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Introduction

Identifying suitable biomarkers is crucial for exploring the pathogenesis, early screening, and therapeutic monitoring of lung cancer. This study aims to analyze comprehensively the associations between lung cancer and biomarkers in blood and urine.





Methods

Bidirectional two-sample Mendelian randomization (MR) was used to evaluate the potential causal relationships between blood and urine biomarkers and lung cancer. We obtained Single nucleotide polymorphisms (SNPs) related to lung cancer from the 2021 Finnish database of genome-wide association studies, including small cell lung cancer (SCLC), total non-small cell lung cancer (NSCLC), lung adenocarcinoma (LAC), and lung squamous cell carcinoma (LSCC).Data on blood and urine biomarkers were derived from the UK Biobank cohort, comprising 376,807 participants.





Results

We found a potential inverse causal relationship between total bilirubin and SCLC (β=-0.285, P=0.015, FDR=0.12). Urate was inversely associated with NSCLC (β=-0.158, P=0.004, FDR=0.036*). Serum calcium showed a possible inverse relationship with lung squamous cell carcinoma (β=-0.256, P=0.046, FDR=0.138), while urinary creatinine was positively associated (β=1.233, P=0.024, FDR=0.216). Non-albumin proteins (β=-0.272, P=0.020, FDR=0.180) and total protein (β=-0.402, P=0.009, FDR=0.072) were inversely related to lung squamous cell carcinoma. The AST/ALT ratio was positively associated with lung adenocarcinoma (β=0.293, P=0.009, FDR=0.072). Our reverse Mendelian randomization study found a positive causal association between small cell lung cancer and serum creatinine (β=0.022, P=0.002, FDR=0.018*), while it was inversely associated with the estimated glomerular filtration rate(eGFR)(β=-0.022, P=0.003, FDR=0.027*). A positive causal relationship was also observed with cystatin C (β=0.026, P=0.005, FDR=0.045*) and glycated hemoglobin HbA1c (β=0.013, P=0.014, FDR=0.028*). A negative causal relationship was observed with Gamma_glutamyltransferase (β=-0.013, P=0.019, FDR=0.152). For non-small cell lung cancer, a negative causal relationship was found with albumin (β=-0.024, P=0.002, FDR=0.016*), while a potentially positive causal relationship was observed with cystatin C (β=0.022, P=0.006, FDR=0.054). Possible negative causal relationships were also observed with phosphate (β=-0.013, P=0.008, FDR=0.072) and urinary potassium (β=-0.011, P=0.012, FDR=0.108), while a potential positive causal relationship was observed with C-reactive protein (β=0.013, P=0.040, FDR=0.280).Regarding lung squamous cell carcinoma, an inverse causal relationship was found with eGFR (β=-0.022, P=9.58e-06, FDR=8.62×10-5*), while a positive causal relationship was observed with serum creatinine (β=0.021, P=1.16e−4, FDR=1.05×10-3*). Potential positive causal relationships were observed with Urate (β=0.012, P=0.020, FDR=0.180), urea (β=0.010, P=0.046, FDR=0.141), and glycated hemoglobin HbA1c (β=0.020, P=0.049, FDR P=0.098), whereas a potential negative causal relationship was observed with sex hormone-binding globulin(SHBG) (β=-0.020, P=0.036, FDR=0.108).Lastly, adenocarcinoma was found to have a positive causal association with alkaline phosphatase (β=0.015, P=0.006, FDR=0.033*).





Conclusion

Our study provides a robust theoretical basis for the early screening and therapeutic monitoring of lung cancer and contributes to understanding the pathogenesis of the disease.
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Introduction

Lung cancer is the leading cause of cancer-related mortality (1), with limited treatment options due to most patients being diagnosed at a late stage (2). Whilst smoking is undeniably the primary global risk factor for lung cancer, environmental exposures (3), genetic factors (4), and multi-omics biomarkers (5) also drive its initiation and progression. To enhance early detection of lung cancer, high-risk individuals can undergo low-dose computed tomography (CT) screening; however, this method is plagued by high false-positive rates and patient radiation exposure, and current screening programs primarily target heavy smokers and the elderly. Although all types of lung cancer are associated with smoking, small cell lung cancer (SCLC) and squamous cell carcinoma have a higher incidence in smokers. Conversely, in never-smokers, adenocarcinomas are more prevalent, representing a larger proportion of all lung cancer cases and becoming increasingly common in younger patients, particularly never-smokers (6). To address these limitations, the use of biomarkers as potential supplements or alternatives to low-dose CT has been proposed, prompting extensive research in this area. However, current data on their clinical efficacy and their comparison with existing lung cancer screening strategies are relatively scarce. Identifying these biomarkers necessitates a deeper understanding of how tumors initiate and progress, and of the importance of the role these molecules play in this process (7).

Peripheral blood and urinary biomarkers are frequently used for diagnosing and assessing chronic disease status (8). Biochemical markers in peripheral blood and urine have been found to be abnormal in many patients with lung cancer, making them promising alternatives for lung cancer detection, although their application in clinical practice remains limited.

Mendelian randomization (MR) is a statistical method that uses genetic variations as instrumental variables (IVs) (9) to infer causal relationships between exposures and outcomes. MR integrates summary data from genome-wide association studies (GWAS), akin to a natural randomized controlled trial. Given that genotype allocation from parents to offspring is random, MR studies are less susceptible to confounding factors and reverse causation compared to traditional observational studies (10). MR has emerged as a powerful tool for identifying causal relationships between risk factors and diseases and is widely used in epidemiological research to explore potential causal associations between two traits (11).

In this study, we comprehensively analyzed the associations between blood and urinary biomarkers and lung cancer. We conducted bidirectional two-sample Mendelian randomization analyses to validate the causal relationships between biomarkers and lung cancer (Figure 1).




Figure 1 | Bi-directional two-sample Mendelian randomization analysis. (A) Forward analysis: The exposure is blood and urine biomarkers, and the outcome is lung cancer. (B) Reverse analysis: The exposure is lung cancer, and the outcome is blood and urine biomarkers.







Methods




UKB cohort serum and urine biomarker GWAS dataset

The blood and urine biomarker data used in this study were derived from the UK Biobank (UKB), which conducted a large prospective cohort study from 2006 to 2010 (12). The UKB performed laboratory tests on common biomarkers in serum (category 100080) and urine (category 100083) in a cohort with extensive phenotype and whole-genome genotype data (12). Participants’ health-related records, including age and sex, were collected via touchscreen questionnaires or verbal interviews at assessment centers. These data are publicly accessible at https://gwas.mrcieu.ac.uk/.





