cell population movement is further biased by

adhesion processes, which are mathematically captured through a

term denoted by A(x, t, u, qf ) that will be detailed below.

Furthermore, we assume a logistic type proliferation law of the form:

P(u) : = mYp(s )c(1 − r(u))+, (5)

where µ > 0 is the proliferation rate regulated by the available

nutrients, represented here by the nutrient proliferation function

Yp(s) given by Equation 2. Additionally, the term (1 − r(u))+

guarantees that we do not experience cell population overcrowding

within the available space.

Further, while it is well known that one of the hallmarks of

cancer is resisting death (38), nevertheless, due to the abnormal

peritumoural vasculature and the degradation of the ECM, nutrient

delivery is reduced inside the tumour, ultimately leading to necrosis

(33). Therefore, we assume a death rate d > 0 that is regulated by the

cancer cell death function Yd(s) given by Equation 4. Thus,

mathematically the cancer cell death is captured here by the term:

Q(u) : = dYd(s )c : (6)

Finally, the population of cancer cells is being reduced further by

the effects of chemotherapy and radiotherapy, which are cross–

referenced with the patient’s post treatment MRI scans. Hence, the

spatio–temporal cancer population dynamics is given

mathematically by the following partial differential equation:

∂ c
∂ t = ∇∇ :½DT (x)c�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Diffusion

−m½cA(x, t, u, qf )�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Adhesion interactions

+ P(u) − Q(u)

   − Radiotherapy(c, t) − Chemotherapy(c, t) :

(7)

The first term in Equation 7, ∇∇ :½DT (x)c�, denotes the full

second order anisotropic tumour diffusion, with the 3D diffusion

tensor DT being constructed from DTI scans of the brain (7, 39).

Moreover, the second term in Equation 7, ∇[cA(x,t,u,qf)], describes
adhesion processes that bias the movement of the cell population due

to the adhesion bonds that the migratory cells establish with both

the surrounding cell and the ECM components. However, for a

compact presentation, we defer the description of both ∇∇ :½DT (x)c�
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and ∇½cA(x, t, u, qf )� to Appendix 3 in Supplementary Material,

where these terms are explained with full details.

The governing equation also accounts for the effects of

radiotherapy and chemotherapy. Radiotherapy is administered in

multiple sessions scheduled according to five days a week sequence

(Monday to Friday) in equal amounts of doses that is captured here

mathematically via a subsequence of days {jm}k=1…Nradio ⊂ {1,…,Nfinal}

(where {1,…,Nfinal} represents the entire period of treatment). The

intensity of each radiotherapy fraction follows the linear–quadratic

model introduced in Bashkirtseva et al. (40) and is delivered here

according to an appropriate per-day radiotherapy distribution function
�r: {1,…,Nradio}→ (0,∞), given by �r (jm) = aD(jm) + bD(jm)2, where
a > 0 and b > 0 are linear and quadratic coefficients of cell damage, and

D(·): {1,…,Nradio}→ (0,∞) is the per-day radiation dose level

distribution (i.e., indicating the dose administered in each scheduled

day). Finally, we account here also for the time–overlapping effect of

radiotherapy treatment over each time interval (Tik − l,Tik + d) via the

asymmetric mollifier-type function y radio
jm (t), given in Appendix 5,

Equation S6 in Supplementary Material, ∀m ∈{1,…,Nradio}, we have

that mathematically the radiotherapy treatment delivery and its effect

on the tumour is given by

Radiotherapy(c(x, t), t) : = o
Nradio

m=1
�r(jm)y

radio
jm (t)c(x, t) : (8)

Chemotherapy is incorporated based on the Norton–

Simon hypothesis (40), which suggests that tumours are more

susceptible to treatment when they have grown for a shorter

period of time. Following a chemotherapy scheduling given by

a selected subsequence of days {ik}k=1…Nchemo ⊂ {1,…,Nfinal},

we deliver Nchemo doses of chemotherapeutic drug, according

to the corresponding per–day chemo agent distribution function

rg: {1,…,Nchemo}→ {1,1.1,1.5,2,2.4,2.5,2.8}× chemodose, with

chemodose > 0 being the initial chemo dose. For this specific

patient, the TMZ dose on day 1 is chemodose = 130 milligrams,

but for example, on day 79, the dose increases to 265 milligrams of

TMZ, which results into a corresponding dosage upscaling factor

of 265/130 ≈ 2. The time–overlapping effect of the chemotherapy

over the interval (Tik − l,Tik + d) is accounted here via a function

y chemo
ik (t), given in Appendix 5, Equation S6 in Supplementary

Material, which is similar in shape to the one for radiotherapy.

Further, to account for the fractional cell kill impaired by cytotoxic

agent, we adopt an Exponential Kil l Model given by

b(1−ezW), where b > 0 represents the relative maximum fractional

cell kill, W > 0 stands for the drug concentration, and z > 0

describes tumour cells’ sensitivity to the chemo drug. Moreover, the

decrease in fractional cell kill as tumour cell population gets closer

to its carrying capacity K > 0 (representing the maximum

cumulative distribution of cells and ECM supported by an

infinitesimal volume of tissue) is described here through a

Holling type II functional µK/(K + sc), where µ > 0 is the growth

rate, and s > 0 controls the extent of the Norton–Simon effect, i.e., a

larger s leads to a steeper decline, effectively amplifying the Norton-

Simon effect by significantly reducing cell kill effectiveness when the

tumour is close to its capacity. Conversely, a smaller s results in a

more gradual decline, making the Norton-Simon effect less
Frontiers in Oncology 04
pronounced and allowing for potentially higher cell kill even at

larger tumour sizes (40). Thus, chemotherapy delivery and its effect

on the tumour is given mathematically by:

Chemotherapy(c(x, t), t) : =

mb K
(K+sc(x,t)) (1 − ezW) o

Nchemo

k=1

rg(ik)y
chemo
ik (t)c(x, t)

(9)

Thus, the governing equation for cancer dynamics finally becomes

∂ c
∂ t = ∇∇ :½DT (x)c�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Diffusion

− ∇½cA(x, t, u, qf )�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Adhesion interactions

+ P(u) − Q(u)

  − o
Nradio

m=1
�r(jm)y

radio
jm (t)c|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Radiotherapy

− m b
K

K + sc
(1 − ezW) o

Nchemo

k=1

rg(ik)y
chemo
ik (t)c|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Chemotherapy

