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Breast cancer (BC) is a prevalent malignant tumor in women, and its incidence

has been steadily increasing in recent years. Compared with other types of

cancer, it has the highest mortality and morbidity rates in women. So, it is crucial

to investigate the underlying mechanisms of BC development and identify

specific therapeutic targets. Pyruvate kinase M2 (PKM2), an important

metabolic enzyme in glycolysis, has been found to be highly expressed in BC.

It can also move to the nucleus and interact with various transcription factors and

proteins, including hypoxia-inducible factor-1a (HIF-1a), signal transducer and
activator of transcription 3 (STAT3), b-catenin, cellular-myelocytomatosis

oncogene (c-Myc), nuclear factor kappa-light-chain enhancer of activated B

cells (NF-kB), and mammalian sterile 20-like kinase 1 (MST1). This interaction

leads to non-metabolic functions that control the cell cycle, proliferation,

apoptosis, migration, invasion, angiogenesis, and tumor microenvironment in

BC. This review provides an overview of the latest advancements in

understanding the interactions between PKM2 and different transcription

factors and proteins that influence the initiation and progression of BC. It also

examined how natural drugs and noncoding RNAs affect various biological

processes in BC cells through the regulation of the non-metabolic enzyme

functions of PKM2. The findings provide valuable insights for improving the

prognosis and developing targeted therapies for BC in the coming years.
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Introduction

Breast cancer is the most commonly occurring cancer in women

and the most common cancer overall (1). There were more than

2.26 million new cases of BC, and approximately 685 000 women

died from the disease in 2020 (2). It can be divided into three main

subtypes: luminal, HER2-positive, and triple-negative breast cancer

(TNBC) (3). TNBC, in particular, is known for its high invasiveness.

Around 30% of individuals with early-stage BC experience

metastases, resulting in a 5-year relative survival rate of 25% (4).

Nonetheless, the precise molecular mechanisms responsible for BC

development across different subtypes remain unclear. Further

exploration is needed to identify specific biomarkers that can be

targeted to improve the overall prognosis of patients with this

disease (5).

The primary distinguishing feature of cancer cells is their

metabolic reprogramming. Unlike healthy cells, tumor cells rely

on aerobic glycolysis for energy production, even when enough

oxygen present in the environment (6, 7). This shift from the typical

respiratory pathway to aerobic glycolysis is referred to as the

Warburg effect (7, 8). Aerobic glycolysis is a characteristic feature

of the Warburg effect and is crucial for the survival of cancer cells

(9). Pyruvate kinase (PK) is a key rate-limiting enzyme for glycolysis

that catalyzes the phosphorylation of phosphoenolpyruvate (PEP)

and adenosine diphosphate (ADP) to produce pyruvate and

adenosine triphosphate (ATP), which play critical roles in

glycolysis during tumor formation (10). Since PKs are found in

various tissues and exhibit distinct catalytic activities, it suggests

that there may be different isotypes of this enzyme (11). There are

four different subtypes of PKs that are expressed in specific tissues:

muscle (M1), liver (L), erythrocyte (R), and ubiquitous (M2) (12).

Among these subtypes, PKM2 is frequently overexpressed in cancer

cells and has been extensively studied as a subtype specific to

tumors (13).

Since Christofk et al. first demonstrated the necessity of PKM2

expression for cancer-specific aerobic glycolysis, known as the

Warburg effect, there has been significant interest in its role in

cancer development (14). In addition to its role in tumor

metabolism, PKM2 plays a role in oncogenic cytokinesis, tumor

growth, and metastasis (15–17). Furthermore, PKM2 functions as

a protein kinase by phosphorylating its substrates and regulating

gene expression (18). Previous studies have highlighted the

importance of PKM2 in promoting cancer cell growth and

survival (16, 19). Therefore, comprehending the biochemical

functions of PKM2 during tumor progression is essential for

identifying possible therapeutic targets and developing novel

therapies for BC (5). Hence, this review highlights current
Abbreviations: CA, Carpesium abrotanoides Linn.; TNBC, triple-negative breast

cancer; PK, pyruvate kinase; PEP, phosphoenolpyruvate; PKM2, pyruvate kinase

M2; FBP, fructose 1,6-bisphosphate; ISCD, HIF-1a, hypoxia-inducible factor-1a;

EGFR, epidermal growth factor receptor; VEGF, vascular endothelial growth

factor; BC, breast cancer; STAT3, signal transducer and activator of transcription

3; YHC, yuanhuacine; RNA, ribonucleic acid; DNA, deoxyribonucleic acid; NF-

kB, nuclear factor-kappa B; CTS, cryptotanshinone; CsA, cyclosporin A; HER2,

human epidermal growth factor receptor 2.
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advancements in understanding how PKM2 interacts with