Lung Cancer GWAS Dataset

The GWAS summary statistics data for lung cancer were sourced from a 2021 study in the Finnish database R10. This included data for four types: small-cell lung cancer, non-small cell lung cancer, adenocarcinoma, and squamous cell carcinoma. Small-cell lung cancer included 717 cases and 314,193 controls, non-small cell lung cancer included 5,315 cases and 314,193 controls, squamous cell carcinomas included 1,510 cases and 314,193 controls, and adenocarcinomas included 1,590 cases and 314,193 controls.





Bidirectional two-sample Mendelian randomization data analysis

The traits investigated in this study comprised 35 blood and urine biomarkers, specifically Alanine aminotransferase, Albumin, Alkaline phosphatase, Apolipoprotein A, Apolipoprotein B, Aspartate aminotransferase, AST to ALT ratio, C-reactive protein, Calcium, Cholesterol, Creatinine, Creatinine in urine, Cystatin C, Direct bilirubin, eGFR, Gamma glutamyltransferase, Glucose, HbA1c, HDL cholesterol, IGF-1, LDL cholesterol, Lipoprotein A, Microalbumin in urine, Non-albumin protein, Phosphate, Potassium in urine, SHBG, Sodium in urine, Testosterone, Total bilirubin, Total protein, Triglycerides, Urate, Urea, Vitamin D. These included 8 liver-related, 7 cardiovascular-related, 9 kidney-related, 3 osteoarthritis-related, 2 diabetes-related, and 3 hormone-related indicators (Supplementary Table S1). Lung cancer types included small-cell lung cancer, non-small cell lung cancer, lung adenocarcinoma, and lung squamous cell carcinoma. The number of genome-wide significant independent loci for each trait was represented by SNPs (n), with a screening p-value of 5e-8. We ensured the independence of each SNP by setting a linkage disequilibrium (LD) threshold of r^2 < 0.001 and a clumping distance of 10,000 kb, based on the European 1000 Genomes Project reference panel (13).

We also harmonized the biomarker and lung cancer data for subsequent MR analysis. If exposure-related SNPs were missing in the outcome GWAS, we selected proxy SNPs with r^2 > 0.80. We then removed palindromic SNPs with A/T or G/C alleles to ensure consistent allelic effects of SNPs on exposure and outcome.





Statistical methods

We carried out MR analysis to assess the causal effects of biomarkers on lung cancer, using the inverse variance weighted (IVW) method as our primary analytical approach (14). We also applied MR-Egger regression, weighted median method, and weighted and simple modes to further verify the robustness of the MR analysis results. Significant results (p < 0.05) generated by the IVW method were considered positive outcomes even if there was no significance exhibited by the other methods, provided that the direction of the beta values was consistent across the methods. To consider multiple testing, we employed a modified version of the Benjamini and Hochberg false discovery rate (FDR) procedure, tailored to the hierarchical and interdependent nature of our data (15). At each category level, we set an FDR corrected significance threshold of 0.05, based on the effective number of independent tests at each category level. With liver category p = 0.05/8 = 6.3 × 10^-3, cardiovascular p = 0.05/16 = 7.1 × 10^-3, kidney p = 0.05/9 = 5.6 × 10^-3, osteoarthritis p = 0.05/8 = 1.67 × 10^-2, diabetes p = 0.05/2 = 2.5 × 10^-2, and hormones p = 0.05/3 = 1.67 × 10^-2. For identifying more precise causal associations, we employed an FDR significance threshold of p < 0.05. We utilized the MR-Egger regression intercept to detect potential pleiotropy (16). If the MR-Egger intercept was not statistically significant (p > 0.05), there was no evidence suggestive of pleiotropy. We performed Cochran’s Q statistical analysis in the IVW mode to check for potential heterogeneity amongst the selected IVs (17). If heterogeneity was present (p < 0.05), we further validated through the IVW random effects model and IVW multiplicative random effects model. Additionally, we employed leave-one-out sensitivity analyses to test the potential influence of individual SNPs on the observed causal effects. Moreover, we assessed the strength of the IVs chosen in our study by calculating the F-statistic, with the final SNPs included in the analysis being F > 10. This enabled us to rule out the possibility of weak instrument bias affecting our estimation of the causal relationship. The formula for the F-statistic was F= R^2/(1-R^2) * (n-k-1)/k, where R^2 represented the proportion of variance explained by SNPs, n was the sample size, and k was the number of IVs included. R^2 was estimated using the MAF and β values, with the formula: R^2 = 2 * MAF * (1 - MAF) * β^2. Finally, we conducted reverse MR analysis to explore the causal effects of lung cancer on biomarkers, following the same protocol as the previous MR. All statistical analyses were conducted using R software (Version 4.3.0), with the R packages TwosampleMR and MR-PRESSO.






Results




Causal effects of biomarkers on lung cancer

The IVW analysis results shown in Table 1 suggest a potential causal relationship between genetically predicted total bilirubin levels and a lower risk of small cell lung cancer (β: -0.285, P: 0.015, FDR: 0.12). A more precise negative causal relationship was found between urate levels and non-small cell lung cancer (β: -0.158, P: 0.004, FDR: 0.036*). Serum calcium showed a potential negative causal relationship with squamous cell carcinoma (β: -0.256, P: 0.046, FDR: 0.138), while urine creatinine showed a potential positive causal relationship with squamous cell carcinoma (β: 1.233, P: 0.024, FDR: 0.216). Gamma-glutamyltransferase also showed a potential positive causal relationship with squamous cell carcinoma (β: 0.241, P: 0.009, FDR: 0.072), while non-albumin exhibited a potential negative causal relationship with squamous cell carcinoma (β: -0.272, P: 0.020, FDR: 0.180). SHGB was potentially negatively causally related to lung squamous cell carcinoma (β: -0.209, P: 0.033, FDR: 0.297), while sodium in urine showed a potential positive causal relationship with lung squamous cell carcinoma (β: 1.166, P: 0.010, FDR: 0.090). Total protein demonstrated a potential negative causal relationship with lung squamous cell carcinoma (β: -0.402, P: 0.009, FDR: 0.072), while AST/ALT revealed a potential positive causal relationship with lung adenocarcinoma (β: 0.293, P: 0.009, FDR: 0.072). Except for the causal relationships between Gamma_glutamyltransferase, SHBG, Sodium_in_urine and lung squamous cell carcinoma, the other seven causal relationships were all validated by five types of MR analysis, and generated consistent effect estimation directions (Supplementary Table S2). Figure 2 illustrates the scatter plots of the study results. After FDR correction, only the IVW estimate for urate (OR = 0.854, 95%CI = 0.766–0.952, FDR = 0.036*) remained significantly associated with small cell lung cancer.