:

(10)
2.1.1.3 Two–Phase ECM macro–scale dynamics:
F(x,t) and l(x,t)

The micro–scale mass distribution of fibre ECM phase determines

a spatial orientation of ECM fibres at micro–scale level which

represents their naturally emerging spatial bias for withstanding

incoming cell forces (6). With this orientation, while deferring more

consistent details for a later subsection, the ECM fibre phase is

therefore represented as a macroscopic vector field qf(x,t) whose

Euclidean norm stands for the amount of fibres at a given macro–

scale point (x,t), and so F(x,t): = ∥qf(x,t)∥2 (6, 7). Further, to

incorporate the impact of treatment on the each of the two ECM

phases, we build on the dynamics of the fibre and non–fibre ECM

components introduced in Suveges et al. (7, 33) by considering also the

decay effects that the chemo and radio therapies bring about, namely:

∂ F
∂ t

= −Fc(bF + bFChemo + bFRadio), (11)

∂ l
∂ t

= −lc(bl + blChemo + blRadio), (12)

where bFChemo, bFRadio and blChemo, blRadio are the corresponding

constant decay rates due to the chemo and radio therapies on the

ECM fibres and non-fibres phases, respectively.

2.1.1.4 Summary of the full macro–scale model

In summary, the full model for the macro–scale dynamics is:

∂ c
∂ t = ∇∇ :½DT (x)c�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Diffusion

− ∇½cA(x, t, u, qf )�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Adhesion interactions

+ P(u) − Q(u)

  − o
Nradio

m=1
�r(jm)y

radio
jm (t)c|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Radiotherapy

− m b
K

K + sc
(1 − ezW) o

Nchemo

k=1

rg(ik)y
chemo
ik (t)c|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Chemotherapy

,

∂ F
∂ t = −Fc(bF + bFChemo + bFRadio),
∂ l
∂ t = −lc(bl + blChemo + blRadio),

0 = ∇ � (Ds∇)s − ds cs ,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(13)
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in the presence of zero–flux boundary conditions for the cancer,

fibre and non–fibre ECM phases, as well as, Dirichlet boundary

condition for the nutrients.

2.1.2 Micro–scale dynamics within the bulk and
at the tumour boundary

In this section, we focus on the micro–scale processes that

contribute to cancer invasion. We first discuss the rearrangement of

ECM fibres by cancer cells. ECM fibres are important for providing

structural support to tissues. Cancer cells can rearrange ECM fibres

using matrix–degrading enzymes (MDEs), such as matrix–

metalloproteinases, which allows them to create new pathways for

invasion. We then discuss the cell–scale proteolytic process at the

edge of the tumour, whereby cancer cells secrete MDEs that degrade

the ECM, allowing for further tumour invasion. Finally, we discuss

the naturally arising double feedback loop that connects the micro–

scale and macro–scale. In this loop, the micro–scale interactions

between cancer cells and the ECM influence the macro–scale

growth and spread of the tumour. The macro–scale growth and

spread of the tumour, in turn, influences the micro–scale

interactions between cancer cells and the ECM (6, 7, 33).

2.1.2.1 Micro–scale dynamics of ECM fibres and their
macro–scale implications

As described in Shuttleworth and Trucu (6); Suveges et al. (7, 33),

the macroscopic ECM fibres alongside their ability to withstand

incoming forces are represented through the vector field qf (x,t) that
at each spatio–temporal node (x,t) is non–locally induced from their

micro–scale configuration, which is given with full details in Appendix

4 in Supplementary Material. This way, the global macro–scale

oriented ECM fibre qf(x,t) characteristics (including its Euclidean

magnitude which represent the amount of fibres at (x,t), namely

F(x,t):= ∥qf (x,t)∥2, arise and are fully determined from the micro–

scale distribution of ECM fibres, providing this way a fibres bottom–up

micro–to–macro scales link.

However, there exists also a macro–to–micro scales fibres top–

bottom link, which is triggered by the movement of cancer cells

through the ECM fibre distribution that cause the rearrangement of

the ECM micro–fibres on each micro–domain dY(x). Specifically,
the fibre rearrangement process is triggered by the macro–scale

cancer cell spatial flux

F (x, t) : = DT (x)∇c + c∇ � DT (x) − cA(x, t, u, qf ), (14)

which is balanced by the oriented macro–scale ECM fibre qf (x,t),
resulting in a rearrangement flux

r(dY(x), t) : = w(x, t)F (x, t) + (1 − w(x, t))qf (x, t) : (15)

with w(x,t):= c(x,t)/(c(x,t) + F(x,t)) being an appropriate

mediating weight taking into account the amount of cells

transported at (x,t) relative to the overall amount of cells and

fibres at (x,t). This acts uniformly on the mass distribution of

micro–fibre on each micro–domain dY(x), and induces a

reallocation of the mass distribution of micro–fibres within both

dY(x) and its adjacent neighbouring micro–domains, as described

in Shuttleworth and Trucu (6); Suveges et al. (7, 33).
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2.1.2.2 MDEs boundary micro–dynamics and its links to
the macro–dynamics

Besides the bulk micro–dynamics that involve the ECM fibres,

another key micro–dynamics for tumour invasion is the one

involving the proteolytic activity that occurs on the invasive edge

of the tumour, enabled by the MDEs (secreted by the cancer cells

close to the tumour interface) and transported within the

surrounding cell–scale peritumoural tissue neighbourhood.

Consequently, this MDE micro–dynamics cause degradation of

the peritumoural ECM, thereby inducing alterations in the

morphological contours of the tumour boundary (7, 33).