different transcription factors and proteins that influence the

initiation and progression of BC. Additionally, it explored the

impact of natural products and noncoding RNAs on various

biological functions of BC cells by controlling the nonmetabolic

functions of PKM2.
Structure and function of PKM2

The PKM gene, which is located in the 15q23 region of

the chromosome, has the ability to undergo alternative splicing

to produce either PKM1 or PKM2. The PKM gene spans

approximately 32 kb and comprises 12 exons and 11 introns. The

lengths of exons 9 and 10 are identical, which contributes to the

differences in the final transcript. For PKM2, the final messenger

ribonucleic acid (mRNA) product includes exon 10 but omits exon

9, a feature unique to PKM1 (20, 21). PKM2 is composed of 531

amino acids and has four domains: A (244 aa), B (102 aa), C (142 aa),

and N (43 aa)-terminal domains (22). The catalytic active site is

formed by the interface between the A- and B-domains, whereas the

C-domain includes the fructose 1,6-bisphosphate (FBP) binding site,

which acts as an allosteric activator. Additionally, the C-domain

contains a nuclear localization signal sequence (NLS) and an inter-

subunit contact domain (ISCD) (Figure 1) (22, 23). Furthermore,

the arrangement of the C-domain plays a crucial role in explaining

the differences observed in allosteric regulation by FBP among

various PKM isoforms (22). The ISCD domain of PKM2 has a

protein sequence that differs from that of its alternate splice

variant, PKM1, by 23 amino acids, resulting in distinct properties

such as allosteric regulation by FBP. These differences also enable

PKM2 to interact with specific protein partners, including

phosphotyrosine proteins (24).

Unlike other PK isoforms, such as PKL, PKR, and PKM1 which

are exclusively tetramers, PKM2 is present in both tetrameric and

dimeric forms. The A-domain of individual PKM2 units combines

to form a dimer, and two such dimers bind at the interface of the

ISCD (the C-domain) to create the full PKM2 tetramer (25). The

shift between PKM2 dimers and tetramers is controlled by the

structural changes caused by endogenous and exogenous activators

and inhibitors (26). Fructose-1,6-bisphosphate (FBP) and serine are

both potent allosteric activators of PKM2, which directly bind to

PKM2 and stabilize it in the active tetramer configuration (27). In

addition, when succinyl-5-aminoimidazole-4-carboxamide-1-

ribose 5’-phosphate (SAICAR) binds to PKM2, it can trigger both

the pyruvate kinase and the protein kinase activity of PKM2 (28).

Furthermore, modifications such as phosphorylation, acetylation,

and oxidation of PKM2 at the Tyr-105, Lys-305, and Cys-358 sites

can prevent FBP from binding to tetrameric PKM2, thereby

maintaining it in dimer form (29). PKM2 in tetrameric form is

highly active at physiological concentrations of PEP and has a high

affinity for PEP (30). In cases where PKM2 exists mainly in its

highly active tetrameric form, as is the case in differentiated tissues

and most normal proliferating cells, glucose is converted to

pyruvate to produce energy (31). Meanwhile, PKM2 dimer is

described by weak attraction to its substrate, PEP, and is virtually
frontiersin.org
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inactive at normal concentrations of PEP. In this form, PKM2

generates minimal ATP during the conversion of PEP to pyruvate,

resulting in no net production of ATP through glycolysis (31, 32).

This scenario occurs primarily in tumor cells, where PKM2

predominantly exists in the less active dimeric state. As a

consequence, all glycolytic intermediates beyond PK accumulate

and are redirected toward various synthetic processes such as
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nucleic acid production, phospholipid synthesis, and amino acid

synthesis (26, 30, 33). Like tumor cells, cells that undergo rapid

proliferation require a large amount of essential components such

as nucleic acids, phospholipids, and amino acids (34). Importantly,

the dimeric form of PKM2 can enter the nucleus and act as a protein

kinase (35). The basic functions of the PKM2 dimer and tetramer

are described in Figure 2.
FIGURE 2

Basic function of PKM2 dimer and tetramer. PKM2, pyruvate kinase M2; FBP, fructose 1,6-bisphosphate; SAICAR, succinyl-5-aminoimidazole-4-
carboxamide-1-ribose 5’-Phosphate; HIF-1a, hypoxia-inducible factor-1a; STAT3, Signal transducer and activator of transcription 3; NF-kB, nuclear
factor kappa-light-chain enhancer of activated B cells; c-Myc, cellular-myelocytomatosis oncogene; MST1, mammalian sterile 20-like kinase 1.
FIGURE 1

Basic structure of PKM2 monomer. FBP, fructose 1,6-bisphosphate; ISCD, inter-subunit contact domain.
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The effect of PKM2 on breast cancer
tumorigenesis and development

A large body of evidence supports the notion that cancers

predominantly express PKM2 (14). Immunohistochemical

analysis revealed that PKM2 is commonly expressed in BC (5). In

BC, the activation of HIF-1a and epidermal growth factor receptor

(EGFR) can facilitate the nuclear translocation of PKM2 (36), which

is determined by the nuclear localization signal at its C-terminus.

The phosphorylation of the PKM2 S37 site by extracellular

regulatory protein kinases leads to its transformation from a

tetramer to a monomer through the peptidyl-prolyl cis-trans

isomerase NIMA-interacting 1 (PIN1), enabling the nuclear

localization signal to enter the nucleus (23). In addition,

acetylation of PKM2 at Lys433 decreases FBP binding to PKM2

and the conversion of monomers or dimers to tetramers but

increases PKM2 nuclear import and protein kinase activity (37).

