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Lung cancer remains a leading cause of cancer-related deaths globally, with its

incidence steadily rising each year, representing a significant threat to human

health. Early detection, diagnosis, and timely treatment play a crucial role in

improving survival rates and reducing mortality. In recent years, significant and

rapid advancements in artificial intelligence (AI) technology have found

successful applications in various clinical areas, especially in the diagnosis and

treatment of lung cancer. AI not only improves the efficiency and accuracy of

physician diagnosis but also aids in patient treatment and management. This

comprehensive review presents an overview of fundamental AI-related

algorithms and highlights their clinical applications in lung nodule detection,

lung cancer pathology classification, gene mutation prediction, treatment

strategies, and prognosis. Additionally, the rapidly advancing field of AI-based

three-dimensional (3D) reconstruction in lung cancer surgical resection is

discussed. Lastly, the limitations of AI and future prospects are addressed.
KEYWORDS

artificial intelligence, lung cancer, machine learning, deep learning, convolutional
neural network
1 Introduction

Lung cancer is a prevalent malignancy with high incidence and mortality rates

worldwide. According to the latest statistics from GLOBOCAN (1), lung cancer ranks

second in terms of incidence and first in terms of mortality among all malignant tumors. In

2020, there were over 2.2 million new cases of lung cancer globally, with approximately 1.8
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million deaths. This disease poses a significant threat to human

health and life. However, early-stage lung cancer is often

challenging to detect based on symptoms, leading to the majority

of patients being diagnosed at an advanced stage or with distant

metastases, resulting in a five-year survival rate of only 15-16% (2).

Consequently, the limitations in treatment options and prognosis

assessment present challenges for clinicians. Early diagnosis and

appropriate treatment are crucial factors in reducing lung

cancer mortality.

With the continuous development of imaging and computer

technology, X-ray computed tomography (CT) has been widely

used in clinical practice, and population-based lung cancer

screening has demonstrated high cost-effectiveness and significant

value for early prediction in the community. Data from the National

Lung Screening Trial (NLST) have shown that regular screening of

high-risk individuals for lung cancer using low-dose CT imaging

can detect more early-stage cancers and reduce lung cancer-related

mortality (3).

In recent years, artificial intelligence (AI) technology has found

extensive applications across various industries, especially in the

healthcare sector (4). The combination of “AI + healthcare” has

become a prominent trend, encompassing areas such as assisted

diagnosis, risk prediction, treatment selection, and outcome

evaluation (5, 6). By utilizing AI technology to analyze extensive

medical data and train specialized AI models, it is possible to

significantly enhance healthcare professionals’ diagnostic

efficiency and accuracy. Moreover, AI can identify patterns and

features that may be overlooked in manual diagnosis, thereby

providing clinicians with more comprehensive and detailed

diagnostic and treatment recommendations. This review aims to

outline the advancements in the application of artificial intelligence

in the field of lung cancer.
2 Overview of AI

AI is a branch of computer science that explores and develops

theoretical methods for simulating, extending, and enhancing

human intelligence, with the aim of automating tasks that are

typically performed by humans (7). Since the 1950s, AI has

undergone three major stages: symbolism (1950s to 1980s), the

flourishing development of ML (1990s), and the significant success

of DL in the early 21st century. Over time and with technological

advancements, symbolic AI has gradually taken a backseat, making

room for ML and DL as the core subfields in the field of AI. Table 1

lists the key terms associated with AI.

ML is one of the core technologies in the field of Artificial

Intelligence, aiming to enable computers to learn from data,

automatically identify and grasp patterns and regularities within

the data, thereby achieving the capability of prediction and

decision-making. ML is generally categorized into three types:

supervised learning (SL), unsupervised learning (UL), and

reinforcement learning (RL). SL algorithms use classified training

data to create a prediction function that can generalize to classify

unseen data correctly. UL differs in that no target variable exists. All

variables are treated as inputs, and therefore unsupervised learning
Frontiers in Oncology 02
is used to find patterns in the data (8). RL is the process in which

computers learn to complete tasks by learning from the outcomes of

successes and failures. Common ML algorithms include support

vector machines, random forests, decision trees, logistic regression,

k-nearest neighbors, Bayesian networks, and clustering

algorithms etc.