This boundary micro–scale MDEs proteolytic activity is

explored via the approach initially introduced in Trucu et al. (3),

whereby the emergent spatio–temporal dynamics of MDEs on a

micro–scale neighbouring envelope B(∂Ω(t),ϵ/2) of cell–scale

thickness ϵ > 0, enabled by a bundle P(t) of overlapping cubic

micro–domains ϵY(z) : = B‖ � ‖∞(z, ϵ=2), ∀ z ∈ ∂W(t), i.e.,

P(t) : = ϵY(z)f gz∈∂W(t)

and

B( ∂W(t), ϵ =2) : = ∪
ϵY∈P(t)

ϵY

with B‖ � ‖∞ (z, ϵ=2) representing the ∥·∥∞−ball of radius ϵ/2.
This facilitates the decomposition of the overarching MDE

micro–process occurring on ∪ϵY∈P(t) ϵY into an assembly of

proteolytic micro–dynamics occurring on each distinct ϵY.
Consequently, at any macroscopic time t0 ∈ [0,T] during the

tumour progression, this decomposing bundle P(t0) enable us to

explore the MDEs micro–dynamics on each individual micro–

domain ϵY ∈P(t0), where a source of MDEs emerges naturally at

micro–scale on the inner cancer side ϵY ∩Ω(t) as result of collective

contributions of the macroscopic distribution of cancer cells

that arrives during the macro–dynamics within a close proximity,

i.e. , within distance gh > 0 from ∂Ω(t), which secretes

the MDEs. Therefore, mathematically, on a small micro–scale

time–length Dt > 0 and at each micro–scale spatio–temporal

node (y,t) ∈ ϵY × [0,Dt], this source of MDEs induced at the

micro–scale by the macro–dynamics is expressed through the non–

local term:

h(y, t) =
B‖ � ‖∞  

∫
(y,gh)∩W(t0)

c(x, t0 + t)dy

l(B(y,gh)∩W(t0))
,  y ∈ ϵY ∩ W(t0),

0, y ∉ ϵ Yn(W(t0) + z ∈ Y j ‖ z ‖2 < rf g)

8>><
>>:

(16)

where 0 < r < gh is a small mollification range, B(y,gh) represents the
∥·∥∞ ball of radius gh which is centred at a micro–node y ∈ ϵY.
Furthermore, in the presence of this source of MDEs on each of the

micro–domains ϵY  ∈P(t0), the MDEs molecular mass–transport

across the tumour interface takes place on each ϵY. Thus, denoting
the MDEs density with m(y,t), ∀(y,t) ∈ ϵY × [0, Dt], this MDEs

transport is assumed here to have a diffusive character and is

expressed mathematically as

∂m
∂ t

= DmDm + h(y, t),  on ϵY � ½0,Dt�, (17)
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with Dm > 0 being a constant diffusion coefficient of the MDEs,

while this diffusion process is assumed to take place with: (1) null

initial conditions, as this is considered to occur with no molecular

memory; and (2) with flux zero boundary conditions as we assume

no MDEs molecular transport across the boundary of ∂ϵY.
Finally, as this source is induced and determined directly by the

macro–scale cancer cell population c(·,·), this gives rise to a top–

down link from the macro–scale to the MDE micro–scale dynamics.

On the other hand, as detailed in Trucu et al. (3), the pattern of

peritumoural ECM degradation that the MDEs micro–dynamics

cause at micro–scale on each boundary micro–domain ϵY∈P(t0)
determines the direction of tumour boundary relocation and

enables to characterise this macro–scale movement of the cancer

interface through rigorously derived movement laws that specifies

precisely at each x ∈ ∂Ω(t0) the associated relocation direction and

magnitude. This ultimately results in a new evolved tumour macro–

domain Ω(t0 + Dt), and this way a bottom–up link is established

between the boundary MDEs micro–dynamics and the

macro–dynamics.
2.2 Reconstruction of the cancer–cell
distribution within the oedema

It has been demonstrated that GBM cells invade the

surrounding tissue via the peritumoural oedema which is

populated by phenotypically distinct cancer cells that persist in

the area following surgical intervention (9). While these cells

typically remain untreated or survive the chemoradiotherapy

treatment, these are not detectable on MRI scans, and contribute

to tumour recurrence. Thus, to gain a better understanding of the

tumour relapse process after surgery, it is of interest to explore

whether there is any correlation between the shape of the

distribution of GBM cells that remain within oedema right after

surgery and the extent of the subsequent tumour relapse. Several

numerical experiments that we carried out (as those shown in

Figures 1, 2) suggest the following hypothesis, namely:

H: a distribution of GBM cells within the oedema that has most

cells mass concentrated within the immediate proximity of the cavity

edge leads to a more limited spread and a slower progression of the

tumour relapse.

This hypothesis also aligns with clinical findings suggesting that

surgical resection removes a substantial number of cancer cells,

leaving the remaining cells more dispersed throughout the oedema

(41, 42).

In the following, hypothesisH will be examined on two relevant

oedema cancer cell distribution types. Furthermore, in both cases,

we propose a clinical data assimilation approach, by which we aim

to reconstruct the particular shape of the cancer cell distribution

that enables the predictive computational modelling solution for the

post–surgery GBM relapse to match the available MRI

imaging data.

Two possible post–surgery oedema cancer cell distribution
scenarios: In the following, we explore hypothesis H by

considering two possible scenarios for the post–surgery oedema

cancer cell spatial distribution, namely one that is compactly
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supported strictly within Ω(0) and one that carries non–zero cell

mass density distributed at any point in Ω(0). Specifically, denoting

by n(x) the usual outward unit normal vector to the surgical cavity

edge G, ∀x ∈ G, we assume that:

on the positive side of the normal direction associated to any x∈ G,
represented here parametrically by

dx : = x + υn(x),  υ ≥ 0,

the shape of immediate post–surgery cancer cell distribution

remaining within the oedema along dx, denoted here by cdxoedema, is

of either of the following two types:

case 1: a smooth compact support mollifier–type distribution of

support radius R(n(x), kR) centred at x, which is given by

cdxoedema(υ) : = R(n(x), kR)
−1y1

υ

R(n(x), kR)

� �
, υ ∈ ½0, q(n(x), 0)�,

where y1(·) is the 1D standard symmetric mollifier given in Appendix

5 in Supplementary Material, while, for any t ≥ 0, q(n(x),t) denotes the

distance along line dx between G and ∂Ω(t), with R(n(x), kR) : =
q(n(x),0)

kR
while kR > 1 represents an uniform scaling constant applied at each

x ∈ G controls the cancer cells distribution spread in the normal

direction described by n(x), see Figure 3A);

case 2: aGaussiandistributioncentred atx andof standarddeviation
~s(n(x), k~s ), which is given by

cdxoedema(υ) ∝ N dx (0, ~s (n(x), k~s )), υ ∈ ½0, q(n(x), 0)�,

where by N dx (0, ~s (n(x), k~s )) we denote here the family of normal

distributions along dx, with ~s(n(x), k~s ) : =
q(n(x),0)

k~s
, while k~s > 1

represents an uniform scaling constant applied at each x ∈ G controls

the standard deviation, see Figure 3B).