Table 1 | Mendelian randomization study results of biomarkers and lung cancer.






Figure 2 | Mendelian randomization scatter plot of biomarkers and lung cancer.







Causal effects of lung cancer on biomarkers

Reverse MR analysis revealed causal associations of lung cancer on biomarkers. As shown in Table 2, IVW analysis results show that genetically predicted risk of small cell lung cancer has a positive causal relationship with Creatinine (β: 0.022, P: 0.002, FDR: 0.018*), Cystatin C (β: 0.026, P: 0.005*, FDR: 0.045*), and Haemoglobin HbA1c (β: 0.013, P: 0.014, FDR: 0.028*), a potential positive causal relationship with AST-ALT_ratio (β: 0.021, P: 0.022, FDR: 0.176), and a clear negative causal relationship with eGFR (β: -0.022, P: 0.003, FDR: 0.027*), and a potential negative causal relationship with Gamma Glutamyltransferase (β: -0.013, P: 0.019, FDR: 0.152). Non-small cell lung cancer exhibits potential positive causal relationships with Cystatin C (β: 0.022, P: 0.006, FDR: 0.054), and C-reactive protein (β: 0.013, P: 0.04, FDR: 0.28), a clear negative causal relationship with albumin (β: -0.024, P: 0.002, FDR: 0.016*), and potential negative causal relationships with phosphate (β: -0.013, P: 0.008, FDR: 0.072), and urine potassium (β: -0.011, P: 0.012, FDR: 0.108). Lung squamous cell carcinoma has a clear causal relationship with creatinine (β: 0.021, P: 1.16×10-5, FDR: 1.05×10-3*), Cystatin C (β: 0.028, P: 0.004, FDR: 0.036*), potential positive causal relationships with urate (β: 0.012, P: 0.020, FDR: 0.180), urea (β: 0.010, P: 0.046, FDR: 0.141), and Glycated Haemoglobin HbA1c (β: 0.019, P: 0.049, FDR: 0.098), and a clear negative causal relationship with eGFR (β: -0.022, P: 9.58×10-6*, FDR: 8.62×10-5*), and a potential negative causal relationship with SHBG (β: -0.020, P: 0.036, FDR: 0.108). Adenocarcinoma has a clear positive causal relationship with alkaline phosphatase (β: 0.015, P: 0.011, FDR: 0.033*).


Table 2 | Lung cancer and biomarkers Mendelian randomization study results.



Except for small cell lung cancer with AST/ALT ratio and squamous cell carcinoma with Cystatin_C, the other 17 causal associations were all validated by all five types of MR analysis (Supplementary Table S3). The scatter plots of each test are shown in Figures 3 and 4. After FDR correction, associations remained significant between small cell lung cancer and creatinine, eGFR, cystatin C, glycated haemoglobin A1c, non-small cell lung cancer and albumin, lung squamous cell carcinoma and eGFR, creatinine, cystatin C. Lung adenocarcinoma and alkaline phosphatase.




Figure 3 | Lung cancer and biomarkers Mendelian randomization scatter plot.






Figure 4 | Lung cancer and biomarkers Mendelian randomization scatter plot.







Sensitivity analysis

To further validate the causal associations, sensitivity analyses were performed to assess pleiotropy and heterogeneity in the MR results. The MR Egger intercept test showed no significant evidence of pleiotropy (all P-values > 0.05) (Supplementary Table S4). However, evidence of heterogeneity was found in some cases based on Cochran’s Q test (Supplementary Table S5). For results exhibiting heterogeneity, we re-evaluated them using the IVW random-effects model and the multiplicative random-effects model. The results remained consistent with those obtained from the IVW method (Supplementary Tables S6, S7). Additionally, leave-one-out analyses indicated that no single SNP was driving the identified causal associations (Supplementary Figures S1, S2).






Discussion

In this study, we initially employed bidirectional Mendelian randomization (MR) analyses to investigate the causal relationships between 35 blood and urine biomarkers and various types of lung cancer. In the forward MR analysis, we identified seven potential causal associations. Five biomarkers showed inverse causal relationships with lung cancer risk: total bilirubin with small cell lung cancer (SCLC), urate with non-small cell lung cancer (NSCLC), serum calcium with lung squamous cell carcinoma (LSCC), non-albumin proteins with LSCC, and total protein with LSCC. Conversely, two biomarkers exhibited positive causal relationships with lung cancer phenotypes: urinary creatinine with LSCC and the AST/ALT ratio with lung adenocarcinoma (LADC).

In the reverse MR analysis, we identified 17 potential causal relationships. SCLC showed positive causal relationships with creatinine, cystatin C, and glycated hemoglobin A1c (HbA1c), and negative causal relationships with eGFR and gamma-glutamyl transferase (GGT). NSCLC showed positive causal relationships with cystatin C and C-reactive protein (CRP), and negative causal relationships with albumin, phosphate, and urinary potassium. LSCC showed positive causal relationships with creatinine, urate urea, and HbA1c, and negative causal relationships with eGFR and SHBG. LADC showed a positive causal relationship with alkaline phosphatase (ALP).

After adjusting for the false discovery rate (FDR), we confirmed 10 more robust causal associations (Table 3), including: urate as a protective factor for NSCLC; SCLC increasing blood creatinine levels, decreasing eGFR, increasing cystatin C levels, and increasing HbA1c levels; NSCLC decreasing albumin levels; LSCC decreasing eGFR and increasing blood creatinine cystatin C levels; and LADC increasing ALP levels. Fourteen other potential causal relationships were identified.


Table 3 | Results of bidirectional Mendelian randomization study on lung cancer and biomarkers (FDR < 0.05).