DL is a subfield of ML (Figure 1) that uses multi-layer artificial

neural networks (ANN) to recognize patterns in data. Unlike

traditional ML algorithms, DL algorithms can automatically learn

features from raw data for pattern recognition. They learn abstract

features through multiple layers of stacking, making models more

powerful. The structure of DL models allows them to automatically

learn and extract features from data, performing well on complex

tasks and large datasets. During training, gradient descent and

backpropagation are commonly used to adjust the model’s

parameters, improving performance by reducing the difference

between predicted and actual results. Common DL models

include Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs). CNNs are mainly used for image-related

tasks, while RNNs are good at processing text and speech. These

models are essential in DL and have many variations and

combinations. They provide powerful tools for solving problems

in areas like computer vision and natural language processing.

AI and radiomics are two closely related but distinct fields. AI

aims to develop systems that simulate human intelligence and is
TABLE 1 Key terms and major functions in artificial intelligence.

Keywords Definition

AI A field of computer science that researches and develops
systems capable of simulating and implementing
human intelligence.

ML Enabling computers to learn from data and automatically
recognize and grasp patterns and regularities within the data,
in order to make predictions and decisions.

SL Supervised learning is a machine learning method in which a
model learns the relationship between inputs and outputs from
labeled training data.

UL Unsupervised learning is a machine learning paradigm where
the model learns the structure, patterns, and relationships
within unlabeled data without the need for labels or
predefined outputs.

RL Reinforcement learning is a method where an agent interacts
with an environment, learning to optimize its behavior through
trial and error.

DL A technique that employs multi-layered structures called deep
neural networks to automatically extract and learn features
from data, transmitting and processing information through
connections between layers to produce the final output.

CNN A type of deep learning model designed specifically for
processing data with grid-like structures, such as images and
videos, using components like convolutional layers, pooling
layers, and fully connected layers to extract and learn features
from the data.

RNN A type of neural network used for processing sequential data,
such as speech and text. It features recurrent connections that
can remember previous information and make predictions
based on the current input.
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widely applied in medical diagnostic support, medical imaging

analysis, and more. Radiomics, on the other hand, focuses on

extracting quantitative features from medical images and

combining them with clinical data to predict disease and assess

prognosis. AI is a broader field, while radiomics specifically

concentrates on medical image analysis.
3 Application of AI in lung
cancer diagnosis

3.1 Application of AI in lung
nodule detection

Early-stage lung cancer is closely related to lung nodules. Lung

nodules are typically detected through chest CT scans. On CT scans,

a nodule appears as a rounded or irregular opacity, well or poorly

defined, measuring up to 3 cm in diameter (9). Although most lung

nodules are benign, some may develop into lung cancer. The

National Lung Screening Trial has shown that lung cancer

screening can reduce mortality rates among high-risk populations

(3). Therefore, the increased use of lung cancer screening will

inevitably lead to the discovery of many pulmonary nodules

whose malignancy is uncertain. For incidentally detected nodules,

the most commonly used guidelines are those of the Fleischner

Society (10) and the British Thoracic Society (BTS) (11). The

Fleischner Society guidelines are based on the mean diameter and

type of the nodule, while the BTS guidelines recommend volumetric

measurement of nodules rather than 2D measurements.
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However, identifying lung nodules is not always easy, and

radiologists’ sensitivity in detecting these nodules varies

significantly, which can be influenced by various characteristics

such as size, shape, location, density, and their relationship with

adjacent structures (12). A large number of manual image readings

can lead to missed diagnoses. Nowadays, there is growing interest in

using AI to detect lung nodules. In lung cancer screening, AI can be

applied not only for automatic detection, but also for patient

selection and the reconstruction of low-dose CT scans (13). Kim

et al. (14) have shown that an AI-based tool can improve the

performance of radiologists and pulmonologists when estimating

malignancy risk for indeterminate pulmonary nodules on chest CT

scans. Moreover, application to predict benignity/malignity of the

nodules are also available (15). However, AI-based tools require

further research to determine their diagnostic benefits for clinicians

in assessing indeterminate pulmonary nodules on chest CT

scans (16).

Lung nodule CT images are multi-dimensional. 3D CNN can

better utilize the 3D spatial information of the input, enabling tasks

such as detection, segmentation, and classification of 3D objects,

thereby improving detection accuracy. Khosravan et al. (17) proposed

a novel DL-based method for lung nodule detection called S4ND. The

whole detection pipeline is designed as a single 3D CNN with dense

connections, trained in an end-to-end manner. This method uses a

single feedforward pass of a single network to detect lung nodules

without further processing, achieving a sensitivity of 95.2%.

