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multi-feature fusion of
attention mechanism
Heng Deng1†, Wenjun Huang2†, Xiuxiu Zhou3†, Taohu Zhou3,
Li Fan3* and Shiyuan Liu1,3*

1School of Medicine, Shanghai University, Shanghai, China, 2Department of Radiology, The Second
People’s Hospital of Deyang, Deyang, Sichuan, China, 3Department of Radiology, Second Affiliated
Hospital of Naval Medical University, Shanghai, China
Objectives: The purpose of this study was to develop and validate a new feature

fusion algorithm to improve the classification performance of benign and

malignant ground-glass nodules (GGNs) based on deep learning.

Methods:We retrospectively collected 385 cases of GGNs confirmed by surgical

pathology from three hospitals. We utilized 239 GGNs from Hospital 1 as the

training and internal validation set, and 115 and 31 GGNs from Hospital 2 and

Hospital 3, respectively, as external test sets 1 and 2. Among these GGNs, 172

were benign and 203 were malignant. First, we evaluated clinical and

morphological features of GGNs at baseline chest CT and simultaneously

extracted whole-lung radiomics features. Then, deep convolutional neural

networks (CNNs) and backpropagation neural networks (BPNNs) were applied

to extract deep features from whole-lung CT images, clinical, morphological

features, and whole-lung radiomics features separately. Finally, we integrated

these four types of deep features using an attention mechanism. Multiple metrics

were employed to evaluate the predictive performance of the model.

Results: The deep learning model integrating clinical, morphological, radiomics

and whole lung CT image features with attention mechanism (CMRI-AM)

achieved the best performance, with area under the curve (AUC) values of

0.941 (95% CI: 0.898-0.972), 0.861 (95% CI: 0.823-0.882), and 0.906 (95% CI:

0.878-0.932) on the internal validation set, external test set 1, and external test set

2, respectively. The AUC differences between the CMRI-AM model and other

feature combination models were statistically significant in all three groups

(all p<0.05).

Conclusion: Our experimental results demonstrated that (1) applying attention

mechanism to fuse whole-lung CT images, radiomics features, clinical, and

morphological features is feasible, (2) clinical, morphological, and radiomics

features provide supplementary information for the classification of benign and
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malignant GGNs based on CT images, and (3) utilizing baseline whole-lung CT

features to predict the benign and malignant of GGNs is an effective method.

Therefore, optimizing the fusion of baseline whole-lung CT features can

effectively improve the classification performance of GGNs.
KEYWORDS

ground-glass nodule, deep learning, computed tomography (CT), attention mechanism,
feature fusion
1 Introduction

Lung cancer remains the deadliest cancer worldwide and early

detection is crucial for its treatment (1, 2). In the early stages of lung

cancer, pulmonary lesions often manifest as pulmonary nodules (3),

among which ground-glass nodules (GGNs) are one of the main

manifestations (4, 5). For patients with early malignant lung diseases

accompanied by ground-glass nodules, intervention therapy can

achieve a cure rate of over 80% (6). With the widespread

application of high-resolution CT and low-dose CT (LDCT) for

lung cancer screening, the detection rate of pulmonary ground-glass

nodules (GGNs) has significantly increased (7, 8). However, due to

the large number of GGNs confirmed as benign by histopathology,

the imaging features between early-stage lung adenocarcinoma and

benign GGNs are very similar (9). Therefore, distinguishing between

benign and malignant GGNs is challenging (10, 11).

In recent years, numerous researchers have developed various

computer-aided diagnosis (CADx) models utilizing CT images to

predict malignant GGNs. These studies can be broadly categorized

into two approaches. The first approach is based on radiomics

features (6, 12, 13), which consists of a series of processes including

tumor segmentation, radiomics feature extraction and selection,

machine learning classifier training/testing, and performance

evaluation (14–16). By utilizing radiomics models, thousands of

quantitative imaging features are computed to decode the imaging

phenotype of lung tumors. Although radiomics models can achieve

high performance on limited datasets, tumor segmentation, and

feature extraction are manually performed, which obviously cannot

meet the requirements of clinical diagnosis. The other approach is

the emergence of deep learning methods in recent years (17–20).