Furthermore, the Jumonji C domain-containing dioxygenase

Jumonji domain-containing protein 5 (JMJD5) interacts directly

with PKM2, promoting its movement into the nucleus and HIF-1a-
mediated transactivation. The interaction between JMJD5 and

PKM2 occurs at the intersubunit interface region of PKM2,

preventing its tetramerization and inhibiting its kinase activity

(38). Once within the nucleus, PKM2 serves as a transcriptional

co-activator and stimulates the activation of various transcription

factors, such as HIF-1a, b-catenin, STAT3, C-MYC, NF-kB, etc.,
which influences the expression of their respective downstream

target genes. Overall, Figure 3 shows how nuclear PKM2 regulates

gene expression in relation to breast cancer development

and progression.

PKM2/HIF-1a
Cancer cells exhibit unregulated cell proliferation, unrestricted

cell division, and suppression of autophagy, making them reliant on

additional oxygen and nutrients for survival (39). To meet these

demands, tumor cells can utilize angiogenesis and metabolic

alterations. The transcription factor HIF-1a plays a crucial role in

regulating genes related to angiogenesis and the Warburg effect,

both of which contribute to tumor formation (40). Previous studies

have focused primarily on HIF-1a as a transcription factor that

increases the expression of various glycolysis-related genes, such as

glucose transporters (GLUT-1 and GLUT3) and enzymes involved

in glycolytic pathways [lactate dehydrogenase A, pyruvate

dehydrogenase kinase 1, hexokinase 2 (HK2), and PKM2], to

promote BC glycolysis and consequently affect the proliferation of

BC cells (36). Intriguingly, studies have revealed that PKM2 can

influence the expression and activation of HIF-1a (41, 42). The

activation of PKM2 in hypoxic BC cells leads to the activation of

NF-kB/p65 and HIF-1a, resulting in increased production and

secretion of vascular endothelial growth factor (VEGF), which

promotes angiogenesis and tumor growth (41). Angiogenesis

plays a crucial role in tumor invasion and migration. Notably,

studies have shown that vascular endothelial growth factor A

(VEGFA) can enhance the self-renewal of cancer stem cells and
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promote epithelial–mesenchymal transition (EMT), potentially

contributing to tumor metastasis in BC cells (43). Furthermore,

clinical studies have shown that patients with metastatic BC have

increased circulating VEGFA levels (44, 45). Consequently,

targeting VEGF through the PKM2/HIF-1a axis in BC is a

feasible approach. Chai et al. (46) reported that silencing PKM2

in BC cells resulted in reduced expression of HIF-1a and VEGF, as

well as cell migration capabilities. These findings suggest that PKM2

influences the expression of HIF-1a and subsequently affects the

onset and progression of various tumors, including BC. Specifically,

prolyl hydroxylase domain 3 (PDH3) hydroxylates PKM2 at proline

403/408, leading to its binding to the HIF-1a subunit, which

enhances HIF-1a binding to p300. This interaction then recruits

p300 to the hypoxia response element, facilitating the

transactivation of HIF-1a target genes and promoting PKM2

transcription (47). PKM2 and HIF-1a establish a positive

feedback loop. Recent investigations have revealed that in BC

cells under hypoxic conditions, nuclear PKM2 recruits HIF-1a
and p300, leading to the upregulation of 6-phosphofructo-2-

kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), an enzyme

involved in glycolysis that is associated with cancer progression

and aggressiveness (36). These findings suggest that nuclear PKM2

can induce glycolysis by activating HIF-1a, potentially influencing

various biological processes in BC. These results underscore the

potential of targeting the PKM2/HIF-1a axis as a promising

strategy for anti-BC therapies.

PKM2/b-catenin
b-catenin is the central component of the Wnt signaling pathway

and plays a key role in the regulation of cell proliferation,

differentiation, and apoptosis (48). The Wnt-signaling pathway is

an evolutionarily conserved and complex signaling cascade that plays

crucial roles in both development and disease (49). The Wnt

signaling pathway plays an important role not only in the

development and maintenance of healthy breast and mammary

glands but also in BC etiology (50). To validate the regulation of b-
catenin by PKM2, Zhao and colleagues investigated the levels of b-
catenin in MDA-A-231-shPKM2 and BT20-PKM2 cells. The

findings demonstrated that b-catenin expression was suppressed in

PKM2-silenced cells, whereas both the protein and RNA levels of b-
catenin were increased in PKM2-overexpressing cells (51). In

addition, several studies have indicated that PKM2 is translocated

into the nucleus in cancer cells, where it acts as a transcription factor

and controls b-catenin transactivation (52, 53). Once inside the

nucleus, PKM2 can interact with the transcription factor T-cell

factor (TCF), leading to an increase in the transcription of the c-

Myc and cyclin D1 genes. This process ultimately facilitates BC cell

proliferation and EMT (51, 54). Notably, the involvement of b-
catenin in various cancer cell activities, such as cell migration,

invasion, and angiogenesis, is noteworthy. Findings from a clinical

investigation indicated a potential correlation between the expression

of b-catenin in TNBC tissue and survival prognosis (52). A recent

study revealed that cryptotanshinone significantly reduced BC

migration and invasion, possibly through the suppression of the
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PKM2/b-catenin pathway and the overexpression of PKM2,

which decreased cryptotanshinone sensitivity in BC cells (54).

Consequently, these findings suggest that targeting the PKM2/b-
catenin signaling pathway may hold promise for treating BC.