For each of the two cases, we explore the correlation between the

extent of significant tumour spread within oedema (characterised in

case 1 by R(n(x), kR) and in case 2 by ~s (n(x), k~s )) and the extent of

tumour invasion post–surgery. A smaller R(n(x), kR) and ~s (n(x), k~s )
corresponds to a higher concentration of cells near the cavity’s edge,

with density decreasing as we move further away from it, as evident in

Figure 3 and the upper–right image of Figure 4. Finally, we

take advantage of available MRI scans to identify suitable values for

R(n(x), kR) and ~s (n(x), k~s ) that enable the closest possible match

between the computed solutions and the imaging data.

Reformulation as least square minimisation problem: In order

to assimilate available MRI data to identify appropriate values of

parameters controlling the degree of spread of the residual cancer

cells within oedema (namely, R(n(x), kR) and ~s (n(x), k~s ) for case
1 and case 2, respectively), we proceed by conceptualising

this as a minimisation problem. Indeed, to achieve this,

to address simultaneously both cases, we consider the mapping

Z(n(x),·): (1,∞) → (0,q(n(x),0)) that is defined at each x ∈ (1,∞) by

Z(n(x), x) : =
R(n(x), x),  for case 1

~s (n(x), x),  for case 2

(
(18)

with R(n(x), x) : = q(n(x),0)
x in case 1, and ~s(n(x), x) : = q(n(x),0)

x in case

2. In this context we aim to identify the point of minimum xmin

(representing the optimal controller parameters �kR and �k~s ) in case 1
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and case 2, respectively) that minimises the following x− dependant

distance

dist(cZ(n(x),x),MRI) : = max
i=1,…,Ndata

‖ cZ(n(x),x)(�, ti) −MRIi ‖2, (19)

where tif gi=1,…,Ndata
are the macroscopic times at which the

corresponding MRI scans MRIif gi=1,…,Ndata
will have been recorded.

Moreover, MRIi is the previously obtained “volume of interest” (VOI).

Here, cZ(n(x),x)(�, ti) represents the spatial density of the computed

solution evaluated at ti that is obtained for a guessed initial

condition cguess0 (x; dx , υ) that corresponds to x ∈ (1,∞). Finally, for
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each x ∈ (1,∞), the guessed initial condition cguess0 (x; dx , υ) is defined
in each of the two cases as:

case 1: cguess0 (x; dx , υ) : = R(n(x), x)−1y1(
υ

R(n(x),x) ), υ ∈ ½0, q(n(x), 0)�,
case 2: cguess0 (x; dx , υ) ∝ N dx (0, ~s (n(x), x)), υ ∈ ½0, q(n(x), 0)�.
2.3 Clinical data assimilation

2.3.1 Acquisition of clinical data
The clinical data used for this study was acquired from one single

GBM patient who received different treatments at Ninewells Hospital
FIGURE 1

Comparative 3D simulations featuring the mollifier distribution: (A) kR = 5 with no treatment; (B) kR = 5 with treatment; (C) kR = 20 with no
treatment; and (D) kR = 20 with treatment. All simulations captured at the final macro–micro stage 45.
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between 2017 and 2021, chosen due to their prolonged survival,

giving us access to multiple MRI scans which can be used to improve

our mathematical model. Ethical approval was obtained from the

local Caldicott Guardian, Integrated Research Application System

(IRAS)(project ID: 309957), Tayside Research and Development

Committee (project ID: 2022NH01) and Research Ethics

Committee (REC) (Ref: 22/NS/0021). To be included in the study,

patients had to be over 16 years old but no older than 85 years old,

with histologically confirmed GBM, and have undergone multiple

pre–operative and post–operative MRI scans and received standard

NHS chemotherapy and radiotherapy treatments. Patients with a

limited number of MRI scans were excluded.
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2.3.2 Brain imaging, preprocessing
and segmentation

The MRI scans were conducted using NHS GE 1.5 Tesla

scanners and included multiple pre–operative and post–operative

scans for the selected patient. The scans consisted of T1–weighted

(T1), T2–weighted (T2), contrast–enhanced T1–weighted (with

Gadolinium) (T1+C), diffusion–weighted imaging (DWI) (for

specific dates), and T2–FLAIR sequences.

A single typical patient from the series was used for the

calculations described here. The patient received initial surgery,

followed by chemoradiotherapy with Temozolomide (TMZ) at 130

mg per day concurrently with radiotherapy at a total of 60 Gy
FIGURE 2

Comparative 3D simulations featuring the Gaussian distribution: (A) k~s = 10 with no treatment; (B) k~s = 10 with treatment; (C) k~s = 100 with no
treatment; and (D) k~s = 100 with treatment. All simulations captured at the final macro–micro stage 45.
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distributed equally in 30 total fractions, following the Stupp protocol,

and in addition, adjuvant TMZ at a dose of 265–325 mg (6 cycles)

after the initial radiotherapy and chemotherapy treatments. Due to

recurrence, visible seven months after the completion of concurrent

chemoradiotherapy and adjuvant TMZ, the patient also received

Lomustine at 160 mg, Procarbazine at 150–200 mg, and Vincristine

at 1–2 mg (6 cycles) (this treatment is named PCV). The delivery of

the radiotherapy and chemotherapy can be seen in Figure 5, where we

also considered all chemotherapeutic drugs functionally equivalent

(TMZ, Lomustine, Procarbazine and Vincristine), adjusting only the

dosage based on the treatment plan. With the purpose to simulate

this treatment delivery, we need to modify the model such that every

computational macro–micro stage corresponds to a certain amount
Frontiers in Oncology 09
of real time. This is later explained in Section 3.1, but clearly

showcased in the bottom schematic of Figure 5.

The patient underwent two more surgeries, and MRI scans were

taken before and after each of the surgeries, as well as after the

completion of the different treatments. When the patient was not

undergoing any treatments, MRI scans were conducted every three

to four months.

The MRI scans were first pre–processed using Statistical

Parametric Mapping (SPM–12, http://www.fil.ion.ucl.ac.uk/spm/).