Unlike radiomics models, deep learning-based models can extract

CT image features using end-to-end deep neural networks and have

achieved higher performance on large datasets (21–23). However,

existing publicly available lung image datasets lack benign and

malignant results confirmed by histopathology. Thus, these deep

learning models can only predict the malignant tumor risk of GGNs

rather than classify benign and malignant GGNs.

Reviewing relevant studies, we note that radiomics features can

effectively decode the internal features of lung tumors, while deep

learning-based imaging features can represent some features

around the tumor (24). However, whether it is radiomics feature
02
analysis methods or deep learning algorithms, they only fully utilize

single-mode radiological data and ignore other modalities in

cancer data, such as histopathology, genomics, or clinical

information, making multimodal data integration relatively

undeveloped (25, 26). In our previous research, we fused clinical,

morphological, radiomics, and CT image features through BP

neural networks (19), achieving higher performance compared to

single-feature models, and preliminarily demonstrating the

feasibility of multimodal features in the classification of benign

and malignant GGNs.

To further optimize and improve the classification performance

of the model, we introduced an attention mechanism to optimize

the fusion mode of the four features. The attention mechanism is an

effort to mimic the behavior of the human brain, selectively focusing

on some important elements while ignoring others. Combining the

attention mechanism with deep learning models helps

automatically (through learning) focus on the most important

parts of the input data. Therefore, theoretically, the attention

mechanism can characterize the importance of different features

through weight allocation, increasing the interpretability of the

model. In this study, we explored the feasibility of using attention

mechanisms to fuse clinical, morphological, radiomics, and CT

image features to distinguish between benign and malignant GGNs.
2 Materials and methods

2.1 Datasets

The cohort was the same as the previous study (19). All GGNs were

retrospectively collected from three medical institutions, respectively

covering the periods from January 2019 to December 2021 (Hospital 1,

Affiliated Hospital of Shandong Second Medical University), January

2016 to December 2018 (Hospital 2, Second Affiliated Hospital of Naval

Medical University), and January 2020 to June 2022 (Hospital 3, The

Second People’s Hospital of Deyang), and all were confirmed by

pathology after thoracoscopy or open-chest surgery. Inclusion criteria

were: (1) baseline GGNs (maximum cross-sectional diameter) > 5mm

and ≤ 30mm; (2) baseline thin-section non-enhanced CT scan covering

the entire lungs (slice thickness ≤ 2mm); and (3) CT scan performed

within 1 month before surgery. Exclusion criteria were: (1) any form of
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anti-cancer treatment before surgery; (2) incomplete clinical or imaging

data; (3) factors interfering with the display of GGNs, such as pseudo

lesions; It should be noted that according to the 2021 classification

recommendations of the World Health Organization, glandular

precursor lesions (AAH, AIS) were classified as benign, while MIA

and IAC were classified as malignant (27).

In the end, a total of 385 GGNs from 385 patients (149 benign

and 236 malignant) were included in the study (Figure 1). For the

sake of training effectiveness and model generalization, we divided

the data from the largest institution, Hospital 1 (239 patients, 239

GGNs, 60 Benign, 179 Malignant), into training and internal testing

sets in a 6:4 ratio according to the proportion of benign and

malignant cases, while the data from the smaller Hospital 2 (115

patients, 115 GGNs, 73 Benign, 42 Malignant) and Hospital 3 (31

patients, 31 GGNs, 16 Benign, 15 Malignant) were used as two

independent external testing sets. Because of the retrospective

nature of the study, the institutional review boards of the

Hospital 2 approved the study without obtaining informed consent.
2.2 CT image

The CT scans were acquired by using multi-slice scanners with

manufacturers of Siemens, Philips and GE medical systems. All CT

images were retrieved from the picture archiving and
Frontiers in Oncology 03
communication system (PACS) and saved in digital imaging and

communications in medicine (DICOM) format.
2.3 Clinical-morphological
features evaluation

In this study, we meticulously gathered clinical information for

all patients from the electronic medical record system. This

encompassed four key clinical parameters: sex, age, smoking

status, and family history of lung cancer. The evaluation of CT

morphological features was conducted using specific settings for

mediastinal (window width: 400 Hounsfield units [Hu], window

level: -40 HU) and lung windows (1400 Hu, -600 HU). This task

was independently undertaken by two adept chest radiologists (WH

and XXZ, with seven and ten years of chest CT diagnostic

experience, respectively), and subsequently cross-verified by

another seasoned radiologist (LF, boasting 20 years of experience

in this domain). Discrepancies in evaluations were harmonized

through collaborative consultations. Notably, all radiologists

conducted their assessments blinded to the pathological

outcomes, ensuring an unbiased approach.