PKM2/STAT3
STAT3 is activated in several types of tumor cells and can

promote the malignant transformation of cells and inhibit

apoptosis, suggesting that the STAT3 signaling pathway could be

a new target for tumor gene therapy (55, 56). The Janus kinase

(JAK)/STAT3 pathway is responsible for regulating the gene

expression of several enzymes involved in glucose metabolism.

Recently, interest in understanding the importance of the PKM2/

STAT3 pathway in the advancement of cancer has increased (57).

PKM2 overexpression facilitates the nuclear translocation of

STAT3, a transcription factor crucial for PKM2-driven metastasis.

The protein kinase activity of PKM2 mediates the nuclear

translocation and up-regulation of STAT3, which regulates the

aggressive progression of colorectal cancer (58). Nuclear PKM2

activates the transcription of MAP kinase kinase 5 (MEK5/ERK5)

by phosphorylating STAT3 at Y705, resulting in cell proliferation

(18, 59). Some investigations related to the STAT3 oncogene have

laid the foundation for the interpretation and treatment of BC

formation mechanisms (60). Guan et al. reported that knocking

down PKM2 in BC cells resulted in a decrease in the expression of

STAT3 and STAT3 (Tyr(P)-705), leading to the suppression of gene

transcription and the inhibition of BC cell proliferation (61). In
Frontiers in Oncology 05
vitro and in vivo studies have confirmed that pY705 modification of

STAT3 is necessary for tumor growth, autophagy, and metastasis

and suggest that STAT3 is an effective approach for treating cancer

(62). Furthermore, clinical studies using STAT3 inhibitors indicate

encouraging outcomes in malignant conditions. For example,

yuanhuacine (YHC), a daphnane-type diterpenoid as the main

active ingredient, may inhibit BC cell proliferation and induce

apoptosis in vivo and in vitro by regulating the STAT3 pathway

and glycolysis through targeting PKM2 (63). The suppression of

STAT3 leads to apoptosis, inhibition of growth, reduced tumor cell

invasion, and increased sensitivity to treatment in BC cells (64).

These results emphasize the potential significance of targeting

PKM2/STAT3 as a therapeutic approach for BC.

PKM2/C-MYC
c-Myc is a frequently activated oncogene that is closely

associated with the initiation and progression of cancer in

humans (65). It functions as an oncoprotein involved in various

cellular processes such as deoxyribonucleic acid (DNA) replication,

transcription, and RNA splicing (66). One crucial transcriptional

target of c-Myc is survivin, which is an inhibitor of the apoptosis

protein family and plays a significant role in tumorigenesis (67–69).

Survivin is highly expressed in BC and promotes the proliferation

and migration of cancer cells (67, 70). Transcriptional factors play a

role in the development and advancement of cancer, such as

metastasis and cellular proliferation (71). PKM2’s nuclear

translocation enables it to serve as a transcriptional activator for
FIGURE 3

Nuclear PKM2 regulates the expression of related genes affecting BC tumorigenesis and development. ERK1/2, extracellular signal-regulated kinase
1/2; JMJD5, jumonji C domain-containing protein 5; PKM2, pyruvate kinase M2; HIF-1a, hypoxia-inducible factor-1a; PDH3, prolyl hydroxylase
domain 3; TCF, T-cell factor; VEGF, vascular endothelial growth factor; GLUT1&3, glucose transporters 1 and 3; LDHA, lactate dehydrogenase A;
PDK1, pyruvate dehydrogenase kinase 1, HK2, hexokinase 2; PFKFB3, 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3; c-Myc, cellular-
myelocytomatosis oncogene; MST1, mammalian sterile 20-like kinase 1; cl-caspase 3, cleaved-Caspase-3.
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the c-Myc gene (70, 72, 73). Yu et al. (70) revealed that PKM2

interacts with c-Myc and regulates its phosphorylation at Ser-62.

This interaction suggests that c-Myc may be a novel substrate of

PKM2. Inhibiting PKM2 reduces c-Myc phosphorylation, leading

to the downregulation of c-Myc protein expression through the

promotion of its degradation in BC cells. The results of c-Myc

knockdown indicated decreased survivin protein and mRNA levels,

suggesting that PKM2 regulates survivin via c-Myc (70, 74). Thus, a

novel approach to inhibit BC cell proliferation and migration could

involve focusing on the PKM2-c-Myc-survivin pathway.
PKM2/NF-kB
The nuclear factor kappa-light-chain enhancer of activated B

cells (NF-kB) family of transcription factors plays important roles

in regulating inflammation, immunological response, cell

differentiation, proliferation, and survival (75). NF-kB consists of

five subunits: p65/RelA, c-Rel, RelB, p50/NF-kB1, and p52/NF-kB2,
which form unique protein complexes that bind to consensus DNA

sequences at gene promoter regions to control various biological

activities (76, 77). PKM2 plays a role in controlling the NF-kB
signaling pathway in cancer cells. For example, Azoitei et al.

reported that PKM2 stimulated the release of VEGF-A by

activating NF-kB and HIF-1a, which in turn affected tumor

angiogenesis in pancreatic cancer (41). In addition, Zheng et al.

found that PKM2 facilitates the movement of NF-kB/P65 to the

nucleus, resulting in the promotion of ovarian cancer cell migration

and invasion (78). In BC, there has also been evidence of positive

crosstalk between NF-kB and PKM2 (79, 80). Knockdown of PKM2

in TNBC cells significantly reduces the activity of NF-kB by

decreasing the phosphorylation of p65 at serine 536 and

suppressing the expression of NF-kB target genes (80, 81).