Subsequently, following detection, the focus shifts to precisely

delineating or segmenting lung nodules from the adjacent

pulmonary parenchyma. Segmentation entails separating nodules

from other structures in the image, thus facilitating their

comprehensive analysis and precise measurement of relevant

characteristics. Manual segmentation is time-consuming and highly

variable between observers. AI-based methods, including U-Net and

other DLmodels, can replace this process to objectively quantify lung

nodules and cancer, and extract radiomic features for tissue

characterization (18). Ronneberg et al. (19) developed the U-Net,

which is a CNN architecture, for biomedical segmentation tasks. U-

Net can be used to perform fine pixel-level segmentation of detected

lung nodules, accurately outlining the spatial extent of nodules, laying

the foundation for subsequent quantitative analysis and growth

assessment. Bhattacharyya et al. (20) employed a weighted

bidirectional feature network to construct an improved U-NET

architecture (DB-NET), which demonstrates excellent performance

in lung nodule segmentation. Through this approach, they achieved

better performance in segmenting ground-glass nodules, cavitary

nodules, small nodules. Lastly, lung nodules are classified into

distinct categories, including benign or malignant, solid or subsolid,

and specific subtypes, based on their respective features. In order to

improve the accuracy of classifying benign and malignant lung

nodules, Guo et al. (21) proposed a 3D segmentation attention

network integrating asymmetric convolution (SAACNet)

classification model combined with a gradient boosting machine

(GBM). The proposed nodule classification performance was

evaluated on the LUNA16 dataset, which contains 888 CT scan

images, achieving a classification accuracy of 95.18%, and the area
FIGURE 1

The relationship between AI, ML and DL, which are methodologies
and technologies that enable computers to learn, analyze patterns,
understand languages and images, and make predictions. AI,
artificial intelligence; ML, machine learning; DL, deep learning; SL,
supervised learning; UL, unsupervised learning; RL,
reinforcement learning.
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under the curve (AUC) is 0.977. Figure 2 depicts the segmentation

and classification of lung nodules.

Table 2 presents a summary of applications of AI in lung

nodules. These AI methods each have their own advantages and

disadvantages. k-medoids clustering is robust to noise and outliers

but is computationally intensive and sensitive to initial selection.

CNNs perform well in image processing but require large amounts

of labeled data and high computational resources. 3D CNNs can

handle three-dimensional medical images, capturing more spatial

information, but have higher computational costs. DenseNet

improves information flow through dense connections, but the

complexity of the model increases. 3D U-NET is suitable for

medical image segmentation but has longer training times.
3.2 Application of AI in lung cancer
pathology diagnosis

Lung cancer is mainly classified into non-small cell lung cancer

(NSCLC) and small cell lung cancer (SCLC), with NSCLC accounting

for approximately 80%-85% of all lung cancers (34). NSCLCs are

classified according to histopathological characteristics. Lung

adenocarcinoma (LUAD) and lung squamous cell carcinoma

(LUSC) are the most common subtypes of NSCLC. Histopathologic

confirmation remains the gold standard in clinical workflow for

diagnosis (35), and due to significant differences between different

subtypes, clinical treatments also vary greatly. Therefore, accurate

classification of lung cancer subtypes is crucial. Pathologists

examine tissue samples from lung biopsies and resections to

detect and classify cells, identify tumor morphology and subtypes,

and assess features that predict treatment response and prognosis

(36). Manual slide reading is time-consuming and prone to
Frontiers in Oncology 04
fatigue, while the development of AI-based tools can assist

pathologists and thoracic surgeons in improving clinical workflows

and patient management.

It has been demonstrated that AI can accurately classify lung

cancer subtypes and predict the prognosis of NSCLC patients. Yu

et al. (37)used histopathology whole-slide images of LUAD and

LUSC patients from The Cancer Genome Atlas (TCGA) to extract a

large number of image features. They employed regularized ML

methods to select the most important features to differentiate short-

term survivors from long-term survivors. Their study results

indicate that automatically extracted image features can predict

the prognosis of lung cancer patients, thus contributing to precision

oncology. This method can also be applied to histopathology images

of other organs. Similarly, Coudray et al. (38)trained a deep CNN

(Inception v3) with 1,634 randomly selected histopathological

whole-slide images from the TCGA database to classify them as

LUAD, LUSC, or normal lung tissue based on their morphological

features. The results were consistent with the analysis of

pathologists, with an average AUC of 0.97.

