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Objective: The presence of skin flora (SF) has been identified as a significant

factor in the onset and progression of cutaneous melanoma (CM). However, the

vast diversity and abundance of SF present challenges to fully understanding the

causal relationship between SF and CM.

Methods: A Two Sample Mendelian Randomization (TSMR) analysis was

conducted to investigating the causal relationship between SF and CM. The

Inverse-VarianceWeighted (IVW)method was utilized as the primary approach to

assess the causal relationship under investigation. Furthermore, an independent

external cohort was employed to validate the initial findings, followed by a meta-

analysis of the consolidated results. To address potential confounding factors

related to the influence of SF on CM, a Multivariate Mendelian Randomization

(MVMR) analysis was also conducted. Finally, a Reverse Mendelian

Randomization (RMR) was conducted to further validate the causal association.

Results: TSMR results showed that 9 SF have a causal relationship with CM in the

training cohort. Although these 9 SF weren’t confirmed in the testing cohort, 4 SF

remained significant in the meta-analysis after integrating results from both

cohorts. MVMR analysis indicated that 3 SF were still significantly associated with

CM after accounting for the interactions between different SF in the training

cohort. No reverse causal relationship was identified in RMR analysis.

Conclusion: A total of 9 SF were identified as having a potential causal

relationship with CM; however, a large randomized controlled trial is needed

to verify these results.
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Introduction

Cutaneous melanoma (CM) is a highly malignant tumor that

originates from melanocytes in the basal layer of the epidermis,

often presenting as irregular, dark-pigmented lesions on the skin

surface (1). Globally, the incidence and mortality rates of CM are

rising each year. In 2020, approximately 325,000 new cases of

melanoma and 57,000 deaths were reported worldwide (2, 3). The

prognosis of CM can vary significantly depending on factors such as

age of onset, tumor location, and pathological type (4). Research

shows that lymphatic metastasis can occur in the early stages of CM,

drastically reducing survival rates. As the number of affected lymph

nodes increases, the 5-year survival rate for patients plummets to

around 10% (5). CM is highly aggressive and invasive, accounting

for up to 90% of skin cancer-related deaths, making it the most

lethal skin malignancy (6). Given its profound public health and

economic impact, it is essential to identify prognostic risk factors for

CM and explore novel treatment strategies.

At present, the specific pathogenesis of CM has not been

elucidated. Related studies have shown that ultraviolet radiation

exposure (Ultraviolet Radiation, UVR, including natural sunlight

and artificial lighting systems) is the main risk factor for the

occurrence of CM. Additional factors such as age, genetics,

geographical location, and a history of skin cancer also contribute

to CM incidence (7). The skin, as the largest organ of the human

body, hosts a vast ecological niche for diverse microorganisms (8).

Skin flora (SF) refers to the microbiome of bacteria, fungi, and

viruses that colonize the skin, influencing human health to varying

degrees (9). Disruption in the balance and homeostasis of SF have

been kinded to several skin diseases, such as psoriasis (10) and acne

(11). Consequently, alterations in SF composition hold potential for

new diagnostic and therapeutic approaches for skin diseases (12).

Although SF has been showed to be closely related to certain

diseases, its relationship with CM remains underexplored. UVR

exposure, including ultraviolet A (UVA) and ultraviolet B (UVB),

alters the composition of the skin microbiota. Among them, the

bacterial group dominated by Cyanobacteria and Fusobacteria

increased significantly, while Lactic acid bacteria and other

bacterial groups decreased. This may be related to the physical

effects that UVR brought about (13). A small sample study byWang

et al. found that Propionibacterium acnes can inhibit the survival of

UVB-irradiated melanocytes by increasing cell apoptosis. At the

same time, the skin commensal bacteria Staphylococcus epidermidis

and its by-product Lipoteichoic Acid (LTA) induce the

upregulation of TRAF1, CASP14, CASP5 and TP73 promoting

melanocyte survival (14). In contrast, Nakatsuji et al. found that

intravenous infusion of 6-N-hydroxyaminopurine (6-HAP)

produced by Staphylococcus epidermidis in mice can inhibit the

growth of B16F10 melanoma (15). The results of another small

sample study suggested that there are differences in the skin

mi c rob i o t a o f CM. Among them , a cne s ( f o rme r l y

Propionibacterium), Staphylococcus and Corynebacterium are the

most common bacterial genera, and the study showed that the

diversity of microorganisms of melanoma samples decreased

slightly (16). Michael et al. demonstrated the value of skin flora in

the treatment of CM by constructing Staphylococcus epidermidis
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expressing tumor antigens and inducing T cell responses to limit

melanoma growth (17). These findings suggest a possible

association between CM and skin microbiota, yet no

epidemiological or clinical studies have definitively established a

causal link. Thus, exploring the causal relationship between skin

microbiota and CM is crucial.