Bilirubin possesses potent antioxidative properties, which may help protect respiratory tissues from oxidative stress (18–21). Maria J. Monroy-Iglesias et al. (22) found in a Cohort Study and Meta-Analysis that total bilirubin is a protective factor for lung cancer. Laura Jane Horsfall et al. (23) also demonstrated via Mendelian randomization study using total bilirubin single nucleotide polymorphisms (SNPs) that total bilirubin is a protective factor for lung cancer, particularly among heavy smokers. Our study results corroborate these findings, confirming that plasma total bilirubin levels serve as a protective factor for SCLC.

Serum urate exhibits potent antioxidant properties in vitro and is the most abundant antioxidant molecule in human blood (24, 25). It’s estimated that up to 50% of antioxidant capacity in human blood is attributable to the action of serum urate (26). Not only is urate highly concentrated in the blood, but it’s also present in high amounts in human respiratory tissues and epithelial lining fluid of the airways, potentially providing an important first line of defense against environmental oxidants in smoke and pollutants (27, 28). While Haruka Fujikawa et al. (29) suggested a certain negative correlation between urate and lung cancer, Laura J. Horsfall et al. (30) did not find an association in their cohort and one-sample Mendelian randomization study. However, an observational study by A. Bozkır (31) found that lung cancer patients had significantly higher urate levels than healthy controls. Our study results show that urate has a protective effect on NSCLC, while LSCC increases the level of serum urate.

Studies have found that signals from the 1,25(OH)2D3 receptor (VDR) and calcium-sensing receptor (CaSR) can inhibit tumor proliferation and metastasis, and promote tumor differentiation and apoptosis (32, 33). However, Yumie Takata et al. (34) found no correlation between calcium intake and lung cancer, while Haihao Yan et al. (35) showed via a Mendelian randomization study that serum calcium is a protective factor for lung cancer, including SCLC, LADC, and LSCC. Our study supports the latter finding, showing that serum calcium is a protective factor for LSCC.

The term “non-albumin” refers to proteins other than albumin in the blood, the majority of which are immunoglobulins. Extensive research has been conducted on the protective role of immunoglobulins against tumors. Our results align with these findings, showing an inverse relationship between non-albumin proteins and LSCC.

Plasma total protein represents the sum of all proteins in the blood, primarily including albumin and globulin. These proteins play crucial roles in maintaining fluid balance, transporting nutrients, immune responses, and blood clotting processes. The level of plasma total protein can reflect the body’s nutritional status, liver function, kidney function, and immune status. Füsun Sahin (36) found no difference in total protein levels between lung cancer patients and healthy individuals in a cross-sectional study, whereas Priyanka Gaur (37)reported significantly lower total protein levels in lung cancer patients compared to healthy controls. Our study indicates that plasma total protein is a protective factor for LSCC.

Creatinine is a metabolite of creatine, and elevated serum creatinine levels are commonly used as a biomarker indicating impaired kidney function. Urinary creatinine, primarily filtered from the blood by the glomeruli and excreted in the urine, decreases in cases of kidney failure and increases with elevated blood creatinine levels. There is currently insufficient research on the direct link between urinary creatinine levels and the mechanisms of lung cancer development, and no direct studies on the relationship between urinary creatinine and lung cancer have been reported. Our research shows a causal relationship between elevated urinary creatinine and LSCC. We also found that SCLC and LSCC can cause elevated serum creatinine levels, similar to findings by Miroslava Sarlinova (38), who observed that both primary and secondary lung cancers cause significant increases in creatinine, glucose, citrate, and acetate, while pyruvate, lactate, alanine, tyrosine, and tryptophan significantly decrease. Elevated creatinine may result from obstructed creatine utilization and increased creatinine production, with kidney dysfunction also contributing.

Aminotransferases, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT), are well-known biomarkers for liver damage. Studies have also linked elevated aminotransferases to systemic regulation of human diseases and metabolic functions (39). The AST/ALT ratio, also known as the De Ritis ratio, was initially proposed to study the etiology of hepatitis and is commonly used to distinguish between different causes of liver diseases such as fatty liver. Currently, the AST/ALT ratio is also employed as an effective biomarker for non-hepatic diseases like cardiovascular diseases, various cancers, and T2DM. Initially, a high AST/ALT ratio was reported to predict poor prognosis in non-metastatic renal cell carcinoma. Since then, further retrospective studies have validated the association between the AST/ALT ratio and cancer prognosis. However, no studies have specifically investigated its relationship with lung cancer. Our study indicates that the AST/ALT ratio is a risk factor for LADC and that SCLC can also cause an elevated AST/ALT ratio. Although direct studies on the relationship between the AST/ALT ratio and lung adenocarcinoma are lacking, some indirect evidence suggests a potential association. For instance, Wangyang Chen (40) examined the relationship between the AST/ALT ratio and various cancers, concluding that while there was no significant association with lung cancer overall, there was a notable connection with colorectal cancer risk. The primary mechanism suggested is that an elevated AST/ALT ratio may indicate liver damage, leading to the accumulation of toxic metabolites, which is associated with systemic inflammatory responses and metabolic diseases—all of which are factors related to colorectal cancer. This mechanism could similarly help explain a possible link between the AST/ALT ratio and lung adenocarcinoma, as lung adenocarcinoma may exhibit a stronger correlation with these factors compared to other types of lung cancer.Furthermore, Sofia Christakoudi (41) reported a negative correlation between ALT levels and lung cancer risk in men, suggesting that elevated ALT might be linked to obesity-related non-alcoholic fatty liver disease (NAFLD) and liver fibrosis, conditions that can reduce platelet counts and potentially lower lung cancer risk. This relationship may also partially explain why an elevated AST/ALT ratio might serve as a risk factor specifically for lung adenocarcinoma. As for the increase in the AST/ALT ratio often observed in patients with small cell lung cancer (SCLC), this may be due to the distinct characteristics of SCLC, which is generally more aggressive than other lung cancer types. SCLC has a higher propensity for liver metastasis, is associated with a more pronounced systemic inflammatory response, carries a higher risk of tumor lysis syndrome, and is more likely to produce ectopic hormone secretion. These factors collectively increase the risk of liver function impairment, and the AST/ALT ratio may serve as a marker for the extent of liver damage in this context.