AI tools have also been applied to cytopathological samples

obtained through fine-needle aspiration, assisting in the diagnosis

of lung cancer and differentiation from other diseases by analyzing

various samples such as bronchial secretions, sputum,

bronchoalveolar lavage fluid, and needle aspiration. Compared to

tissue biopsies, this examination is less invasive and is increasingly

being used for lung cancer assessment and staging (39). Gonzalez

et al. (40)studied cytological and biopsy specimens from 40 patients

and trained a DL algorithm based on CNN to differentiate SCLC

from large-cell neuroendocrine carcinoma based on morphological

features. Although the dataset used was small, the DL models

employed in the study accurately identified the majority of cases

of both tumor types.
FIGURE 2

Segmentation and classification of lung nodules. U-Net architecture for segmentation tasks, and CNN architecture for classification tasks. GLCM,
Gray-level co-occurrence matrix; SIFT, Scale-invariant feature transform.
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The spatial distributions of different types of cells could

reveal a cancer cell’s growth pattern, its relationships with the

tumor microenvironment and the immune response of the body.

Wang et al. (41)developed a software tool for LUAD digital

pathological image analysis aided by a CNN, ConvPath, which

includes nuclei segmentation, CNN-based tumor cell, stromal

cell, and lymphocyte classification, and extraction of tumor

microenvironment-related features for lung cancer pathology

images. Moreover, it has the capability to convert the pathology

image into a “spatial map” of tumor cells, stromal cells and

lymphocytes. This could greatly facilitate and empower

comprehensive analysis of the spatial organization of cells, as

well as their roles in tumor progression and metastasis. The

overall classification accuracy was 92.9% and 90.1% in training

and independent testing datasets, respectively. They also developed

and validated a prognostic model, enabling personalized treatment

planning for individual patients using readily available tissue images,

which proves to be highly beneficial for pathologists and

clinical practitioners.
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3.3 Application of AI in predicting gene
mutations in lung cancer

In recent years, researchers have utilized ML and DL techniques

to analyze large-scale lung cancer genomic data, exploring gene

variations associated with the occurrence and development of lung

cancer, and predicting genes that may serve as driver mutations.

LUAD is driven by a series of accumulated genetic changes known

as driver mutations, such as mutations in epidermal growth factor

receptor (EGFR), kirsten rat sarcoma viral oncogene homolog

(KRAS), and anaplastic lymphoma kinase (ALK) fusion (42–44),

which are potential therapeutic targets. Coudray et al. (38)

downloaded gene mutation data from TCGA matched with

patient samples and trained a CNN model to predict the 10 most

common mutated genes in LUAD. The results showed that six of

them (STK11, EGFR, FAT1, SETBP1, KRAS, TP53) could be

predicted using pathological images, with AUC ranging from

0.733 to 0.856. In another study, Wang et al. (45)developed an

innovative AI system known as the Fully Automated Artificial
TABLE 2 Applications of AI in lung nodules.

Ref. Year Purpose Dataset Methods Results

Uthoff
et al. (22)

2019 Lung nodule classification. Training:74 malignant and 289 benign,
Validation:50 malignant and 50 benign.

k-medoids clustering and
information theory.

AUC = 0.965,
Sensitivity: 100%
Specificity: 96%

Nasrullah
et al. (23)

2019 Lung nodule detection
and classification.

LIDC-IDRI
LUNA16.

3D CMixNet Sensitivity:94%
Specificity:91%

Gong
et al. (24)

2020 To classify GGN as IA or non-IA. 828 GGNs. 3D SE-ResNet AUC= 0.92 ± 0.03.

Naqi
et al. (25)

2020 Lung nodule detection
and classification.

LIDC-IDRI 1018
Cases.