However, the exact mechanism by which PKM regulates the

activity of NF-kB through p65 phosphorylation remains unclear.

IKKb is known to play a critical role in phosphorylating RelA/p65 at
serine 536 and controlling the activation of NF-kB (81). Dimeric

PKM2 acts as an active protein kinase that can phosphorylate

certain nuclear proteins (18, 82). Therefore, future investigations

will explore whether the localization of PKM2 differs between the

cytoplasm and nucleus and whether dimeric PKM2 can

phosphorylate the p65 protein at serine 536 or influence IKKb
signaling molecules. These studies may reveal additional

mechanisms and metabolic changes in PKM2/NF-kB in

TNBC cells.
PKM2/MST1
Mammalian sterile 20-like kinase 1 (MST1), also known as

STK4 and Krs-2, is widely present in all human tissues and cell

lines and serves as a crucial upstream kinase in the Hippo

signaling pathway (83). MST1 plays a vital role in regulating

mammalian cell shape, controlling organ size, managing apoptotic

responses, and influencing cancer development (83, 84). PKM2

physically interacts with MST1 in vivo. The phosphorylation and

proteolysis of MST1 regulated by PKM2 could affect downstream

signaling pathways controlled by MST1, which are involved in
Frontiers in Oncology 06
regulating cell death (85, 86). Treatment with 4-hydroxytamoxifen

reduces the levels of PKM2 and disrupts its interaction with

MST1, leading to the activation of caspase-3. This further

enhances the cleavage of MST1 mediated by caspase-3 in BC

cells. The cleaved form of MST1 relocates to the nucleus, where it

causes chromatin condensation and ultimately triggers cell

apoptosis (85). Silencing PKM2 can activate Caspase-3, which

then cleaves its substrate to enhance the apoptotic signaling

cascade induced by tamoxifen treatment (85, 87). These findings

offer new insight for the development of therapies against BC.
Other transcription factors or signaling
pathways affected by nuclear PKM2

Besides, studies have revealed that the activation of PKM2

induces the phosphorylation of adenosine monophosphate-

activated protein kinase (AMPK), resulting in the phosphorylation

and subsequent inhibition of acetyl-CoA carboxylase. This suggests

that heightened PK activity results in an energy deficit (88). AMPK

activation is known to hinder mammalian target of rapamycin

(mTOR) signaling during low-energy conditions, exerting a

cytostatic effect (89). The classic antidiabetic drug metformin, for

example, has been extensively studied for its anticancer effects via

AMPK signaling (90, 91). Existing studies have demonstrated that

PKM2 interacts directly with the histone methyltransferase enhancer

of zeste homolog 2 (EZH2) to orchestrate the epigenetic silencing of

the carnitine transporter, SLC16A9. Inhibiting PKM2 disrupts the

binding of EZH2 to SLC16A9, which de-represses the expression of

SLC16A9 and increases intracellular carnitine influx, thus

programming TNBC cells toward fatty acid oxidation-dependent

and luminal-like cell states (92). According to previous reports,

nuclear PKM2 promotes the proliferation of liver, breast, colon,

and lung cancer cells by phosphorylating nuclear sterol regulatory

element-binding protein (SREBP)-1a T59, which prevents SREBP-1a

from being ubiquitinated and degraded and consequently enhances

the expression of SREBP-1a’s target genes related to lipid metabolism.

This study demonstrated that PKM2 functions as a transcriptional

co-activator by promoting SREBP-1a’s transcriptional activation

function and thus driving the proliferation of BC cells (93).
The effect of regulating nonmetabolic
enzyme function of PKM2 on breast cancer
tumorigenesis and development

The above studies revealed that the nuclear localization of

dimeric PKM2 can affect a variety of biological processes in BC

cells. As a result, controlling the nonmetabolic function of PKM2 is

critical for intervening in BC carcinogenesis and progression.

Currently, a growing body of research is focused on exploring the

potential role of natural products and noncoding RNAs in

regulating the nonmetabolic function of PKM2 to affect BC

tumorigenesis and development.
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Natural products regulate the
nonmetabolic function of PKM2

Shikonin
Shikonin, an active compound extracted from Lithospermum

erythrorhizon, has exhibited various pharmacological effects and

has been found to possess antitumor capabilities in a variety of

human cancer types (94, 95). Specifically, it can impede the

glycolytic function of PKM2 in BC cells (96, 97), and suppress its

nonmetabolic enzyme function to impact the biological processes of

these cells (36, 97–99). Shikonin works by binding with the R399/

400 residues of PKM2 to hinder its nuclear translocation, hence

leading to the disruption of the PKM2-HIFs-PFKFB3 pathway (36).

As PFKFB3 facilitates aerobic glycolysis, reducing its levels

increases the reliance on OXPHOS to meet ATP needs (100).

Cancer cell growth is known to be inhibited by a transition from

a glycolysis-dependent state to an OXPHOS-dependent state (101).