Cystatin C (Cys-C) is a non-glycosylated, low molecular weight, basic protein composed of 120 amino acids (42). It is considered a housekeeping gene, with stable production by all nucleated human cells (40). Early studies indicated that cystatin C levels in healthy individuals were independent of age, muscle mass, or body mass index (BMI) (43, 44). Additionally, initial reports suggested that the production rate of cystatin C remains constant and is not altered under inflammatory conditions (45, 46). However, recent reports have found an association between serum cystatin C levels and inflammatory biomarkers such as C-reactive protein (CRP) (47, 48). Recent research has also linked serum cystatin C levels with tumors. Wojciech Naumnik (49) observed higher serum cystatin C concentrations in lung cancer patients compared to healthy individuals, a conclusion also reached by Qingyong Chen (50). Our study confirms these findings, showing that SCLC, NSCLC, and LSCC lead to elevated cystatin C levels. In cancer, increased cysteine protease activity, if not balanced by a corresponding increase in cysteine protease inhibitors, leads to the remodeling and degradation of extracellular matrix proteins—an event associated with tumor dissemination, invasion, and metastasis (51). Elevated expression of cystatins is expected to reduce tumor-related proteolytic activity, and indeed, evidence suggests that tumor-associated cystatins play an inhibitory role across various cancer types (52). Therefore, the high expression of cystatin C in lung cancer primarily acts as a tumor suppressor.

Glycated hemoglobin (HbA1c) is closely related to blood glucose levels and diabetes. The relationship between HbA1c and lung cancer is controversial. J C de Beer (53) found that elevated HbA1c does not lead to lung cancer. Similarly, Kai Liu (54), using Mendelian randomization analysis, concluded that HbA1c does not cause lung cancer, though he did not investigate whether lung cancer could cause elevated HbA1c levels. Our study also shows that HbA1c does not cause lung cancer, but SCLC and LSCC can lead to increased HbA1c levels. The elevation of glycated hemoglobin (HbA1c) in lung cancer is primarily attributed to cancer-induced hyperglycemia. The mechanisms by which lung cancer contributes to elevated blood glucose include: 1) Chemotherapy-Induced Pancreatic Damage: Certain chemotherapy agents can harm pancreatic islet cells, impairing insulin synthesis and secretion. Additionally, glucocorticoids, commonly used as adjuvants in lung cancer therapy, promote gluconeogenesis in the liver, inhibit glucose uptake and utilization in peripheral tissues, enhance the action of hyperglycemic hormones (such as growth hormone, epinephrine, and glucagon), and may also damage islet cell function. 2)Ectopic Hormone Secretion: Ejaz et al. (55) reviewed 43 cases of Cushing’s syndrome induced by ectopic ACTH secretion from tumors, finding that 48.9% of primary tumor sites were located in the chest. The most common symptoms were hyperglycemia (77%), venous thrombosis (14%), and infections (23%). The lung, as an endocrine organ, may contribute to hyperglycemia through the secretion of various bioactive substances. For instance, Unger et al. (56) detected glucagon in lung cancer tissue, which can promote hepatic glycogen breakdown and gluconeogenesis, thereby raising blood glucose levels. In some patients with elevated blood glucose, tumor treatment normalized glucose levels, only for hyperglycemia to return upon cancer relapse. 3)Cytokine-Mediated Insulin Resistance: Many advanced cancer patients exhibit low-grade CRP elevation, indicative of a chronic inflammatory state, which can raise IL-2, CRP, and cortisol levels, disrupting glucose metabolism. Additionally, tumor cells can secrete large amounts of IL-6 and TNF-α, leading to insulin resistance and subsequent hyperglycemia (57).

Our research indicates that SCLC and LSCC result in decreased eGFR. Cancer patients are at risk of acute kidney injury due to sepsis, direct damage to the kidneys from primary cancer, metabolic disorders, nephrotoxic effects of anticancer therapies, and hematopoietic stem cell transplantation (58–60). Nearly all hematologic and solid organ cancers are associated with tumor lysis syndrome, leading to uric acid nephropathy (61). Hypercalcemia occurs in up to 30% of patients with advanced cancer, often resulting in renal dysfunction due to AKI or CKD (61). Moreover, direct invasion and metastasis of cancer, infectious diseases caused by immunosuppression from cancer and its treatment, and various metabolic disorders can also lead to renal dysfunction (61, 62), contributing to decreased eGFR. Soonsu Shin (63) found that low eGFR is significantly associated with increased lung cancer risk, while Yutaka Hatakeyama (64) discovered that most cancers, particularly those of the kidney, urinary system, liver, or pancreas, cause decreased eGFR. Our study also found that SCLC and SCC result in decreased eGFR, but did not find that decreased eGFR causes lung cancer.

Gamma-glutamyltransferase (GGT) is located on cell membranes and is abundant in tissues with transport functions, such as the kidneys and biliary system (65). Elevated serum GGT is considered a marker of liver damage and alcohol consumption, but it is also a marker for various other diseases, including diabetes, cardiovascular diseases, and metabolic syndrome (66–68). Persistent elevation of serum GGT reflects chronic inflammation and oxidative stress, which contribute to tumor development and progression (69, 70). In lung cancer patients, alveolar macrophages and lymphocytes continuously produce GGT due to chronic inflammation-induced cytokines and growth factors (71, 72). Ye Jin Lee (73), through an observational study, linked persistently elevated GGT with lung cancer in men. D J F Brown (74) found significantly higher GGT levels in advanced lung cancer patients compared to healthy individuals. N V Liubimova (75) demonstrated that GGT is an effective marker for liver metastasis in lung cancer. However, Peter Groscurth (76) argued that lung cancer does not cause elevated GGT levels. Our study concludes that SCLC leads to decreased GGT levels. Our study found that small cell lung cancer (SCLC) may lead to decreased γ-glutamyl transferase (GGT) levels; however, the underlying mechanism has not yet been explored in the literature.