3D CNN. Sensitivity:95.6%

Zhang
et al. (26)

2021 Lung nodule classification. 888 CT scans. DenseNet. Accuracy:92.4%

Zheng
et al. (27)

2021 Lung nodule detection. 1186 nodules. U-net++ Sensitivity: 94.2%

Hu
et al. (28)

2021 To classify between benign and
malignant GGNs.

513 GGNs. 3D U-NET, deep
neural network.

Accuracy:75.6%

Ahmed
et al. (29)

2022 Pulmonary nodules classification
and
Detection.

1018 cases of lung cancer. Classification:VGG-16,
Mobilenet,
Resnet50.
Detection: YOLOv3,
Faster-RCNN, SSD.

Classification: average
accuracy 92%~95%
Detection: average
accuracy
93%~94%

Luo
et al. (30)

2022 Lung nodule detection. 888 CT scans. SCPM-Net. Average
sensitivity: 89.2%

Li
et al. (31)

2022 Pulmonary nodules segmentation. 1487 CT images. REMU−Net. Accuracy:99.02%

Saied
et al. (32)

2023 Pulmonary nodules classification. 1007 nodules. 10ML and 6DL. ML: SVM (81.9 ± 1.6%)
DL: DenseNet-
121 (90.39%)

Tang
et al. (33)

2023 Pulmonary nodules segmentation
and feature extraction.

1,186 nodules. SVM, RF, SVR. Overall accuracy:75%
AUC, Area under a ROC curve; 3D CMixNet, three-dimensional customized mixed link network; SE-ResNet, squeeze-and-excitation network and residual network; CNN, Convolutional Neural
Network; DenseNet, Dense Convolutional Network; DL, Deep Learning; Faster RCNN, Faster Region-based Convolutional Neural Network; GGNs, ground-glass nodules; IA, invasive
adenocarcinoma; LIDC-IDRI, Lung Image Database Consortium and Image Database Resource Initiative; LUNA16, Lung Nodule Analysis 16; ML, Machine Learning; ResNet, Residual network;
ResNeSt, A variant of ResNet; REMU−Net, ResNeSt-SAM enhancement module multi-scale skip connection U−Net; RF, Random forest; SCPM-Net, 3D sphere center-points matching detection
network; SSD, Single Shot Detector; SVM, Support vector machine; SVR, Support vector regression; VGG, Visual Geometry Group; YOLOv3, You Only Look Once version 3.
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Intelligence System (FAIS) to predict EGFR gene mutations in lung

cancer, as well as to assess the progression-free survival (PFS) of

patients receiving EGFR-targeted therapy. By utilizing non-invasive

CT images, the FAIS achieved promising predictive performance

with AUC values ranging from 0.748 to 0.813 for EGFR gene

mutations and demonstrated statistically significant associations

with the PFS of patients (log-rank p<0.05). The FAIS efficiently

achieved these predictions without requiring manual annotation,

highlighting its potential in advancing lung cancer diagnostics and

personalized therapy.

In addition to the common EGFR and KRAS gene mutations,

ALK fusions are also observed in NSCLC. Song et al. (46)conducted

a study in which they trained and validated a DL model using CT

images and clinical pathological information to predicting the

ALK fusion status in 937 NSCLC patients, achieving an AUC of

0.8046. Furthermore, the study predicted the prognosis of 91

patients undergoing ALK-TKI drug therapy, revealing that ALK-

positive patients experienced longer PFS (16.8 vs. 7.5 months,

P = 0.010).

Overall, the application of AI in predicting gene mutations in

lung cancer demonstrates significant potential. Utilizing AI models

can not only rapidly detect and identify gene mutations to

formulate personalized treatment plans but also predict patients’

treatment responses and prognosis. These capabilities not only

improve the effectiveness of diagnosis and treatment but also

reduce the waste of medical resources. In the future, AI models

are expected to discover new therapeutic targets and further

enhance treatment precision by integrating multiple data sources.
4 Application of AI in lung
cancer treatment

4.1 Application of AI-based 3D
reconstruction in lung cancer

3D reconstruction technology, as part of AI-assisted surgery,

has been increasingly used in clinical practice. By utilizing computer

software to reconstruct 3D images from various imaging modalities

such as CT, magnetic resonance imaging (MRI) and positron

emission tomography-computed tomography (PET-CT), clearer

and more intuitive 3D models of thoracic lesions and

surrounding structures can be obtained, aiding in preoperative

evaluations. This technology boosts the confidence of medical

professionals and provides valuable assistance in formulating

surgical plans and conducting surgical procedures. It has been

reported that 20-30% of patients have variations in pulmonary

vasculature (47). Therefore, the identification of anatomical

variations is essential during preoperative planning or

intraoperative navigation in lung cancer surgery. In a

retrospective cohort study, thoracic surgeons achieved an

accuracy rate of 85% in identifying anatomical variations using

AI-assisted CT, with a median time of 2 (1–3) minutes (48). AI-

driven reconstruction enables surgeons to achieve a high level of
Frontiers in Oncology 06
accuracy in identifying anatomical patterns within a short period,

which has practical value in surgical planning for segmentectomy.