Pandkar et al. found that shikonin inhibits the hypoxic activation of

PFKFB3 by engaging with a putative nuclear localization signal

(NLS) on PKM2, thereby blocking its movement into the nucleus

during hypoxia. Furthermore, studies in mice carrying WT BBS

MCF7 tumors revealed that shikonin treatment led to significantly

reduced tumor growth, emphasizing the crucial role of targeting

PKM2 signaling to inhibit the progression of tumors (36).

Moreover, LEE et al. showed that shikonin is a robust and rapid

inducer of late apoptosis in MDA-MB-231 cells, implying that

inhibitors of PKM2 may be validated treatment targets for TNBC.

Targeting PKM2 in TNBC paves the way for the development of

PKM2 inhibitors as potential anti-TNBC agents (98). Therefore,

focusing on targeting PKM2 in BC sets the stage for developing

promising anti-BC agents in the form of PKM2 inhibitors.

Cryptanshinone
Cryptotanshinone is a liposoluble monomer of tanshinones

isolated from the dried roots and rhizomes of Salvia miltiorrhiza

(102). Cryptotanshinone has been recognized as a medication

with anti-inflammatory and anti-oxidative properties, and it has

demonstrated its ability to combat different forms of cancer by

impeding cell growth, movement, and infiltration (103). Notably,

significant evidence suggests that cryptotanshinone has the

capacity to inhibit the metabolism of glucose in ovarian cancer

cells, suggesting that it could be an effective anti-cancer agent by

controll ing glycolysis (104). Zhou et al . showed that

cryptotanshinone has an anti-cancer effect on BC cells by

inhibiting cell proliferation, migration, and invasion in vitro. In

addition, it significantly decreases the expression of glycolysis-

related proteins and PKM2/b-catenin signaling in BC cells (54).

PKM2 is a crucial regulator that controls the transactivation of b-
catenin, which is responsible for numerous critical functions of

cancer cells, including invasion, migration, and angiogenesis

(105). Cryptotanshinone successfully hindered the migration

and invasion of BC, which could be attributed to the

suppression of the PKM2/b-catenin pathway (54). Therefore,

cryptotanshinone may hold promise for the advancement of

novel targeted medications for BC.
Frontiers in Oncology 07
Cyclosporine A
Cyclosporin A is an immunosuppressant that is not toxic to cells

and was first identified in the 1970s. Initially, it was utilized to

suppress immune responses after organ and marrow transplantation

(106). Afterwards, it has been utilized in various medical fields where

autoimmune or inflammatory processes are involved in pathology

(107, 108). Recent studies have highlighted the potential antitumor

activity of this compound against different cancer cells, including BC.

Jiang et al. found that cyclosporin A inhibited the cell proliferation,

cell cycle progression, and G1/S phase transition of BC cell lines

(109). Several studies have reported that cyclosporin A hinders the

expression of some oncogenes. Cyclosporin A can inhibit the

proliferation of cancer cells, possibly by controlling the expression

levels of c-Myc, p21, and proliferating cell nuclear antigen (PCNA)

through the suppression of calcineurin (CaN)/nuclear factor of

activated T cells (NFAT) activity (110). It also suppresses cancer-

specific PKM2, which supports the advancement of the tumor (109,

111). The function of the PKM2 enzyme was also suppressed in

MCF-7 cells when they were exposed to cyclosporin A. Pyruvate

kinase catalyzes the final step in the glycolytic pathway and is

responsible for net ATP production; hence, the production of ATP

was evaluated in MCF-7 cells treated with cyclosporin A and was

found to be significantly reduced (109). This finding shows that

cyclosporin A hampers the expression of PKM2, leading to a

reduction in intracellular ATP within tumor cells, which ultimately

slows down cell growth and may even trigger cell death (109, 111).

Thus, cyclosporin A acts as a suppressor of BC growth by targeting

tumor-related PKM2.

Lapatinib
Lapatinib is a small-molecule tyrosine kinase inhibitor that

targets EGFR and HER2 (112, 113). Clinical studies have revealed

that lapatinib is well-tolerated and can be used alone or in

combination with other drugs for the treatment of BC (114, 115).

The specific molecular mechanism of lapatinib involves regulating

PKM2-mediated STAT3 tyrosine phosphorylation (18, 61). Guan

et al. (61) demonstrated that lapatinib hinders the proliferation of

BC cells by influencing the expression of PKM2, which decreases

the levels of STAT3 and phosphorylated STAT3. Downregulation of

PKM2 expression by lapatinib-mediated EGFR and HER2

suppression decreases STAT3 and phosphorylated STAT3

expression, resulting in decreased gene transcription and

prevention of tumor cell proliferation.

Mangifera indica
M. indica, also known as mango, is a member of the

Anacardiaceae flowering family (116). Various sections of the M.

indica plant contain different types of phytochemicals, and they have

traditionally been used to treat a wide range of health issues such as

gastrointestinal, genitourinary, ophthalmic, and respiratory

conditions (117, 118). Preclinical research on extracts derived from

diverse plant sections has indicated their anti-cancer, anti-

inflammatory, antimicrobial, antioxidant, and immunomodulatory

properties (119, 120). Specifically, various investigations have

reported the anti-cancer properties of the pulp extracts of M.
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indica in BC. These findings suggest that consuming M. indica fruits

could be beneficial for BC treatment (121). M. indica extracts (leaf,

bark, and seed coats) were also found to have anticancer activity

against TNBC (122, 123). These studies revealed that M. indica

extracts could inhibit PKM2, but the exact mechanism underlying

these effects is still not fully understood. Further research is also

suggested to examine their potential in in vivo studies.