The CT morphological features scrutinized included the

location, size, attenuation, shape, and margin of the nodules, as

well as the nodule-lung interface, internal characteristics, and
FIGURE 1

The inclusion and allocation of patients with pathological results.
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adjacent structures. The nodules were classified into three location

types — inner, middle, and outer thirds of the lung — based on

established quantitative definitions of central lung cancer. Size

assessment involved measuring the maximum and minimum

diameters on the axial section. Attenuation was categorized into

either pure ground-glass nodules (pGGNs) or mixed ground-glass

nodules (mGGNs), with pGGNs defined as areas of hazy increased

lung attenuation and mGGNs as nodules comprising both

ground-glass and solid components. The shapes were

distinguished as either irregular or round/oval. Margin features

included lobulation, spiculation, and a distinctive spine-like

process, which is characterized by at least one convex border

differing from the lung parenchyma boundary. The interface

between the nodule and lung was categorized into ill-defined,

well-defined and smooth, or well-defined but coarse. Internal

features covered a range of aspects such as bubble lucency,

cavitation, air-containing spaces, calcification, bronchial cut-off,

and distorted/dilated bronchus (28, 29). Adjacent structures

analysis included pleural indentation and vascular convergence.

Additionally, the status of the bronchial wall and the presence of

emphysema in the entire lung were meticulously evaluated, adding

depth to our comprehensive assessment.
2.4 Whole lung segmentation and
radiomics features

In this study, bilateral lung segmentation was meticulously

executed using a publicly available 3D deep learning mode (30),

effectively distinguishing lung tissue from the chest wall and

mediastinum. This process was complemented by a manual

revision to ensure precision in segmentation when necessary.

Radiomics features were diligently extracted from the left, right,

and bilateral lung tissues separately utilizing the Pyradiomics library

(version 3.0) (14).

To uphold the highest standards of reproducibility and

reliability, all radiomics feature extraction was conducted in strict

adherence to the guidelines set forth by the Image Biomarker

Standardization Initiative (IBSI) (31). To mitigate any variances

that could arise from different scanner acquisitions, a thorough

preprocessing of the acquired images was undertaken. This

included normalization, resampling to a uniform voxel size of

1×1×1 mm³ using B-Spline interpolation, and gray-level

discretization with a fixed bin width of 25.

From the original CT images, a comprehensive set of 107

features were extracted, encompassing 14 shape-based, 18 first-

order statistics, 24 gray-level cooccurrence matrix, 14 gray-level

dependence matrix, 16 gray-level run-length matrix, 16 gray-

level size zone matrix, and 5 neighboring gray-tone difference

matrix features. Moreover, 14 image filters were judiciously

applied to the original images, generating derived images from

which additional features were extracted. In total, an impressive

array of 1409 radiomics features were meticulously extracted,

contributing to the depth and breadth of this cutting-edge

radiomics study.
Frontiers in Oncology 04
2.5 Architecture of the proposed model

The overall workflow of this study is illustrated in Figure 2. The

entire process consists of two steps. The first step is the feature

extraction stage, which is the same as the work we have done in our

previous research. Deep features are extracted separately from CT

images, radiomics features, clinical, and morphological features

using convolutional neural networks and BP neural networks.

The second step is feature fusion and classification. Different

from the previous work where only BP neural networks were

used as the feature fusion algorithm, in this study, we

innovatively introduce an attention mechanism. We hope that the

model can learn the weight information between different features.

2.5.1 Multi-feature extraction
For CT images, we designed a CNN with 26 layers to extract

features, including 11 convolutional layers, 11 pooling layers, and 4

fully connected layers. Before inputting into the network, we first

used a seed point algorithm to fill the lungs, obtaining the internal

structure of the lungs, and then extracting the entire lung image and

its internal tissue features. According to the description of the

location of nodules in morphological features, the corresponding

lung specimens were selected. Subsequently, the samples were

formatted into full-lung images of 256*256*256 pixels. Finally,

these images were input into the designed CNN, which outputs a

4*4*4 feature matrix.