This pre–processing involved reslicing, normalising and finally

segmentation of the T1 scan to obtain the white and grey matter

densities. As Diffusion Tensor Imaging (DTI) scans were not

obtained for this patient, we modified a standard DTI scan from
FIGURE 3

Schematic showing from top right to bottom left: a GBM tumour, radio and chemotherapy being applied to the surgically removed area, the
surviving cells inside the oedema and finally the two scenarios of cancer cell distributions, (A) the mollifier, and (B) the Gaussian distributions, used in
the simulations, where G represents the edge of the surgical cavity.
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a healthy volunteer from the IXI Dataset (http://brain-development.org/

ixi-dataset/), which was warped to match the anatomy of the T1 scan of

the GBM patient, hence we were able to infer brain fibre tract directions

for the GBM brain.

In Figure 6, on the top right, a T1–weighted scan (T1) is shown

and on the top left a T1 scan with gadolinium contrast (T1+C),

which outlines the tumour as gadolinium is taken up by the invasive

edge of the tumour. The GBM proliferating edge is observed as

enhancing in the T1+C and hypo- to iso- intense in T1, as seen in

Figure 6. The region which is hyperintense in the T2 scan (and T2–

FLAIR) and it is non–enhancing in T1+gadolinium represents the

oedema, as seen in the bottom row of Figure 6.

After pre–processing has been completed, tumour segmentation

was done using MRIcroGL, version v1.2.20220720 (www.nitrc.org).

The segmentation was performed manually, under the supervision

of NHS Consultant neurosurgeons KHI and MO, who specialise in

the treatment of GBM. The scans were processed on a axial

(transverse) slice–by–slice basis, as seen in Figure 7, for the post–

contrast T1 and T2 sequences. These enabled the exploration of

important characteristics, referred to as “volumes of interest” (or

simply “VOI”), one for the pre–surgical tumour and another one for

the oedema before surgery, which were given in the form of binary

masks (i.e., individual indicator matrices of zeros and ones that give

the footprints of the tumour and oedema) and that were later used

in our mathematical model.
3 Results

The numerical approach employed in this work to tackle both

the macro–scale and micro–scale dynamics, as well as the top–down

and bottom up links between the scales, builds on a sequence of

multiscale modelling and computational works introduced in Trucu

et al. (3); Shuttleworth and Trucu (6, 32); Suveges et al. (7, 33), and

extends these through the introduction of a new governing equation

for capturing nutrients dynamics. Moreover, to identify the shape of
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the remaining post–surgery oedema cancer cell population

distribution that lead to GBM relapse, the 3D computational

modelling platform developed here is coupled with a least–

square–type clinical data assimilation approach using post–

surgical MRI scans.

Similar to the methodology outlined in Suveges et al. (33), we

utilise the successive over–relaxation method for solving the

nutrients Equation 1. For the rest of the macro–scale dynamics in

(13), we follow similar steps as in Suveges et al. (7, 33) and employ

the method of lines with the following details. Specifically, the

spatial operators (i.e., the diffusion and adhesion operators) are

addressed as follows: (a) for diffusion we implement a symmetric

finite difference scheme based on convolution, as detailed in

Suveges et al. (33); and (b) for adhesion we utilise a convolution–

driven approach employing a fifth–order weighted essentially non–

oscillatory (WENO5) finite difference scheme (43–46), also

elaborated upon in Suveges et al. (33). Finally, the time marching

is ensured through a predictor corrector scheme introduced in

Shuttleworth and Trucu (6) and further detailed in Suveges et al.

(7, 33).
3.1 Treatment scheduling

One of the primary aims of our work is to accurately replicate the

treatment regimen and dosages administered to a specific patient,

which in this case, revolves around the time span bridging the first

and second surgery, during which various treatment modalities were

employed throughout this entire duration.

The comprehensive timeline for this patient extends to 900 days,

encompassing the period between the first and second surgery. During

this span, chemotherapy and radiotherapy were administered, and

MRI scans were conducted on specific dates, as shown in the bottom

schematic of Figure 5. In order to forecast the possibility of relapse and

tumour spread based on this patient’s treatment timeline, we need to

simulate the treatment process over the course of these 900 days. To
FIGURE 4

Sagittal views of possible examples of initial conditions when applying them to the pre–surgical oedema: (A) the mollifier and (B) the
Gaussian distribution.
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achieve this goal, it is important to demarcate the computational

macro–micro stages and steps meticulously.

To precisely capture the daily dynamics of the patient’s treatment,

the model was modified with a temporal discretisation scheme. Here,

every five computational stages represent one actual day, resulting in

4500 stages. This discretisation comes from splitting the macro–scale

time interval (i.e., the treatment duration) [0,Tf] into smaller intervals

{[kDt, (k+1)Dt]}k=0,kmax. Each such increment, which encompasses

both the macro–dynamics that takes place on Ω(kDt) over the time

period [kDt, (k+1)Dt] and the micro–dynamics at its boundary

(influenced by the “top–down” links (explained previously in greater

detail in section 2.1.2) on each of the boundary micro–domains ϵY ∈ B

(∂Ω(kDt),ϵ/2)) constitutes a “stage k”. As described in Trucu et al.

(3)Alzahrani et al. (47), these micro–dynamics at the boundary

dictate the precise direction and displacement magnitude for the

relocation of each of the points on ∂Ω(kDt)), progressing this way

the stage k tumour domain Ω(kDt) into the newly obtained domain

Ω((k + 1)Dt). With this method, we can match the exact treatment

for each day and compare our simulations with the MRI scans taken

on those specific dates.
Frontiers in Oncology 11
3.2 Initial conditions

The initial micro–fibre distribution within a micro–domain dY (x)

is considered here to be the one introduced in Suveges et al. (7), which

in brief can be summarised as follows. On one hand, if x ∈ Y is located

in the grey matter zone, random straight narrow 3D–stripes (i.e.,

narrow equal–square cross–section parallelepipedic bars that fit within

dY (x)) are distributed until the ratio of the cumulative stripe volume

occupied 35% out of the entire dY (x). On the other hand, if x is located

in the white matter, a predefined set of aligned straight narrow 3D–

stripes is distributed within dY (x) until the volume is filled up to the

same percentage, i.e., up to 35%. We also incorporated information

about the white and grey matter tracts from the T1+C scan into the

micro–scale fibre distribution (7). For the non–fibre ECM phase, we

have the following initial condition:

l(x, 0) = min  h(x1, x2, x3), 1 − c(x, 0)f g, (20)
where for any x : = (x1, x2, x3) ∈ Y we have:

h(x) =
1
2
+
1
4
sin (7py1(x)y2(x)y3(x))