CT-based pulmonary broncho-vascular 3D reconstruction

facilitates precise anatomical pulmonary segmentectomy, making

complex lung segmentectomy via a thoracoscopic approach safer

and more convenient. This is especially advantageous for patients

with deep nodules and vascular anatomical variations, where the

benefits of 3D reconstruction are particularly evident.

Lung 3D reconstruction models can be created using semi-

automatic tools such as Mimics, OsiriX, and 3DSlicer, which

simulate anatomical structures, define lung segment divisions, and

determine lesion locations. Intraoperative navigation using accurate

3D reconstruction models significantly reduces surgical time and

improves surgical success rates (49). However, the high level of

expertise required and the substantial time consumption may limit

the widespread clinical application of these systems. AI technology

can automatically learn from raw data and rapidly generate 3D

models, enhancing clinical efficiency. Currently, AI-based 3D

reconstruction software has been developed. Li et al. (50)

constructed a fully automated 3D reconstruction system based on

3D CNN to assist thoracic surgery and to determine its accuracy,

efficiency, and safety for clinical use. The AI system resulted in a

significant reduction in operation time by 24.5 min for lobectomy

(P < 0.001) and 20 min for segmentectomy (P = 0.007). Compared

to manual reconstruction software (Mimics), the AI system reduced

the model reconstruction time by 14.2 min (P < 0.001), and it also

outperformed Mimics in model quality scores (P < 0.001).

Currently, AI-based 3D reconstruction systems mostly focus on

the automatic reconstruction of pulmonary vessels and bronchi (48,

50, 51). There are no reported studies on automatic 3D

reconstruction systems for tissue structure changes after

neoadjuvant therapy, which could be one of the future

development directions for AI in the field of lung cancer 3D

reconstruction. In the future, with the continuous development of

AI technology, various devices such as AI-guided robotic surgery

systems, AI-assisted lung cancer biopsy and treatment robots, and

automated lung cancer surgery robots may become a reality in this

field. Figure 3 illustrates the application of AI in 3D reconstruction

for lung cancer.
4.2 AI-assisted preoperative assessment

Surgical resection, radiation therapy, and chemotherapy are

common treatment approaches for lung cancer. In recent years,

there have been significant advancements in molecular biology and

genomics, leading to the widespread use of targeted therapy,

immunotherapy, neoadjuvant therapy, and other treatment

modalities in clinical practice. These advancements have resulted

in improved patient prognosis to some extent. The selection of lung

cancer treatment strategies generally relies on histopathological

classification, immunohistochemical markers, and Tumor Node

Metastasis (TNM) staging. However, despite having similar

clinical characteristics, patients can exhibit significant individual

differences in their response to the same treatment strategy.
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Therefore, early assessment and prediction of treatment efficacy for

various treatment strategies are particularly crucial. AI-assisted

preoperative assessment facilitates more accurate treatment

decisions for doctors and provides patients with more

personalized treatment plans.

The preoperative diagnosis of invasiveness is still difficult in the

clinical setting since the pathological invasiveness of lung cancer is

evaluable only after scrutinizing the pathological specimen. AI

models can be utilized to achieve preoperative diagnosis of

invasiveness. Onozato et al. (52)enrolled 873 patients who

underwent lobectomy or segmentectomy for primary lung

cancer and extracted the radiomic features from preoperative PET

and CT images. They compared seven ML models and an ensemble

model (ENS) combining PET and CT features. The results showed

that all models achieved an AUC of ≥0.880 in predicting tumor

invasiveness in the training set. In the test set, ENS showed the

highest mean AUC of 0.880 and accuracy of 0.804.

In other studies, AI models demonstrated radiologist-level

performance in predicting visceral pleural invasion (53) and

identifying early-stage LUAD suitable for sublobar resection (54).