For clinical data, morphological features, and whole-lung

radiomics features, we designed networks with different numbers

of layers based on the complexity of the data. For morphological

and radiomics features with more variables, we used a BP neural

network with 25 layers. For clinical features with fewer variables, we

used a BP neural network with 5 layers. The BP neural network

consists of a convolutional block and a fully connected layer. Before

inputting into the network, we cleaned and processed text items

(clinical data, morphological features) and whole-lung radiomics

features. To facilitate input into the network, all text items were

replaced by numbers. Then, z-score standardization was applied to

process the whole-lung radiomics features with huge data

dispersion to prevent challenges in obtaining features or fitting

due to large dispersion when entering the network. Through the BP

network, matrices of size 1*64 were outputted uniformly.

2.5.2 Feature fusion and classification
The feature fusion and classification part consists of an

attention module and an MLP layer. Extracted multimodal

features from images, radiomics, clinical data, etc., are flattened

into vectors of length 64 and concatenated into an 64*4 deep feature

matrix. The attention module computes the weight proportions of

different features. Subsequently, the deep feature matrix is fed into

fully connected and softmax layers to output a value between [0, 1],

indicating the probability of nodules being malignant. Then, by

comparing this value with the threshold obtained during training,

nodules are classified as benign or malignant. Nodules with values

higher than the threshold are classified as malignant, while those

with values lower than the threshold are classified as benign.
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For the attention module, we employ the SE Block (Squeeze and

Excitation Blocks) proposed by Hu et al. (32). SE Block has shown

excellent performance in image classification, aiming to enhance the

channel attention of the model (33, 34). It recalibrates features by

strengthening useful features and weakening irrelevant features,

driving the network to learn feature weights based on loss, thereby

increasing the weights of effective feature maps and reducing the

weights of ineffective or less effective feature maps. The SE Block

consists of two fully connected layers named Squeeze and

Excitation, as shown in Figure 3. The function of the Squeeze

layer is to compress the input multi-dimensional feature layer and

integrate the information of all feature layers. The function of

excitation is to obtain the information dependence of each

feature layer.
FIGURE 2

Flowchart of the proposed prediction model.
Frontiers in Oncology 05
FIGURE 3

The structure of SE Block.
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3 Result

3.1 Implementation details

3.1.1 Experimental settings
For classification, we used the weighted sum of binary cross-

entropy loss as loss function. Cross-entropy has been widely used in

general classification tasks due to its robustness. We used stochastic

gradient decent (SGD) as optimizer, with an initial learning rate of

0.001, which was reduced when the metric did not improve with

patience of 15. The mini-batch size was set to 32. The Max epoch

number was set to 1000 and early stopping with a patience of 200

was used.

3.1.2 Model evaluation
To evaluate the model’s predictive capability, the probability of

each output was compared with the corresponding label. The

prediction performance was evaluated using the area under the

receiver operating characteristic curve (AUC), sensitivity (SEN), and

specificity (SPE). The positive predictive value (PPV), the negative

predictive value (NPV), and accuracy (ACC) were also used to assess

model performance. P values <0.05 were considered significant.

All performance evaluation processes were performed in

Python (version 3.6.8, Python Software Foundation, USA)

environment by using a computer configured with Intel Core i9-

13900K CPU, 64 GB RAM, and NVIDIA GeForce RTX 4090

graphics processing unit.
3.2 Experimental results

3.2.1 Results of feature fusion for four features
across three datasets

Table 1 presents the classification results of the models on different

datasets. For the testing dataset fromHospital 1, the model achieved an

accuracy of 0.875, sensitivity of 0.872, specificity of 0.877, and AUC of

0.941. For the testing dataset from Hospital 2, the model achieved an

accuracy of 0.826, sensitivity of 0.769, specificity of 0.855, and AUC of

0.861. For the testing dataset from Hospital 3, the model achieved an

accuracy of 0.871, sensitivity of 0.846, specificity of 0.889, and AUC of

0.906. The ROC curves for the three datasets are shown in Figure 4, and

the corresponding confusion matrices are shown in Figure 5. The ROC

curves indicate that the AUC for the dataset from Hospital 2 is lower

than that of Hospital 1 and Hospital 3. Additionally, there are

differences in model performance among different datasets,

specifically, Hospital 2 performs better than Hospital 3.
Frontiers in Oncology 06
3.2.2 Classification results of different feature
fusion methods