3 � sin (7py1(x)=y2(x)=y3(x)),
FIGURE 5

Visualising treatment dynamics: Top image: These graphs depict the radiotherapy and chemotherapy delivery for this patient. The horizontal axis
represents the computational stages of the treatment simulation, with every five stages corresponding to one actual day. The vertical axis represents
the intensity of the radiation and chemotherapy doses delivered at each stage. Bottom image: Schematic showcasing the full timeline between the
first and second surgery from the case considered of the treatments administered (radiotherapy, TMZ, adjuvant TMZ and PCV), the MRI scans dates
and the corresponding dates of the comparison between our simulations and the MRI scans. Moreover, we have aligned the temporal progression
(weeks and months) of the treatment phases with the corresponding stages of our computational model, providing a clear overview of the timeline
and key milestones.
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with:

y1(x) : =
1
3 (x1 + 1:5),

y2(x) : =
1
3 (x2 + 1:5),

y3(x) : =
1
3 (x3 + 1:5) :

Lastly, the initial condition for the nutrients is set to: s(x,0) = 0.4.
3.3 Numerical simulations

This section presents the results of 3D numerical simulations of

the multiscale model of GBM tumour growth. The parameter values

used in the simulations are taken from Table S1 in Supplementary

Material. Any modifications made to the values are stated in

the text.

To display the evolution of the tumours at time 45Dt, we show
four panels for each simulation. The first three panels show the
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tumour in the coronal, axial, and sagittal planes, respectively. The

final panel shows a 3D image of the brain with the embedded

tumour alongside the 3D tumour in isolation.

The figures below show the evolution of GBM tumours with

different cancer cell distributions in the oedema, under the

application (or not) of radiotherapy and chemotherapy. The

densities of the main tumour and the ECM are shown in the top–

right and bottom–right corners of each of the three classical–views

panels, respectively.

Now, to initialise our simulations, we use the segmented masks

for both the pre–surgical oedema and tumour, which are subtracted

in order to create a surgical cavity, as depicted in Figure 3. Next, we

apply either a cancer cell distribution within the modified oedema

mask of the shape of a mollifier–type distribution or a Gaussian–

type distribution. Moreover, the treatment used on this specific

patient is also being applied at the simulation, as shown in Figure 5.

The figures below show the results of applying the mollifier

distribution with different values for kR, in Figure 1 and the
FIGURE 6

Figure showing GBM and oedema in different axial MRI scans before the first surgery: (A) GBM tumour in a T1+C, (B) GBM tumour in a T1 without
contrast, (C) oedema in a T1+C and (D) oedema in a T2 weighted scan.
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Gaussian distribution with different values for k~s , in Figure 2.

Finally, we compare the results which showed a reduction in

tumour size, as shown in Figure 8.

The results of the simulations are consistent with clinical data,

which have shown that the highest concentration of cancer cells in

recurrent GBM patients are located at the resection margin (41, 42),

hence using the oedema mask, and applying either a mollifier or

Gaussian distribution of cancer cells within it, can lead to clinically

relevant results with the appropriate values for kR or k~s , respectively.

Figure 1 illustrates the results from two experiments. In the first

experiment, rows A) and B) used the parameter value of kR = 5. Row

A) depicts the results obtained without applying any treatment,

whilst row B) shows the simulation when the treatment from

Figure 5 was applied throughout the macro–micro stages.
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The second experiment, showcased in rows C) andD), used kR = 20.

Similarly to the first experiment, row C) presents the results without any

treatment, while row D) showcases the simulation with the treatment

applied. Observe that applying the treatment, in Figure 1 rows B) and

D), it highly reduces the densities and spread of the tumour, but there

are still residual cancer cells left, mostly around the surgical cavity.

Finally, observe that increasing the value of kR leads to less spread, when

comparing the top two rows (A and B) with the bottom two (C and D).

Similarly to the previous case, Figure 2 displays the simulations

using the Gaussian distribution with no treatment being applied in

rows A) and C), whilst rows B) and D) are the simulations with

chemoradiotherapy. Moreover, a value of k~s = 10 is used for both

rows A) and B) and k~s = 100 for both rows C) and D). When using

the Gaussian distribution for the residual cancer cells within
FIGURE 7

Figure showing the pre–surgical axial MRI scans and corresponding volumes of interest for the patient in question: (A) T1+C scan, (B) Pre–surgical
GBM VOI, (C) T2 scan and (D) oedema VOI.
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oedema after surgery, we observe a similar morphology to the

previous case. As with the mollifier distribution experiment,

increasing k~s and applying the treatment also leads to less

tumour growth and spread. Nonetheless, this still leads to a

bigger tumour, and with much more spreading potential than in

the mollifier case.

Furthermore, we performed experiments with different

parameter values and found that the most compact and least

invasive tumour spread was obtained when applying the

chemoradiotherapy treatment to an initial maximum cancer cells

density of 0.1, followed by applying the mollifier distribution to it

within the oedema, with kR = 30. As shown in Figure 8 top row this

approach leads to barely any growth, and the tumour remains stable

throughout the stages. Moreover, within the same scenario but

considering the Gaussian distribution of cells within oedema with

k~s =100, showcased in Figure 8 bottom row, this also leads to less

spread than in the previous experiment from Figure 2, but as

showcased in the 3D panel of Figure 8 (bottom row) for the

Gaussian distribution simulation, the tumour is larger and

spreads more than in the mollifier case from Figure 8 (top row).

Finally, during the course of various experiments, we observed

an intriguing outcome. When applying the mollifier distribution to

a specific set of values, the resulting outcome closely resembled the

extent of the tumour from an MRI scan taken 881 days into the

patient’s treatment, as evidenced by a visual comparison between

the top–right image of our simulation and an actual MRI scan of the

patient, as shown in Figure 9. This discovery guided us toward the

subsequent phase of our goal: the comparative analysis of our

simulations with MRI scans from this particular patient, enabled

by the modification of kR or k~s according to the optimisation

procedure from Section 2.2, so that our simulations can closely
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match the tumour extent observed in the given MRI scans from the

considered patient.
3.4 Comparison between our simulations
and the MRI data

A key objective of this work is to predict the growth dynamics of

GBM tumours whilst incorporating a range of pre–operative and

post–operative MRI scans from the specific patient into our

analysis. This pursuit, crucial in the field of neuro–oncology,

demands a thorough examination of the treatments received by

these patients plus the analysis of the MRI scans. This examination

is carried out through rigorous comparisons between our

computational simulations and the existing MRI scans.