C-reactive protein (CRP) is a commonly used systemic marker primarily employed in diagnosing chronic and acute inflammation. It is produced by hepatocytes, and during an inflammatory response, such as infection or other injuries, certain molecular substances known as pro-inflammatory cytokines are generated. These cytokines stimulate hepatocytes to produce CRP. Therefore, elevated levels of CRP in the body may indicate an ongoing inflammatory response. In the context of cancer, CRP levels may also be elevated, making it a potential cancer biomarker. Jian Yin (77) studied the association between plasma high-sensitivity CRP (hsCRP) levels and lung cancer risk, finding no association between CRP levels and lung cancer risk in younger populations but a significant association in older populations. Elevated baseline CRP levels increased lung cancer risk in individuals with lower educational levels but not in those with higher educational levels. Stratification by BMI revealed a positive association between hsCRP levels and lung cancer risk in individuals with a BMI < 24, but no such association was observed in those with a BMI ≥ 28. Mengmeng Ji (78), through Mendelian randomization, demonstrated a significant correlation between circulating CRP levels and the risk of different histological subtypes of lung cancer. Although the etiological role of CRP in lung cancer has not been confirmed, circulating CRP may serve as an early diagnostic marker for lung cancer in current smokers. Our study did not find that CRP causes lung cancer, but it did show that non-small cell lung cancer (NSCLC) leads to elevated CRP levels. This is associated with the chronic inflammatory response induced by lung cancer. In the tumor microenvironment, large amounts of pro-inflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), are secreted. These cytokines stimulate the liver to synthesize and secrete C-reactive protein (CRP), resulting in increased serum CRP concentrations. Additionally, as the tumor grows, tissue necrosis may occur, releasing cellular contents and triggering further inflammatory responses that activate the immune system and stimulate additional CRP production.

Albumin is a water-soluble 65 kd protein synthesized by the liver. It is the most abundant blood protein in the human body, accounting for about half of the serum protein, and is responsible for the colloidal osmotic pressure of the blood. Some primary functions of albumin include binding insoluble molecules in the serum and transporting drugs and hormones (79). Hypoalbuminemia can result from malnutrition (insufficient intake), advanced liver disease (impaired synthesis), kidney disease (increased loss), and extreme catabolic states (increased breakdown) such as sepsis and metastatic cancer. Cancer can lead to hypoalbuminemia in several ways. Firstly, cancer patients may experience hypoalbuminemia due to the continuous consumption of nutrients, including albumin, by the tumor, leading to a deficiency of these essential nutrients in the body. Secondly, the metabolic products of the tumor may damage liver function, impairing the liver’s ability to synthesize albumin and thus causing a decrease in albumin levels. Additionally, cancer can cause cachexia, wasting, and reduced food intake, leading to insufficient nutrient intake and decreased albumin levels. Our study shows that NSCLC can lead to hypoalbuminemia.

Phosphate is crucial for normal cellular function as it provides fundamental components for DNA, cell structures, signal transduction, and energy production. Phosphate homeostasis is regulated by hormones such as fibroblast growth factor (FGF) (80) and parathyroid hormone (PTH). Hyperphosphatemia is usually caused by impaired kidney function. Conversely, hypophosphatemia may result from reduced dietary intake, malabsorption, or renal phosphate wasting due to genetic or acquired conditions. Phosphate toxicity is associated with tumorigenesis because high levels of inorganic phosphate in the tumor microenvironment can activate cell signaling pathways, promoting cancer cell growth. Ronald B. Brown (81) proposed that the association between alcohol and breast cancer is mediated by phosphate toxicity, i.e., the accumulation of excessive inorganic phosphate in body tissues. Phosphate homeostasis disruption leading to hypophosphatemia is common in cancer patients. Shreedhar Adhikari (82) elucidated the mechanisms and reasons for cancer-induced hypophosphatemia. Our study did not observe a causal relationship between phosphate and lung cancer, but it did find that NSCLC causes reduced phosphate levels.

Potassium is the most abundant electrolyte in active cells. Potassium homeostasis is maintained through various mechanisms, including internal and external processes. Urinary potassium generally reflects kidney function. Low urinary potassium excretion is associated with CKD progression. Kathrin Schilling (83) observed significantly lower urinary potassium levels in pancreatic cancer patients compared to healthy controls. Our study shows that NSCLC causes decreased urinary potassium levels.

Serum urea is the end product of protein metabolism, filtered through the renal glomeruli, and excreted from the body. There are very few studies evaluating the impact of serum urea on cancer development.Yandi Sun (84), through Mendelian randomization, demonstrated a positive association between serum urea levels and female-specific RCC (renal cell carcinoma) risk. Haoyan Chen (85), through single-cell transcriptomics, microbiome analysis, metabolomics, and clinical analysis of colorectal adenomas and cancer tissues, found significant activation of host urea cycle metabolism during colorectal cancer development, with low bacterial urease abundance and high urea load detected in colorectal cancer. M. C. Winter (86) proved that elevated pre-treatment serum urea is an important predictor of early mortality in SCLC. Our study shows that LSCC increases serum urea levels. Our study indicates that squamous cell carcinoma may elevate serum urea levels, potentially due to tumor-induced kidney dysfunction and the high catabolic state associated with malignancy.

SHBG is a glycoprotein that binds with high affinity to 17β-hydroxy steroid hormones, including testosterone and estradiol. Its concentration regulates the balance between bound and free hormones, serving as a transport carrier and modulating the bioactivity of sex hormones (87). Women have SHBG levels twice as high as men, reducing exposure to androgens and estrogens (88). Researchers have found associations between sex hormones and cancer in several studies. Zoë Hyde and her team discovered that higher testosterone levels are associated with an increased risk of prostate and lung cancer (89). Niki Dimou found that SHBG levels are negatively correlated with breast cancer risk (90). Katherine Ruth observed a positive correlation between female testosterone levels and endometrial cancer risk (91). Furthermore, according to the Women’s Health Initiative, individuals with the highest SHBG levels are more than twice as likely to develop colon cancer compared to those with the lowest SHBG levels (92). Our study results suggest a bidirectional causal relationship between squamous cell carcinoma and SHBG.

Alkaline phosphatase (ALP) is a glycoprotein that catalyzes hydrolysis and phosphate transfer reactions. Elevated serum ALP has been reported in bone and liver-related diseases (93, 94). Additionally, serum ALP has been found to be an independent prognostic factor in NSCLC, gastric cancer, breast cancer, and other cancer types. Elevated ALP levels are also associated with bone or liver metastases in patients with lung cancer, prostate cancer, breast cancer, and other types of cancer (95). TAO YANG (95) found that elevated serum ALP levels in NSCLC patients are associated with bone or liver metastases. N Walach (96) found that compared to CEA levels, LAP scores are a more reliable marker for detecting lung cancer, especially metastatic lung cancer. Our study similarly found that adenocarcinoma causes elevated LAP, consistent with the aforementioned studies.

In this study, we conducted a comprehensive assessment of the association between blood/urine biomarkers and lung cancer using a bidirectional Mendelian randomization approach. Our findings identified several potential causal relationships between blood and urine biomarkers and lung cancer, with some confirmed through FDR-adjusted significance. This research can contribute to understanding the mechanisms underlying lung cancer development. Additionally, we suggest that screening for these blood and urine biomarkers can help identify individuals with abnormalities who may benefit from LDCT screening, enabling early clinical intervention, regardless of age or smoking status.