However, observational studies are limited in their ability to

control for confounding factors and cannot fully avoid the effects of

reverse causality, making it challenging to determine true

associations between exposures and outcomes (18). While

randomized controlled trials (RCTs) are the gold standard for

establishing causal relationships, they often face obstacles such as

high costs and implementation difficulties (19). Mendelian

randomization (MR) is an epidemiological research method based

on Mendel’s law of independent distribution, which uses genetic

variation (usually single nucleotide polymorphisms, SNPs) as a tool

for natural random assignment. Simulated randomized controlled

trials have been widely used in recent years to reveal causal

relationships between environmental exposures and disease

outcomes (20, 21). In this study, a Two-Sample Mendelian

Randomization (TSMR) analysis was performed using a large-

scale genome-wide association study (GWAS) dataset to

investigate the role of skin flora in the development of CM. The

goal was to explore potential causal relationships between skin flora

and CM, providing new insights into CM prevention and treatment.
Materials and methods

Data acquire and process

The SNP data of skin flora (SF) and cutaneous melanoma (CM)

were obtained from European population. The GWAS summary data

of SF was derived from the data published by Moitinho-Silva L et al.

in 2022 (9). In this study, the authors conducted a large-scale

Genome-Wide Association Study (GWAS) on two population-

based German cohorts. These 296 SF originate from different parts

of the body and are divided by skin properties into dry, moist and

sebaceous skin. The flow of this study was showed in Figure 1.
Screening of instrumental variables

Initially, by setting the threshold of P1 5e-6 was for single

nucleotide polymorphisms (SNPs), instrumental variables (IVs)

strongly correlated with SF were screened. SNPs demonstrating

higher levels of significance were considered to be closely linked to

the heritability of SF. Additionally, an F test was performed on each

IV to eliminate those with weak correlations. The F test equation,

given by F = (Beta/Se)^2, includes the impact size (Beta) of

independent variables on SF and the standard error (Se) linked to

Beta. The study did not include IVs with F test values lower than 10.

Furthermore, an assessment of linkage disequilibrium was

performed on the IVs. Linkage disequilibrium in genetics refers to

the probability of alleles from multiple gene loci co-occurring on a

single chromosome at a frequency higher than expected by chance.
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These occurrences are not conducive to MR analysis. To address

this potential bias, a threshold of r2 = 0.001 and Kb = 10000 was set.

The IVs of CM are extracted simultaneously using the IVs of the

SF after undergoing a screening process. A significance threshold of

P2 = 5e-5 is established for the IVs of the outcome to remove highly

correlated variables. Proxy tools are not introduced for IVs that are

absent in the CM dataset to uphold the precision and dependability

of the findings. Following this, the data of IVs from the SF and CM

are merged, and palindromic SNPs are excluded.
Two sample MR analysis

The TwosampleMR package in the R language was employed to

perform a comprehensive MR analysis on the combined dataset. The

MR analysis incorporated four different methods, namely the Inverse

Variance Weighted (IVW), MR Egger, Weighted Median, and

Weighted Mode. The findings derived from the IVW method were

predominantly utilized for assessment. It is worth noting that the

IVW method is advantageous for detecting bias even when invalid

instrumental variables (IVs) are present (22). On the other hand, the

MR Egger method incorporates an intercept to evaluate and address

horizontal pleiotropy in IVs (23). For Weighted median, this estimate

is consistent even if up to 50% of the information comes from invalid

tool variables. In the simulation analysis, it is proved that it has better

class 1 error rate than IVW method (24). The weighted mode model

employs the reciprocal of the result variance as weights, thereby

assigning greater significance to SNPs with smaller variances in the

estimation process (25). In order to ensure the reliability of the

findings, only results exhibiting consistent Beta direction across all

four analysis methods were included.
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Multivariate Mendelian
Randomization analysis

In order to improve comprehension of the role of different SF in

CM and strengthen the credibility of TSMR results, Multivariate

Mendelian Randomization (MVMR) analysis was utilized to

investigate the potential association between SF and CM (26).