Carpesium abrotanoides (L.)
Carpesium abrotanoides Linn. (CA) is a popular medicinal

plant recognized for its anti-inflammatory effects and wide range

of therapeutic applications (46). Some studies have demonstrated

that CA extracts exhibit promising antitumor effects on various

cancer cells in vitro, including non–small cell lung, ovarian, skin,

and colon cancer cells (124, 125). As a traditional herbal remedy, it

is commonly used as an oral decoction for treating chronic

inflammatory illnesses (126). Currently, various compounds have

been isolated from the whole plant of CA that display significant

cytotoxicity against MCF-7 and MDAMB-231 cells, indicating its

potential anti-BC effects (46, 127). In addition, Chai et al. found that

CA has dose-dependent antiproliferative effects on both metastatic

(MDA-MB-231) and nonmetastatic (MCF-7) BC cells while

inhibiting their migration ability. Furthermore, CA downregulates

the expression of glycolysis-related proteins (PKM2, LDHA, HK2,

and GLUT1) and suppresses the PKM2/HIF-1a/VEGF signaling

pathway to exert its anticancer effects (46). In cancer cells, PKM2

activates the transcription of HIF-1a and its target gene VEGF in

the nucleus; this stimulates the secretion of VEGF to promote

angiogenesis and enhance tumor growth (41). Angiogenesis is a key

event in tumor invasion and migration. Moreover, VEGFA has been

linked to promoting cancer stem cell self-renewal and EMT while

contributing to tumor metastasis in BC cells (43). Clinical studies

have also revealed that patients with metastatic BC tend to have

higher circulating levels of VEGFA (45). Consequently, targeting

the PKM2/HIF-1a axis holds promise as a feasible approach for

regulating VEGF in BC.

Yuanhuacine
Yuanhuacine, a daphnane-type diterpenoid as the main active

ingredient, has been previously documented to exhibit cytotoxic

effects in vitro against a wide range of human cancer cell lines (128–

130). For instance, yuanhuacine has notable inhibitory effects on

human lung cancer cells (131). Recent studies have revealed that

yuanhuacine significantly inhibits effect BC cell growth (63, 132).

Yuanhuacine reduced the growth of BC cells and caused apoptosis

both in vivo and in vitro. The mechanism of action has been linked

to yuanhuacine, which has been hypothesized to potentially disrupt

the interactions of PKM2 and STAT3, hence inhibiting downstream

proteins. Besides, yuanhuacine suppresses BC cells by targeting

PKM2, which controls the STAT3 pathway and glycolysis. The

combination of yuanhuacine and PKM2 siRNA treatment

significantly hindered the phosphorylation of STAT3 (Y705) and

its downstream effects, in contrast to yuanhuacine treatment alone

(63). This finding could also indicate a synergistic effect of

yuanhuacine when it is used with other cancer-specific treatments.
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Cantharidin
Cantharidin, a sesquiterpenoid bioactive component, is among the

active ingredients found in mylabris. Many in vitro studies have

investigated cantharidin’s antitumor activity, which includes

hindering migration, inducing apoptosis, halting the G2/M

transition, and suppressing invasion (133). Yang et al. showed that

EGFR activation results in the translocation of PKM2 into the nucleus,

leading to increased expression of GLUT-1 and LDHA, which work

together to enhance aerobic glycolysis in a positive feedback loop (105).

This mechanism relies on ERK signaling, which is facilitated by

importin a5 (23). Pan et al. (134) investigated the mechanism by

which cantharidin influences PKM2 translocation into the nucleus in

BC cells. Cantharidin reduces GLUT1 transcription and glucose uptake

by blocking the transformation of PKM2 dimers into tetramers and

their entry into the nucleus. Most importantly, the inhibitory effect of

cantharidin on migration and invasion was significantly reversed when

FBP and L-cysteine were introduced (134). These findings suggest that

cantharidin and its derivatives have strong potential as anti-metastatic

agents, making them highly valuable in clinical applications.

Beta‐elemene
Beta-elemene is a prominent non‐cytotoxic anticancer

ingredient extracted from Curcuma zedoary that triggers cancer

cell death, halts cell cycle progression, and improves radiotherapy

and chemotherapy sensitivity without causing myelosuppression or

notable harm to the liver or kidney (135–137). In cancer cells, the

balance between tetrameric and dimeric forms of PKM2 regulates

the glucose metabolic pathway, influencing energy production and

the synthesis of anabolic precursors. Additionally, this

interconversion between dimeric and tetrameric PKM2 helps to

maintain a dynamic equilibrium (37, 138). Pan et al. showed that b‐
elemene inhibited the spread of BC by impeding aerobic glycolysis.