Our study comprehensively investigated the associations between blood/urine biomarkers and lung cancer. The sample size maximized the power of the genetic analysis. However, this study has several limitations. First, the lung cancer dataset is from the Finnish database, which is predominantly composed of individuals of European descent. Therefore, caution is needed when applying our findings to other ethnic populations. Second, the use of residuals might affect the magnitude of the reported effects; future studies should consider alternative methods to further validate our findings. In future research, it is necessary to use independent clinical samples or cohorts to validate our findings and to investigate the potential biological mechanisms underlying the associations between candidate blood and urine biomarkers and lung cancer. Third, the methods and accuracy of biomarker measurements in the UK Biobank could influence our results. Fourth, some results exhibit heterogeneity, and although we used the IVW random-effects model and multiplicative effects model to verify consistency, this does not entirely resolve the issue of heterogeneity. Fifth, we applied the modified FDR correction for p-values, which may impact the results.

In our study, while we used bidirectional two-sample Mendelian randomization to assess the potential causal relationships between blood and urinary biomarkers and lung cancer, we acknowledge that more sophisticated analyses are needed to further elucidate the connections between these biomarkers and lung cancer development. In particular, the scPagwas method developed by Ma et al. (2023) offers an innovative approach that combines single-cell RNA sequencing (scRNA-seq) data with summary statistics from genome-wide association studies (GWAS), identifying cell subpopulations and pathways associated with complex diseases (97). Applying this method may help uncover lung cancer-related immune cell types and key proteins that mediate the causal relationships between blood and urinary biomarkers and lung cancer.

Moreover, Ma et al. (2022) demonstrated the potential of integrating blood cell scRNA-seq data with GWAS data in identifying risk genes, inflammatory factors, and immune cell types associated with severe COVID-19. This work provides a valuable framework for investigating potential links between blood and urinary biomarkers and lung cancer (98). These findings underscore the importance of single-cell analyses in identifying disease-related cellular subpopulations and may offer crucial insights into the pathophysiology of lung cancer.

Although our study did not directly employ the scPagwas method, these studies highlight the promise of adopting similar approaches in future research to identify specific immune cell subpopulations and key proteins involved in the initiation and progression of lung cancer. Such approaches could deepen our understanding of the causal relationships between blood biomarkers and lung cancer and may help identify novel therapeutic targets. Future studies could utilize scPagwas to integrate lung cancer GWAS data with blood cell scRNA-seq data to identify lung cancer-associated cell subtypes, providing a stronger theoretical basis for early screening and therapeutic monitoring of lung cancer.
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Mendelian randomization
study of the relationship
between blood and urine
biomarkers and lung cancer
Haihua Huang and Haijun Zheng*


The First People's Hospital of Chenzhou, Chenzhou, China

Introduction: Identifying suitable biomarkers is crucial for exploring the


pathogenesis, early screening, and therapeutic monitoring of lung cancer. This


study aims to analyze comprehensively the associations between lung cancer


and biomarkers in blood and urine.


Methods: Bidirectional two-sample Mendelian randomization (MR) was used to


evaluate the potential causal relationships between blood and urine biomarkers


and lung cancer. We obtained Single nucleotide polymorphisms (SNPs) related to


lung cancer from the 2021 Finnish database of genome-wide association studies,


including small cell lung cancer (SCLC), total non-small cell lung cancer (NSCLC),


lung adenocarcinoma (LAC), and lung squamous cell carcinoma (LSCC).Data on


blood and urine biomarkers were derived from the UK Biobank cohort,


comprising 376,807 participants.


Results: We found a potential inverse causal relationship between total bilirubin


and SCLC (b=-0.285, P=0.015, FDR=0.12). Urate was inversely associated with


NSCLC (b=-0.158, P=0.004, FDR=0.036*). Serum calcium showed a possible


inverse relationship with lung squamous cell carcinoma (b=-0.256, P=0.046,
FDR=0.138), while urinary creatinine was positively associated (b=1.233,
P=0.024, FDR=0.216). Non-albumin proteins (b=-0.272, P=0.020, FDR=0.180)
and total protein (b=-0.402, P=0.009, FDR=0.072) were inversely related to lung


squamous cell carcinoma. The AST/ALT ratio was positively associated with lung


adenocarcinoma (b=0.293, P=0.009, FDR=0.072). Our reverse Mendelian


randomization study found a positive causal association between small cell


lung cancer and serum creatinine (b=0.022, P=0.002, FDR=0.018*), while it


was inversely associated with the estimated glomerular filtration rate(eGFR)(b=-
0.022, P=0.003, FDR=0.027*). A positive causal relationship was also observed


with cystatin C (b=0.026, P=0.005, FDR=0.045*) and glycated hemoglobin


HbA1c (b=0.013, P=0.014, FDR=0.028*). A negative causal relationship was


observed with Gamma_glutamyltransferase (b=-0.013, P=0.019, FDR=0.152).
For non-small cell lung cancer, a negative causal relationship was found with


albumin (b=-0.024, P=0.002, FDR=0.016*), while a potentially positive causal


relationship was observed with cystatin C (b=0.022, P=0.006, FDR=0.054).


Possible negative causal relationships were also observed with phosphate (b=-
0.013, P=0.008, FDR=0.072) and urinary potassium (b=-0.011, P=0.012,


FDR=0.108), while a potential positive causal relationship was observed with


C-reactive protein (b=0.013, P=0.040, FDR=0.280).Regarding lung squamous


cell carcinoma, an inverse causal relationship was found with eGFR (b=-0.022,
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P=9.58e-06, FDR=8.62×10-5*), while a positive causal relationship was observed


with serum creatinine (b=0.021, P=1.16e−4, FDR=1.05×10-3*). Potential positive
causal relationships were observed with Urate (b=0.012, P=0.020, FDR=0.180),
urea (b=0.010, P=0.046, FDR=0.141), and glycated hemoglobin HbA1c (b=0.020,
P=0.049, FDR P=0.098), whereas a potential negative causal relationship was


observed with sex hormone-binding globulin(SHBG) (b=-0.020, P=0.036,


FDR=0.108).Lastly, adenocarcinoma was found to have a positive causal


association with alkaline phosphatase (b=0.015, P=0.006, FDR=0.033*).