Starting from the baseline parameters set from Table S1 in

Supplementary Material, we use the optimisation procedure

described in Section 2.2 to approximate the optimal kR or k~s
(depending on the case considered), which ensure a good match

between the MRI scans and the simulations. Then to properly

compare our simulations to MRI scans, we start by aligning the

simulation data with the corresponding MRI scan taken at a specific

time in our timeline. Comparing the outlined tumour volume from

the MRI, outlined under the supervision of KHI and MO, with our

simulated cancer density, we calculate the absolute difference

following the methods described in Section 2.2, such that

Equation 19 is satisfied. If, at any time point, the cancer growth

exceeds a set threshold and the disparities between the actual and

predicted data are significant, the simulation is halted.

Subsequently, kR or k~s are adjusted in a dyadic fashion until the

simulation closely matches the real data, meeting our predefined
FIGURE 8

Simulations that showed the least tumour progression with the mollifier (top) and Gaussian distribution (bottom), respectively.
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threshold, which we set to be 5000 voxels, i.e., if the difference

between our simulation and the VOIs (from MRI scan data) is

larger than 5000, then the simulation will stop.

This iterative refinement process ensures that our simulations

accurately represent tumour dynamics observed in MRI scans,

thereby advancing towards enhancing the reliability and

applicability of our computational models.

3.4.1 Utilising post–surgical MRI scans for more
realistic tumour simulations

In earlier stages of our research, we focused solely on the initial

oedema volume before surgery and the main tumour size before any

operation took place, as shown in Figure 3. However, while this

approach was methodologically sound, it falls short when
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attempting to replicate the evolving changes observed in later

MRI scans of the patient. These changes occur as the patient’s

anatomy undergoes significant transformations due to surgery, as

visually depicted in Figure 10. The patient in question experienced a

noticeable reduction in the size of the original tumour site after

surgical intervention. This reduction was followed by a recurrence

of a smaller tumour, as shown in Figure 11A. Consequently, starting

our simulations solely based on the initial tumour outline inevitably

leads to a tumour size pattern that exceeds our expectations. To

address this methodological challenge, we introduced a novel

element to our initial conditions: the post–surgical cavity MRI

scan VOI. This post–surgical MRI scan provides a clear view of

the changes in brain anatomy following surgery, as depicted in

Figure 10. By incorporating this post–operative anatomical data
FIGURE 9

Visual comparison between one of our simulations and the MRI scan of the patient, taken 881 days after the first surgery.
FIGURE 10

Image showing: (A) axial view of the T1+C pre–operative MRI scan, and (B) axial view of the post–operative MRI scan of the same patient,
showcasing the anatomical differences of the brain structure due to the surgical intervention.
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into our computational framework, we bridge the crucial gap

between the pre–operative and immediate post–operative states.

This enables a more precise and anatomically and physiologically

realistic simulation of GBM tumour growth dynamics in the context

of surgical interventions.

The mathematical implementation of this innovative volume

addition requires a robust framework. We introduce three distinct

masks: the pre–surgical oedema mask, the initial tumour mask, and

the surgical cavity mask, as illustrated in Figure 11B. We introduce

two new constants which indicate the presence or absence of cancer

cells within these masks, represented as ait and asc. Following the

notation described in Section 2.2, we employ the mollifier

distribution within the different masks to articulate this operation

as follows:
Fron
• For the initial tumour mask:

cdxit (υ) : = R(n(x), kR)
−1y1(

υ
R(n(x),kR)

)ait , υ ∈ ½0, q(n(x), 0)�,
• For the surgical cavity mask:

cdxsc (υ) : = R(n(x), kR)
−1y1(

υ
R(n(x),kR)

)asc, υ ∈ ½0, q(n(x), 0)� :
On the other hand, when using a Gaussian distribution, we have

the following equations:
• For the initial tumour mask:

cdxit (υ) ∝ N dx (0, ~s(n(x), k~s ))ait ,  υ ∈ ½0, q(n(x), 0)�,
• For the surgical cavity mask:

cdxsc (υ) ∝ N dx (0, ~s(n(x), k~s ))asc,  υ ∈ ½0, q(n(x), 0)� :
As shown in the schematic diagram in Figure 11B, it is clear that

the surgical cavity is slightly more elongated than the oedema mask.

Therefore, regions where these volumes do not overlap are defined

by setting their values to zero.
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In essence, this mathematical framework equips our

computational model with the ability to smoothly incorporate the

complex interactions between the oedema, initial tumour, and

surgical cavity VOIs. This leads to a more physiologically accurate

simulation of GBM tumour growth dynamics, especially in the

context of surgical procedures and chemoradiotherapy treatments.

The outcome of the least square minimisation outlined in Section

2.2 led to the identification of the appropriate kR, that is then used in

the mollifier–type distribution of cancer cells in the oedema for the

considered patient. With the identified parameter kR = 20, the

numerical simulation is shown in Figure 12.

Notably, the tumour in these results is noticeably smaller and

has a more compact spatial distribution. Importantly, this tumour is

completely surrounded and confined within the boundaries

outlined by the surgical cavity mask, which closely matches the

patient’s MRI scans, as illustrated in Figure 13A, which represents

an overlapping of our simulation (simulation of Figure 12 at stage

44, in green) and the recurred GBM cancer (in red), overlaid over

the corresponding MRI scan slice taken 881 days into the treatment

(or over 28 months, as depicted in the bottom schematic of

Figure 5). The simulation of our model closely aligns with real–

world clinical observations for this particular MRI slice. This strong

agreement demonstrates the model’s effectiveness and its potential

for predicting relevant outcomes. While Figure 13A showcases a

high degree of accuracy, it is important to acknowledge that not all

MRI slices achieve this level of precision, as shown in

Figures 13B, C.