Specifically, b‐elemene hindered the transformation of dimeric and

tetrameric forms of PKM2, thus inhibiting its pyruvate kinase

activity, resulting in reduced utilization of glucose and generation

of pyruvate and lactate. Besides its metabolic function, PKM2 acts

as a nonmetabolic protein kinase and transcriptional coactivator for

HIF-1a and c-MYC, which are crucial for tumorigenesis induced by

the activation of EGFR. Activated EGFR facilitates the translocation

of PKM2 to the nucleus through importin a5 (23, 105). b‐elemene

inhibited the EGFR‐importin a5‐mediated movement of PKM2

into the nucleus and the expression of GLUT1, monocarboxylate

transporter 1 (MCT1), MCT4, and LDHA (139). Collectively, these

studies suggest that b‐elemene can inhibit BC metastasis by

disrupting PKM2‐mediated metabolic signaling to exert an anti-

BC effect.
Noncoding RNAs regulate nonmetabolic
function of PKM2 in breast cancer

Current studies are focused on the impact of long noncoding

RNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA)

on PKM2 in BC tumorigenesis and development (140–142).

Noncoding RNA can influence BC cell metabolic reprogramming
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by targeting PKM2’s metabolic enzyme function as well as its

nonmetabolic enzyme function (141, 143). In some cases,

miRNAs have been found to regulate PKM2 expression in BC

cells. For instance, miR-122 is abundantly released by tumor cells

and promotes metastasis by adapting to the metabolic environment

in the pre-metastatic niche, whereas down-regulation of PKM2 and

GLUT1 limits glucose consumption in BC cells (144). miR-Let-7a

inhibited MDA-MB-231 cell proliferation and particularly

upregulated the levels of PMK2, oxidative phosphorylation, and

reactive oxygen species (ROS) in TNBC and improved the

sensitivity of BC cells to the tumor suppressor doxorubicin in BC

metastasis (145). CircKIF4A, which is largely found in the

cytoplasm, may interact with miR-335, while aldolase A

(ALDOA) and octamer-binding transcription factor 4 (OCT4)

serve as miR-335’s downstream targets. ALDOA and OCT4 are

metabolic proteins that control glycolytic proteins such as HK2 and

PKM2 (146–148). Increased miR-335 expression resulted in

decreased levels of ALDOA/HK2 and OCT4/PKM2 proteins. As a

result, circKIF4A regulates glucose metabolism through the miR-

335-ALDOA/OCT4-HK2/PKM2 pathway (149).

Zheng et al. demonstrated the importance of HIF-1a antisense

lncRNA (HIFAL) in maintaining and increasing HIF-1a-driven
transactivation and glycolysis. Functionally, HIFAL recruits PHD3

to PKM2, causing its prolyl hydroxylation and facilitating the entry

of the PKM2/PHD3 complex into the nucleus by interacting with

heterogeneous nuclear ribonucleoprotein (hnRNP) F. This

promotes HIF-1a transactivation, glucose absorption, and lactate

generation in BC cells (150). Besides, Yao et al. revealed that miR-

Let-7a-5p suppresses aerobic glycolysis by modulating the STAT3/

hnRNP-A1/PKM2 signaling pathway. They showed that hnRNP-

A1 controls PKM2 gene selective cleavage, resulting in enhanced

PKM2 synthesis. STAT3 may increase hnRNP-A1 transcription,

whereas miR-Let-7a-5p suppresses STAT3 and hence reduces

PKM2 (141, 151).

A study conducted by Wen et al. revealed that miR-152

suppresses growth and angiogenesis in BC by suppressing both b-
catenin and PKM2. b-catenin, which is a downstream target of

insulin-like growth factor 1 (IGF-1), plays a role in controlling cell

proliferation (53). Recent evidence has shown that miR-148a/152

activation contributes to the suppression of PKM2 and NF-kB p56

expression in TNBC cells. NF-kB p56 interacts with PKM2 to

regulate early growth response 1 (EGR1) expression. EGR1 can bind

to multiple sites on miRNA gene promoters, thereby controlling

miR-148a and miR-152 expression (152).
Conclusion and future perspectives

In this review, we reviewed how PKM2 has emerged as a crucial

player in BC; through its role as a transcriptional co-activator and

regulator of gene expression, PKM2 has been demonstrated to

contribute to the epigenetic regulation of gene transcription.

Understanding the diverse functions of PKM2 beyond its metabolic

role opens new avenues for targeting this enzyme in BC treatment.
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The nonmetabolic role of PKM2 controls the expression of cancer-

related genes implicated in various aspects of BC progression, such as

cell cycle, proliferation, programmed cell death, angiogenesis,

migration and invasion, tumor microenvironment, and others.

Natural products such as shikonin, cryptanshinone, cyclosporine A,

lapatinib, mangifera indica, beta-elemene, yuanhuacine, cantharidin,

and others control PKM2’s nonmetabolic function and affect BC

progression. In addition, the interaction of PKM2 with noncoding

RNAs has garnered increasing interest. Noncoding RNAs regulate

PKM2’s nonmetabolic enzyme function and influence BC growth. In

the future, it will be imperative to further investigate the

nonmetabolic function of PKM2 in BC in order to gain a

comprehensive understanding of its involvement in the growth and

advancement of tumors. In addition, exploring the interaction

between metabolic reprogramming and PKM2-mediated

nonmetabolic functions in BC is an intriguing area for further

research. This knowledge could potentially lead to the use of PKM2

as a molecular marker for BC diagnosis and prognosis, which could

be highly important for the therapeutic targeting of BC.
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