Initially, shared SNPs present in multiple SF types were identified

and subsequently extracted from the dataset. After removing

linkage disequilibrium, the isolated SNP data underwent MVMR

analysis. The IVW method, similar to TSMR, serves as a tool for

assessing the primary outcome of MVMR. In addition,

Supplementary Methods such as MR Egger, Lasso, and Weighted

median are utilized to bolster the reliability of the IVW method.

Heterogeneity assessment is performed using the IVW method,

while the detection of pleiotropic effects is achieved through the

analysis of the Egger intercept and MR Presso.
Verification based on testing cohort and
meta-analysis

In order to reduce the bias impact of individual study results on

the findings of MR analyses, a meta-analysis was performed using

data from two separate cohorts of CM patients to ascertain the

magnitude of the association between SF and CM. The meta-analysis

predominantly utilized the IVW method for the analysis of the

relationship between SF and CM. The presence of heterogeneity in

the meta-analysis was evaluated through the I2 statistic, with a fixed

effects model applied for I2 values of 50% or less and a random effects

model utilized for I2 values exceeding 50%.
FIGURE 1

The flow of this study.
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Statistic analysis

Horizontal pleiotropy significantly impacts the validity of MR

analysis findings by introducing the possibility of IVs exerting

effects on outcomes through multiple genetic pathways, thereby

contravening fundamental MR analysis principles. To identify and

address horizontal pleiotropy, we employed Presso (27) and MR

Egger methodologies to assess IVs for potential pleiotropic effects.

IVs that passed both tests simultaneously were regarded as not

having horizontal pleiotropy, and those with pleiotropic effects were

excluded from the study. Heterogeneity testing was also carried out

on IVs using the IVW and MR Egger methods, with IVs that

showed heterogeneity being excluded from the analysis.

Furthermore, heterogeneity testing was conducted on IVs using

the IVW and MR Egger methods. After identifying heterogeneity,

those IVs were excluded from the analysis.

Each independent variable underwent a leave-one-out

sensitivity analysis to determine the potential effect of individual

SNPs on the outcome. The Steiger test was employed to detect and

remove SNPs demonstrating reverse causality, which could

introduce bias into the interpretation of the association between

exposure and outcome variables. Furthermore, a Reverse Mendelian

randomization (RMR) analysis was conducted to confirm the

results by examining the relationship between CM and SF.
Results

Characteristics of SNPs

A total of 2 CM queues were obtained from the GWAS

summary data, and their IDs were finngen_R10_C3_

MELANOMA_SKIN_EXALLC and ukb-saige-172.11 respectively.

Among them, finngen_R10_C3_MELANOMA_SKIN_EXALLC

was used as the training cohort, and ukb-saige-172.11 was used as

the testing cohort.

ukb-saige-172.11 contains more than 400 million detected

variants and 397, 762 sample sizes, including 2, 691 cases and

395, 071 controls. The populations are from European, and the

gender includes males and females.
Screening of instrumental variables

Based on the selection criteria mentioned earlier, SNPs were

extracted from the exposure and outcome variables for this analysis.

In the end, 9 SF were identified as having a causal relationship with

CM. 6 SNPs came from ASV005, 2 SNPs came from ASV008, 4

SNPs came from Class Betaproteobacteria, 10 SNPs came from

Genus Propionibacterium, 8 SNPs came from ASV004, 8 SNPs

came from Genus Anaerococcus, 2 SNPs came from ASV035, 4

SNPs came from ASV063, 5 SNPs came from Phylum
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Proteobacteria were finally included in the MR analysis. The

instrumental variables had F values greater than 10, which

indicates they were not weak. The detailed information of IVs

was showed in Supplementary Table S1.
TSMR analysis

The IVW results indicated that a total of 9 SF are causally

associated with CM, which included 3 protective factors and 6 risk

factors. Specially, we found that ASV005 (OR: 0.952, 95% CI: 0.91 to

0.997, P value: 0.036), ASV008 (OR:0.948, 95% CI: 0.902 to 0.997, P

value: 0.038) and Genus Anaerococcus (OR: 0.965, 95% CI: 0.931 to

0.999, P value:0.044) were the protective factors on CM, while Class

Betaproteobacteria (OR: 1.095, 95% CI: 1.029 to 1.166, P value:

0.004), Genus Propionibacterium (OR: 1.048, 95% CI: 1.003 to

1.094, P value: 0.035), ASV004 (OR: 1.043, 95% CI: 1.001 to 1.088, P

value: 0.047), ASV035 (OR: 1.093, 95% CI: 1.006 to 1.187, P value:

0.037), ASV063 (OR: 1.042, 95% CI: 1.002 to 1.084, P value: 0.039)

and Phylum Proteobacteria (OR: 1.056, 95% CI: 1.002 to 1.112, P

value: 0.043) were the risk factors for CM. Exposure factors are

represented by their corresponding ID, the blue line segment

represents the 95% confidence interval (CI) of the exposure

factor, and the dot on the line segment represents the

corresponding OR value. (Figure 2A, Supplementary Table S2).

This outcome was also evident in the scatter plot generated from

MR analysis. The scatter plot illustrates the influence of each SNP

on 9 SF and CM, allowing for a visual representation of the impact

of exposure on the outcome. The different colored lines represent

different approaches, and they sum up all of the SNPs’ contributions

to CM, depicting an upward OR downward trend according to the

size of the OR value. If the line extends from the bottom left to the

top right, SF is a risk factor for CM; if the line extends from the top

left to the bottom right, SF is a protective factor for CM

(Supplementary Figure S1). The Forest plot presented the MR

effect size of the 9 SF and CM for each IVs. MR Egger and IVW

methods were used to calculate the MR effect sizes of all IVs, which

were then displayed in red line segment (Supplementary Figure S2).

Heterogeneity testing indicated that the included IVs were

homogeneous, and the distribution on the funnel plot was

symmetrical based on the method of IVW and MR Egger

(Supplementary Figure S3, Supplementary Table S3). A leave-one-

out sensitivity analysis, which systematically eliminated each

independent variable, demonstrated the robustness of the results

(Supplementary Figure S4). Additionally, no evidence of a reverse

causal relationship was observed between 9 SF and CM.
Verification based on testing cohort

In order to verify the reliability of the training cohort results,

TSMR analysis was performed using the same parameters in the

testing cohorts. Similar to Figure 1A, the exposure factor is

displayed by its corresponding ID, the blue line segment
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represents the 95% CI of the exposure factor, and the dot on the line

segment represents the corresponding OR value. However, none of

the SF in the testing cohort has been verified to be causally

associated with CM (Figure 2B).
Meta-analysis based on inverse-variance
weighted method of training cohort and
testing cohort

Although none of the SF in testing cohorts has been verified to

be causally associated with CM, after integrated the results of IVW

method to conduct meta-analysis, a total of 5 SF showed potential

causal relationship on CM with significant differences. Source 1

refers to finngen_R10_C3_MELANOMA_SKIN_EXALLC, Source

2 refers to ukb-saige-172.11. Similar to Figure 1, the exposure factor

is displayed by its corresponding ID, the black line segment

represents 95% CI of the exposure factor, and the diamond
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represents 95% CI obtained by integrating the training group and

the testing group (Figure 3).
MVMR analysis

In order to further clarify the role of 9 SF in CM and consolidate

the reliability of TSMR and meta-analysis results, MVMR was used

to analyze SF with positive results. 47 shared IVs were extracted

among the 9 SF. The results of TSMR from 3 SF remained stable in

the MVMR analysis in training group. Among them, ASV005 (IVW

OR: 0.951, 95% CI: 0.911-0.993, P value:0.022) was a protective

factor for CM, while ASV004 (IVW OR: 1.045, 95% CI: 1.004-1.087,

P value:0.03) and ASV063 (IVW OR: 1.058, 95% CI: 1.017-1.101, P

value:0.005) were the risk factors for CM (Figure 4). MR Egger and

IVW analyses showed no heterogeneity in the instrumental

variables. The Egger intercept was close to zero, and the P value

was above 0.05, which indicates a lack of horizontal pleiotropy
FIGURE 3

Meta-analysis integrated the IVW results of 9 skin flora against CM in training cohort and testing cohort.
FIGURE 2

The IVW results of 9 skin flora against CM in training cohort and testing cohort. (A) finngen_R10_C3_MELANOMA_SKIN_EXALLC; (B) ukbsaige-172.11.
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(Supplementary Table S4). This results were confirmed in MR

Presso test (Supplementary Table S5).
Discussion

The skin acts as a physical barrier between the human body and

the external environment. It offers a niche for the commensal

microbiota while simultaneously shielding against the incursion

of alien pathogens (28). Disruptions in the skin flora (SF) could

potentially influence the development of skin tumors through direct

cellular damage (29), modulation of host defense mechanisms (29),

and alterations in the tumor immune microenvironment (30).