Table 2 lists the AUC values and corresponding 95% confidence

intervals (CI) generated by different feature fusion methods. By

comparing the performance of different feature combination

models, the fusion of clinical, morphological, radiomics, and

image features achieved the highest performance. The model

produced an AUC value of 0.912 (95% CI: [0.848, 0.972]), which

was higher than all other feature combination methods. To further

analyze the performance of the fusion model, we also calculated the

AUC difference between the 4 models that fused 3 different features

(C-M-I, C-M-R, M-R-I, C-R-I) and the model that fused all features

(C-M-R-I). Table 3 lists the details.
4 Discussion

The widespread use of high-resolution CT has made it

increasingly easier to detect GGNs. However, the slow growth

and atypical morphological features of GGNs also make it more

challenging to distinguish between benign and malignant GGNs

(35, 36). Currently, most artificial intelligence (AI) models used to

predict benign and malignant pulmonary nodules are constructed

based on local features of nodules or a combination of features

within a specific range around the nodules.

In this study, we proposed a deep-learning model that utilizes

attention mechanisms to fuse multimodal whole-lung features for

the classification of benign and malignant GGNs. This represents a

further improvement from our previous work (19). To the best of

our knowledge, in existing studies on distinguishing benign and

malignant nodules, almost all focus on mining radiomics features

from CT images or segmenting and analyzing original CT images,

while ignoring histopathological, genomic, or clinical information

in cancer data, resulting in inefficient utilization of multimodal data.

In the work of feature fusion, Hu et al. proposed a computer-aided

diagnosis of ground-glass lung nodules by fusing deep learning and

radiomics features (24), Xia et al. also used same method (37).
TABLE 1 Classification performance of the CMRI-AM model in three
hospital datasets with pathologically confirmed GGNs.

Data AUC ACC SEN SPC PPV NPV

Hospital 1 0.941 0.875 0.872 0.877 0.829 0.909

Hospital 2 0.861 0.826 0.769 0.855 0.731 0.878

Hospital 3 0.906 0.871 0.846 0.889 0.846 0.842
FIGURE 4

Receiver operating characteristics (ROC) curve for three
hospital datasets.
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Wang et al. proposed a fusion diagnostic model integrating the

original images and the clinical and image features (38). Compared

to single CT feature, their multi-features fusion model achieved

significant improvements in multiple indicators, demonstrating the

great potential of multimodal features in predicting benign and

malignant GGNs.

Our study has several characteristics. Technically, we mainly

improved in two aspects. Firstly, we introduced an attention

mechanism based on the linear BP network to fully learn the

weight relationships between the four features: clinical,

morphological, image, and radiomics, enabling the model to

selectively focus on important features. Secondly, to address the

problem of model robustness and generalization due to the small

sample size, we adopted data augmentation methods from previous

studies, such as sample translation and rotation, to increase the

diversity of samples (38, 39). In terms of specific details, before

fusing multimodal features, we utilized deep CNNs to extract deep

image features of CT to capture high-dimensional representations

of various features. For clinical, morphological, and radiomics
Frontiers in Oncology 07
features, we designed different numbers of layers of feedback

neural networks to expand them into high-dimensional spaces.

This approach resolved the problem of difficulty in fusing

multimodal features in high-dimensional feature space.

Additionally, compared to linear neural networks, the attention

mechanism showed better feature fusion effects, as shown in

Figure 6, where classification accuracy increased by 3.5%, 2.7%,
FIGURE 5

Corresponding confusion matrix for three hospital datasets.
TABLE 2 AUC values and corresponding 95% CIs generated by different feature combinations in three hospital datasets.

Feature
combination

Hospital 1 Hospital 2 Hospital 3

AUC 95% CI AUC 95% CI AUC 95% CI

C-M 0.836 [0.797, 0.865] 0.806 [0.717, 0.763] 0.809 [0.767, 0.823]

M-R 0.848 [0.815, 0.889] 0.798 [0.735, 0.787] 0.818 [0.789, 0.837]

M-I 0.842 [0.786, 0.872] 0.826 [0.768, 0.819] 0.846 [0.798, 0.869]

C-R 0.835 [0.813, 0.883] 0.808 [0.779, 0.823] 0.838 [0.809, 0.813]