Lv et al. (55)developed a deep learning model that achieved

comparable performance to intraoperative frozen section analysis

in determining tumor invasiveness. The proposed method may

contribute to clinical decisions related to the extent of surgical

resection. Due to the lack of risk stratification models for invasive

adenocarcinoma, Zhou et al. (56)proposed an Ensemble Multi-

View 3D Convolutional Neural Network (EMV-3D-CNN) model to

study the risk stratification of lung adenocarcinoma. Their model

outperformed senior physicians in risk stratification of invasive

adenocarcinoma, achieving an accuracy of 77.6%. This provides

detailed predictive histological information for the surgical

treatment of pulmonary nodules.
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4.3 AI-predicted immunotherapy efficacy

Immune checkpoint inhibitors (ICIs) targeting programmed

death-1 (PD-1) or programmed death-ligand 1 (PD-L1) have

become the mainstay of therapy for NSCLC patients without

targeted treatment options, although only 20-40% of patients

benefit from these new therapies (57). Immunotherapy has shown

the potential to improve the prognosis of lung cancer patients,

significantly prolonging PFS and overall survival (OS) in advanced

NSCLC patients. Despite these promising results, the use of ICI

remains constrained by its high costs and toxicity. Additionally, its

clinical efficacy is limited to a small subset of patients, primarily

assessed by monitoring the PD-L1 expression levels in tumor cells.

The KEYNOTE-042 trial demonstrated a strong correlation

between PD-L1 expression and treatment efficacy, with higher

PD-L1 expression levels associated with greater benefits from

immunotherapy in NSCLC patients (58).

Multiple AI techniques have been successfully applied to predict

PD-L1 expression levels. Monaco et al. (59)constructed a tri-variate

linear discriminant model based on ML algorithms, extracting

metabolic parameter features from PET/CT images, achieving a

sensitivity of 81% and a specificity of 82% in the test set. DL

techniques can also be employed to identify the expression of PD-

L1 in lung cancer tissues, with strong objectivity and repeatability of

the results, eliminating human errors. Yang et al. combined

radiomics with laboratory and clinical data to develop and

validate a DL model for the identification of immunotherapy

responders and non-responders. This model predicts the response

of advanced NSCLC patients to anti-PD-1/PD-L1 drugs with an

AUC of 0.80 (60).

AI systems have achieved promising results in predicting PD-L1

status. Clinical indicators and radiomics features play complementary
FIGURE 3

Application of artificial intelligence 3D reconstruction in lung cancer. (A) AI-assisted nodule localization; (B) AI-assisted nodule analysis; (C) AI-
assisted 3D reconstruction.
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roles in the prediction, providing accurate estimates for determining

PD-L1 status (61). Combining various medical imaging and biological

data, such as PET/CT, genomic data, and clinical information,

through the comprehensive analysis of multimodal data, could lead

to the identification of additional potential predictive factors, thereby

enhancing the accuracy of the prediction model. These may represent

potential directions for further development.
5 Prognosis

Compared to traditional prognostic prediction based on clinical

features, AI-assisted prognostic prediction is more accurate and

efficient (62). Trebeschi et al. (63) trained a neural network to

identify morphological changes observed in retrospective chest CT

scans of stage IV NSCLC patients during follow-up. They used a

classifier to link the learned radiomic features with OS. The results

showed significant performance in predicting 1-year OS from the

time of image acquisition, with an average AUC of 0.69. The highest

AUC occurred within the first 3-5 months of treatment, reaching

0.75. The AUC for predicting sustained clinical benefit (6-month

PFS) was 0.67.

Conventional analysis of s ingle-plex chromogenic

immunohistochemistry (IHC) focused on quantitative but spatial

analysis. AI algorithms can perform quantitative and spatial

analysis of immune checkpoint expression and extract prognostic

features from IHC images to assist the prediction of immune

checkpoint features in survival and relapse. Guo et al. (64)utilized

DL to analyze IHC pathology images and constructed a prognostic

prediction model. U-net was applied to segment tumor cells and

tumor-infiltrating lymphocytes, while ResNet was performed to

extract prognostic features from IHC images. The results showed

that the model achieved AUCs of 0.9 and 0.85 for predicting OS and

relapse-free survival (RFS), respectively.
6 Limitations

Although AI has made significant progress in the field of lung

cancer, it may still require some time to be fully integrated into

clinical practice. Overall, the application of AI in lung cancer still

faces certain limitations and challenges:

1. Database: AI models necessitate a substantial amount of data

for training, and the quality of this data is crucial for the accuracy

and reliability of the predictions. Nonetheless, certain data may

suffer from issues such as missing information, biases, and noise, all

of which can adversely affect the performance and predictive

efficacy of the models. Furthermore, variations in data across

different hospitals, including differences in equipment, techniques,

and treatment protocols, can also influence the accuracy and

reliability of the data. Through collaborative efforts to create

standardized datasets and benchmarks, the variability in data

quality can be reduced, thereby enhancing the robustness of

AI applications.

2. Interpretability: The interpretability of AI algorithms remains

a challenge. ML and DL techniques are widely applied in lung
Frontiers in Oncology 08
cancer research, but these models often function as black-box

models, making it difficult to understand their decision-making

process and underlying reasons. This makes it challenging for

doctors to interpret the output results of the models, posing risks

and challenges in practical applications. Fortunately,

Interpretability of AI systems is a quickly growing field that has

been highlighted by the radiology community as an important area

of development, with much potential for the development of safe

and intelligible AI technologies (65).

3. Generalization issues: Generalization refers to the ability of a

model to learn from a given set of data and apply the learned model

to other domains. Unlike natural images, medical images exhibit

significant distribution differences when trained DL models are

applied to datasets from different vendors. As a result, the

generalizability of models becomes a major concern (66).

4. Ethical considerations and privacy: When utilizing patient

data for predictions, ensuring data security, privacy, and proper

regulation of data usage are essential. AI should be employed as an

aid in medical diagnosis and not as a standalone diagnostic tool.

Overreliance on AI for diagnosis poses significant safety risks.

Furthermore, addressing potential biases in AI models is crucial,

as they can lead to unfair treatment outcomes.

5. Legal Issues: The application of AI in healthcare also faces

legal and liability challenges. The current ambiguity in legal

handling of artificial intelligence will profoundly impact the

development of autonomous AI. Advocates of artificial

intelligence in radiology and healthcare need to lobby for

legislative action to better clarify the liability risks of AI without

hindering technological advancement (67).

Additionally, AI models require rigorous prospective validation

studies to ensure their efficacy and safety in clinical settings. If not

properly managed, AI could potentially exacerbate existing

healthcare disparities.
7 Conclusion and outlook

AI technology plays a crucial role in various aspects of lung

cancer, including diagnosis, classification, and treatment. It aids

healthcare professionals in enhancing their work efficiency and

accuracy, facilitating precise allocation of medical resources, and

offering optimal treatment strategies for patients. This will

significantly enhance the level of lung cancer diagnosis and

treatment and improve patient survival rates.

In the future, the application of AI in the field of lung cancer is

expected to become more extensive and profound. Firstly, with

ongoing optimization of algorithms and an increase in training

data, AI can assist healthcare professionals in more accurately

detecting abnormalities in lung imaging examinations. Secondly, AI

can provide personalized treatment recommendations by establishing

precise personalized treatment plans based on patients’ genetic

information, clinical characteristics, and treatment responses. Real-

time monitoring of treatment effectiveness is another potential

application. By combining sensor technology and monitoring data,

AI can achieve real-time monitoring and adjustment of treatment

effectiveness for lung cancer patients. AI-assisted surgery is also
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possible, where the combination of robotic surgery and virtual reality

technology can assist surgeons in performing precise operations,

reducing surgical risks and complications. Lastly, AI-assisted clinical

decision-making can be achieved. By utilizing AI techniques,

intelligent decision support can be provided during the patient’s

diagnosis, treatment, and prognosis assessment processes, enabling

personalized, accurate, and efficient clinical management.

In conclusion, the advancement of computer technology, along

with the accumulation of medical knowledge and relevant datasets, will

lead to an increasingly significant role of artificial intelligence in every

aspect of lung cancer, ultimately enabling precise screening, diagnosis,

and personalized therapy. While AI proves to be a valuable tool, it will

not replace doctors but rather complement their expertise. The future

of medical development lies in harnessing the synergies between AI

and healthcare professionals to deliver more effective, patient-centered

care and drive advancements in lung cancer management.
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