Additionally, toxins secreted by the SF have the capacity to

induce oncogenic mutations via DNA damage (31). The research

by Hoste et al. (32)demonstrated that SF induces the production of

the inflammatory factor HMGB1 through the pathway of Toll-like

receptor 5 (TLR-5) recognition of bacterial flagellin. This process

may facilitate the transition from skin injury or chronic

inflammation to cutaneous malignancy. SF impacts the formation

and stability of the skin barrier (33), and its imbalance may

exacerbate UV radiation-induced DNA damage and reactive

oxygen species (ROS) production (34). This leads to an enhanced

inflammatory response and increased cell proliferation, ultimately

disrupting the skin barrier and promoting skin tumorigenesis (34).

In conclusion, the role of the skin microbiota should not be

overlooked in investigations into the pathogenesis of skin tumors.

CM, as a skin malignancy with a high risk, exhibits associations

between their onset and progression with dysregulation of the SF

ecosystem (35, 36). However, the precise causal relationships

remain to be elucidated.

A total of 9 SF showed causal relationship with CM in TSMR

results in this study. The results showed that ASV005, ASV008 and

Genus Anaerococcus were the protective factors on CM, while Class

Betaproteobacteria, Genus Propionibacterium, ASV004, ASV035,

ASV063 and Phylum Proteobacteria were the risk factors on CM.

Staphylococcus has a bidirectional regulation of the occurrence risk

of CM.

Proteobacteria and b-Proteobacteria are considered risk factors

for CM (35). They all belong to the group of Gram-negative

bacteria, characterized by an outer wall containing a specific
Frontiers in Oncology 06
component known as lipopolysaccharide (LPS). Currently, there

is limited research on the role of Proteobacteria and b-
Proteobacteria in skin diseases. However, some studies have

suggested that their proliferation may promote inflammation or

facilitate the invasion of external pathogens (37, 38). Furthermore,

an increase in Proteobacteria abundance has been proposed as a

potential diagnostic marker for flora imbalance and disease

susceptibility (39). LPS derived from these bacteria can activate

intestinal mucosal immunity, leading to local and systemic

inflammation as well as metabolic dysfunction (40). Toll-like

receptor 4 (TLR4) expression has been observed in 90% of

human primary melanoma lesions and 93% of metastatic lesions

(41). As a ligand for TLR4, LPS promotes the proliferation and

migration of TLR4-positive melanoma cells through signal

transduction mediated by transcriptional activator 3 (STAT3)

activation (42). Therefore, it is plausible that Proteobacteria and

b-Proteobacteria indirectly activate STAT3 via LPS signaling

pathway exacerbating CM progression.

Corynebacterium is considered a significant risk factor for CM

(43). According to statistical data, Corynebacterium is the most

frequently detected or second most frequently detected bacterial

genus in stage III/IV melanoma patients. Additionally, coryne-

positive patients exhibit higher levels of IL-17 positive cells

compared to coryne-negative patients (43). IL-17 can stimulate

the production of IL-6, which subsequently activates STAT3 and

upregulates genes associated with cell survival and angiogenesis

(44). Therefore, it is possible that Corynebacterium may contribute

to the progression of CM by promoting the IL-6-STAT3 pathway.

According to the analysis, we considered Fingolderia magnus to

be a risk factor for CM. Formerly known as peptostreptococcus

magnus, Fingolderia magnus is considered one of the most

pathogenic opportunistic pathogens capable of causing severe

infections in various anatomical sites including bone, joint, lung,

skin and soft tissue, as well as infective endocarditis (45, 46). The

key virulence factors associated with E. grandis pathogenesis

encompass protein L, Surface-associated protein F. magna

adhesion factor (FAF), Subtilisin-like extracellular serine protease

(SufA), Sortase dependent pili, Peptostreptococcal albumin-binding

protein (PAB). Its pathogenic mechanisms involve inhibiting

biofilm formation, evading host immune defense mechanisms and

inducing secretion of pro-inflammatory factors (47, 48). It is
FIGURE 4

Multivariate Mendelian Randomization analysis among 9 skin flora against CM in training cohort.
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plausible that Fingoldelia magnus may augment the risk of CM

through similar immune evasion and proinflammatory pathways.