C-I 0.827 [0.785, 0.864] 0.827 [0.772, 0844] 0.849 [0.811, 0.874]

R-I 0.832 [0.771, 0.865] 0.813 [0.781, 0.851] 0.845 [0.821, 0.911]

C-M-I 0.873 [0.829, 0.903] 0.823 [0.785, 0.873] 0.873 [0.849, 0.903]

C-M-R 0.895 [0.832, 0.912] 0.815 [0.779, 0.868] 0.865 [0.832, 0.898]

M-R-I 0.925 [0.856, 0.939] 0.841 [0.846, 0.892] 0.879 [0.846, 0.902]

C-R-I 0.917 [0.858, 0.943] 0.833 [0.818, 0.873] 0.877 [0.823, 0.923]

C-M-R-I 0.941 [0.898, 0.972] 0.861 [0.823, 0.882] 0.906 [0.878, 0.932]
C, clinical; M, morphological; R, radiomics; I, image; AUC, area under the operator characteristic curve; 95% CI, 95% confidence interval.
TABLE 3 Comparison of AUC differences between different feature
fusion models and the C-M-R-I model.

Feature
combination

Hospital
1

Hospital
2

Hospital
3

C-M-I 0.007 0.032 0.041

C-M-R 0.018 0.019 0.028

M-R-I 0.047 0.064 0.039

C-R-I 0.035 0.042 0.037
Data with no significant difference are shown in bold.
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and 4.6% on datasets from three different hospitals. Regarding

model interpretability, we utilized class activation maps to

visualize the features learned by the model. Class activation map

(CAM) is a technique to visualize the regions of input data that are

important for predictions from CNN-based models (40). The

results demonstrated that the model effectively learned local

nodule features in whole-lung images and discriminated between

the benign and malignant nature of GGNs through complementary

information from other features. (Figure 7).

Although we achieved good results, our study has some

limitations. Firstly, our retrospective study was conducted

using an imbalanced and limited dataset, All GGNs were

confirmed by postoperative pathology. These nodules were

biased towards a diagnosis of malignancy, resulting in fewer

benign GGNs than malignant ones, making selection bias

inevitable. As the DNN model is a data-driven algorithm, a

small training dataset may lead to underfitting issues. Although

many data augmentation techniques were applied to increase the
Frontiers in Oncology 08
number of training samples, the lack of training samples may

reduce the model’s performance. The proposed model was only

validated and tested on a limited private testing dataset.

Therefore, it is necessary to verify and test the model’s

performance using more diverse and larger multicenter

datasets. Secondly, the features fused by our model are all

based on whole-lung extraction, without comparison with

models based on local nodule features. Further research is

needed to determine whether our model has advantages over

models based on local nodule features. Thirdly, there may be

other smaller GGNs present in the same lung as the target GGN

and the features of these small GGNs may affect the predictive

performance of the model. Finally, this is only a technological

development study. We were fortunate to demonstrate that the

attention mechanism can effectively improve the fusion

efficiency of multimodal features in whole-lung data. However,

before applying this model to clinical practice, it should be

validated in more clinical datasets.
5 Conclusion

In this work, we utilized an attention mechanism to integrate

multimodal tumor features, including clinical information,

morphological features, radiomics features, and whole-lung CT

images, effectively improving the identification of benign and

malignant nodules. Experimental results demonstrate that: (1) the

application of the attention mechanism to integrate whole-lung CT

images, radiomics features, clinical, and morphological features is

feasible, (2) clinical, morphological, and radiomics features provide

complementary information for the classification of benign and

malignant GGNs based on CT images, and (3) utilizing baseline

whole-lung CT features to predict the benign andmalignant nature of

GGNs is an effective approach. Therefore, by optimizing the fusion of

baseline whole-lung CT features, the classification performance of

GGNs’ benign and malignant nature can be effectively improved.

Lastly, we hope this research will inspire further studies to enhance

model performance collaboratively, therebypromoting the

application of artificial intelligence in clinical diagnostics.
FIGURE 6

Comparison of the accuracy of two feature fusion methods on
three data sets.
FIGURE 7

An example of model GRAD-CAM heat map. The top image represents the original CT image, and the bottom image represents the class activation
map (CAM). In the CAM image, regions highlighted in red or yellow indicate high importance or strong activation, while regions in blue or green
indicate low importance or weak activation.
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