This achievement marks a significant milestone in our effort to

accurately replicate the complexities of GBM tumour growth in the

presence of surgical interventions, treatment administrations, and

cancer cell distributions within the oedema. This mathematical

modelling contributes to our understanding of the clinical

management of this very challenging medical condition.
FIGURE 11

(A) Superimposition illustrating the spatial alignment of the pre–surgical original tumour (depicted in blue), the post–surgery surgical cavity
(highlighted in green), and the recurrent tumour preceding the second surgical procedure (presented in red). (B) Schematic illustrating the dynamics
of the three masks: the pre–surgical oedema mask (in dark yellow), the initial tumour mask (in blue), and the surgical cavity mask (in green). The
brighter green region that is not overlapping with the oedema mask, is designated as zero, i.e., no cancer will be located in this area.
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FIGURE 13

Top row: (A) Overlay depicting the spatial compatibility between our computational simulation (highlighted in green) and the MRI scan
demonstrating GBM that recurred prior to the second surgery of the patient (emphasised in red), aligning with the data from the final MRI
examination. (B, C) These overlays also involve our computational simulation (in green) and the recurred GBM pre–second–surgery MRI scan (in
red). However, in this case, the alignment lacks a high degree of accuracy. Bottom two rows: Time evolution of the tumour recurrence (in red) and
the simulation (in green), from month 6 (Comparison 1) into the treatment until month 26 (Comparison 8) from Figure 5. For each of these scans, a
comparison was made between the real tumour growth and our simulations.
FIGURE 12

Simulation with the mollifier distribution using the three introduced masks (the pre–surgical tumour VOI, the pre–surgical oedema VOI, and the
surgical cavity VOI), with kR = 20.
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4 Discussion

GBM, an extremely aggressive brain tumour with a low 5–year

survival rate of only 7.2%, poses significant challenges in terms of

treatment (1, 2). In the search for better therapies, mathematical

modelling has emerged as a valuable approach. Despite established

treatments like the Stupp protocol, GBM almost always recurs,

driven by its invasive nature and peritumoural oedema infiltration,

in some cases (9–12). Mathematical models provide a promising

way to understand the complexities of GBM.

Our study investigates the connection between the swelling

around the tumour (peritumoural oedema) and the distribution of

GBM cells within the oedema, whilst using MRI data. Building upon

the 3D multiscale moving–boundary framework we introduced

earlier, we have incorporated the treatment history of a specific

patient from Ninewells Hospital. By simulating how tumours

typically grow, our research sets the stage for future experiments

using MRI data and treatment histories collected from GBM

patients. Ultimately, we aim to develop a mathematical model

that incorporates the effects of chemoradiotherapy and

investigates the distribution of GBM cells within the oedema with

greater accuracy, whilst also taking into account the anatomical

changes of the brain due to surgery.

In each simulation, we initiate the process by segmenting the

oedema and pre–surgical tumourmasks obtained from the MRI scans

of the specific GBM patient. Crucially, we meticulously replicate and

take account of the exact treatment protocol administered to this

patient in our simulations, as showcased in Figure 5. Furthermore, we

investigate two scenarios for how cancer cells are distributed within

the oedema: the mollifier and Gaussian distributions. The resulting

figures show various outcomes based on different values for kR and k~s .

These simulations closely resemble what doctors see in real clinical

cases, where recurrent GBM often has the highest concentration of

cancer cells at the edge of the surgically removed area (41, 42, 48, 49).

As illustrated in Figures 1, 2, decreasing kR and k~s respectively,

corresponds to increased tumour aggressiveness. Notably here, each

of the two distributions considered for the cancer cell population

within the oedema decays towards the outer boundary of the oedema

- an aspect that is consistent with evidence derived from clinical

patient histopathology samples (48–50). Moreover, the mollifier

distribution does go to zero as we approach the outer oedema

boundary, however, the Gaussian does not. This is due to the fact

that oedema represents a topologically compact region (subset) in R3

where only the mollifier can die out to zero, while the Gaussian

distribution remains always strictly positive (above a minimal

threshold level).

Our experiments, involving a range of parameter combinations

and the application of the chemoradiotherapy treatment, have

shown that the most controlled and least invasive tumour growth

occurs when we start with a maximum cancer cell density of 0.1 and

use the mollifier distribution, with kR = 30, to arrange the cancer

cells within the oedema, as observed in Figure 8.

What is particularly noteworthy is that our simulations closely

match MRI scans taken years into the treatment, as shown in

Figure 9, suggesting good agreement between our model and real–
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world data. This promising finding motivated us to improve our

methods to predict GBM growth dynamics by incorporating

various pre–and post–operative MRI data along with treatment

effects. Initially, we only focused on the initial pre–operative tumour

and oedema regions. However, this approach fell short when trying

to capture the dynamic changes that occur after surgery, as observed

in Figure 10. To address this limitation, we introduced the most

immediate and highest quality post–operative MRI data, such that

the surgical cavity can be outlined without any complications, into

our framework, bridging the gap between the pre–operative and

post–operative states. This integration involved three masks (the

pre–surgical oedema, the initial tumour, and a future representation

of the surgical cavity), as shown in Figure 11B, regulated by

constants and applying the mollifier or Gaussian distributions,

according to the methods described in Section 2.2. This

framework allowed for more precise simulations, as evidenced by

the reduction in tumour size and spatial distribution, which closely

matched the patient’s MRI scan taken 881 days after the first

surgery, as seen in Figure 13A.

In conclusion, our model represents a significant advancement in

our ability to predict how GBM tumours behave following surgery,

treatment administration and the distributions of cancer cells within

the oedema. By incorporating pre–operative and post–operative MRI

scans and carefully considering patient treatment histories, we have

developed a robust framework that accurately replicates the complex

dynamics of GBM progression. This achievement not only enhances

our understanding of this challenging disease but also opens up

significant possibilities in the field of clinical management.

In terms of modelling challenges and limitations, our model has

many unknown variables, which are either estimated from the

relevant literature and/or are patient specific. Gathering more

data from experimental studies that accurately measure the

different parameters involved in GBM growth and invasion can

help the model become more accurate. Furthermore, as evidenced

in Figure 13, bottom images, the accuracy of the evolution of our

simulations, which is being overlaid over the tumour recurrence

over time, still needs to be further improved. While this work is

meant to be a proof of concept, this model needs validation for its

predictive potentials. This is something that we are currently

working on, aiming to apply the model to other individuals from

a larger patient cohort to explore its level of transferability.

This research reflects current advancements in GBM research

by providing valuable insights into mathematical modelling and its

potential to predict this aggressive disease. By translating these

insights into improved treatments, we hope this work will lead to a

significantly improved outlook for GBM patients.
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