Propionibacterium granulosa, Propionibacterium acnes, and

Propionibacterium Feideri all belong to the genus Propionibacterium

and Cutibacterium (49). The findings of this study suggested that

propionibacteria are a risk factor for the pathogenesis of CM, while

granular propionibacterial species have a protective effect on CM, which

may be attributed to their differential mechanisms of action.

Propionibacterium acnes promotes the synthesis of pro-inflammatory

cytokines such as IL-1, IL-6, TNF-a, IL-12 and IL-18, leading to an

inflammatory response (50, 51). Previous studies have indicated the

involvement of proinflammatory mechanisms by propionibacteria in

prostate cancer pathogenesis and its high abundance in prostate cancer

(52, 53). It is plausible that propionibacteria exacerbate CM

pathogenesis through similar proinflammatory reactions. Genomic

studies have demonstrated distinct separations between

propionicbaterrium granulosus and other species within the genus

Propionicbaterrium suggesting significant differences in their

potential functions on skin health (54). Currently limited research

exists regarding the mechanism of action for Propionicbaterrium

granulosus. However, some studies have reported the discovery of an

endogenous extracellular nuclease BmdE secreted by this bacterium

which can degrade biofilms produced by Propionicbaterrium acnes

both in vivo and in vitro (55). These results propose a potential novel

competitive mechanism between P. acnes and P. granulosus possibly

related to diverse effects exerted by P. granulosus compared with other

members within the genus.

The findings of this study demonstrated that staphylococcus exerts

a bidirectional regulatory effect on the risk of CM (56). Staphylococcus

epidermidis is commonly considered as a commensal microorganism

in the skin microbiota, contributing to the maintenance of skin barrier

homeostasis, promotion of wound healing, enhancement of skin

immunity, and inhibition of pathogen infection through the

production of protective ceramides (57). 6-HAP, a molecule

produced by Staphylococcus epidermidis that inhibits DNA

polymerase activity, exhibits selective growth inhibition against

tumor cell lines. Intravenous administration of 6-HAP in mice has

been shown to suppress B16F10 melanoma growth, suggesting a

potential protective role for Staphylococcus in CM (15). However,

both Staphylococcus epidermidis and its by-product LTA can promote

melanocyte survival by inducing upregulation of TRAF1, CASP14,

CASP5 and TP73 genes. This suggested that staphylococcus may

exacerbate disease progression in CM (14). Introduction of

Staphylococcus epidermidis into germ-free mice has been

demonstrated to restore normal IL-17A production - a chemokine

potentially involved in tumor growth and anti-tumor immunity (58).

In conclusion, the impact of staphylococcus on CM may be mediated

through different metabolites; however, further investigation is required

to elucidate the specific mechanisms involved.

The breast microbiome of healthy tissues and cancer-related tissues

has been compared in studies, revealing a higher abundance of

anaerobes in the former (59). A high level of bile acid metabolism

generally indicates a better prognosis for breast cancer, with the high

bile acidmetabolism group exhibiting a greater abundance of anaerobes

compared to the low bile acid metabolism group (60). These findings

suggested potential disease protection mechanisms associated
Frontiers in Oncology 07
with anaerobic coccus. However, the current understanding of its

protective mechanism in diseases remains unexplored. Therefore, the

conclusions drawn from this study may offer new directions for future

research on CM.

As we listed earlier, many studies have shown that there is a

certain relationship between SF and CM. This study further

provides a basis for consolidating this relationship by combining

TSMR, MVMR and RMR. However, there are some limitations in

this study, such as the heterogeneity of population background in

different research cohorts. Some stratification factors, such as age

and gender, were not disclosed in detail in the original study.

Therefore, further randomized controlled trials are necessary to

prove this conclusion.
Conclusion

In conclusion, our study revealed that 9 SF have causal

relationship with CM. Further large randomize control trail to

verify this results is needed.
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