Conclusion:Our study provides a robust theoretical basis for the early screening


and therapeutic monitoring of lung cancer and contributes to understanding the


pathogenesis of the disease.

KEYWORDS


lung cancer, biochemical markers in blood and urine, Mendelian randomization, scRNA-
seq, scPagwas method

Introduction


Lung cancer is the leading cause of cancer-related mortality (1),


with limited treatment options due to most patients being diagnosed


at a late stage (2). Whilst smoking is undeniably the primary global


risk factor for lung cancer, environmental exposures (3), genetic


factors (4), and multi-omics biomarkers (5) also drive its initiation


and progression. To enhance early detection of lung cancer, high-risk


individuals can undergo low-dose computed tomography (CT)


screening; however, this method is plagued by high false-positive


rates and patient radiation exposure, and current screening programs


primarily target heavy smokers and the elderly. Although all types of


lung cancer are associated with smoking, small cell lung cancer


(SCLC) and squamous cell carcinoma have a higher incidence in


smokers. Conversely, in never-smokers, adenocarcinomas are more


prevalent, representing a larger proportion of all lung cancer cases


and becoming increasingly common in younger patients, particularly


never-smokers (6). To address these limitations, the use of


biomarkers as potential supplements or alternatives to low-dose CT


has been proposed, prompting extensive research in this area.


However, current data on their clinical efficacy and their


comparison with existing lung cancer screening strategies are


relatively scarce. Identifying these biomarkers necessitates a deeper


understanding of how tumors initiate and progress, and of the


importance of the role these molecules play in this process (7).


Peripheral blood and urinary biomarkers are frequently used for


diagnosing and assessing chronic disease status (8). Biochemical


markers in peripheral blood and urine have been found to be


abnormal in many patients with lung cancer, making them


promising alternatives for lung cancer detection, although their


application in clinical practice remains limited.

02

Mendelian randomization (MR) is a statistical method that uses


genetic variations as instrumental variables (IVs) (9) to infer causal


relationships between exposures and outcomes. MR integrates


summary data from genome-wide association studies (GWAS),


akin to a natural randomized controlled trial. Given that genotype


allocation from parents to offspring is random, MR studies are less


susceptible to confounding factors and reverse causation compared to


traditional observational studies (10). MR has emerged as a powerful


tool for identifying causal relationships between risk factors and


diseases and is widely used in epidemiological research to explore


potential causal associations between two traits (11).


In this study, we comprehensively analyzed the associations


between blood and urinary biomarkers and lung cancer. We


conducted bidirectional two-sample Mendelian randomization


analyses to validate the causal relationships between biomarkers


and lung cancer (Figure 1).

Methods


UKB cohort serum and urine biomarker
GWAS dataset


The blood and urine biomarker data used in this study were


derived from the UK Biobank (UKB), which conducted a large


prospective cohort study from 2006 to 2010 (12). The UKB


performed laboratory tests on common biomarkers in serum


(category 100080) and urine (category 100083) in a cohort with


extensive phenotype and whole-genome genotype data (12).


Participants’ health-related records, including age and sex, were


collected via touchscreen questionnaires or verbal interviews at
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assessment centers. These data are publicly accessible at https://


gwas.mrcieu.ac.uk/.

Lung Cancer GWAS Dataset


The GWAS summary statistics data for lung cancer were sourced


from a 2021 study in the Finnish database R10. This included data for


four types: small-cell lung cancer, non-small cell lung cancer,


adenocarcinoma, and squamous cell carcinoma. Small-cell lung


cancer included 717 cases and 314,193 controls, non-small cell lung


cancer included 5,315 cases and 314,193 controls, squamous cell


carcinomas included 1,510 cases and 314,193 controls, and


adenocarcinomas included 1,590 cases and 314,193 controls.

Bidirectional two-sample Mendelian
randomization data analysis


The traits investigated in this study comprised 35 blood and urine


biomarkers, specifically Alanine aminotransferase, Albumin, Alkaline


phosphatase, Apolipoprotein A, Apolipoprotein B, Aspartate


aminotransferase, AST to ALT ratio, C-reactive protein, Calcium,


Cholesterol, Creatinine, Creatinine in urine, Cystatin C, Direct


bilirubin, eGFR, Gamma glutamyltransferase, Glucose, HbA1c, HDL

Frontiers in Oncology 03

cholesterol, IGF-1, LDL cholesterol, Lipoprotein A, Microalbumin in


urine, Non-albumin protein, Phosphate, Potassium in urine, SHBG,


Sodium in urine, Testosterone, Total bilirubin, Total protein,


Triglycerides, Urate, Urea, Vitamin D. These included 8 liver-


related, 7 cardiovascular-related, 9 kidney-related, 3 osteoarthritis-


related, 2 diabetes-related, and 3 hormone-related indicators


(Supplementary Table S1). Lung cancer types included small-cell


lung cancer, non-small cell lung cancer, lung adenocarcinoma, and


lung squamous cell carcinoma. The number of genome-wide


significant independent loci for each trait was represented by SNPs


(n), with a screening p-value of 5e-8. We ensured the independence of


each SNP by setting a linkage disequilibrium (LD) threshold of r^2 <


0.001 and a clumping distance of 10,000 kb, based on the European


1000 Genomes Project reference panel (13).


We also harmonized the biomarker and lung cancer data for


subsequent MR analysis. If exposure-related SNPs were missing in


the outcome GWAS, we selected proxy SNPs with r^2 > 0.80. We


then removed palindromic SNPs with A/T or G/C alleles to ensure


consistent allelic effects of SNPs on exposure and outcome.

Statistical methods


We carried out MR analysis to assess the causal effects of


biomarkers on lung cancer, using the inverse variance weighted

FIGURE 1


Bi-directional two-sample Mendelian randomization analysis. (A) Forward analysis: The exposure is blood and urine biomarkers, and the outcome is
lung cancer. (B) Reverse analysis: The exposure is lung cancer, and the outcome is blood and urine biomarkers.
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(IVW) method as our primary analytical approach (14). We also


applied MR-Egger regression, weighted median method, and


weighted and simple modes to further verify the robustness of the


MR analysis results. Significant results (p < 0.05) generated by the


IVW method were considered positive outcomes even if there was


no significance exhibited by the other methods, provided that the


direction of the beta values was consistent across the methods. To


consider multiple testing, we employed a modified version of the


Benjamini and Hochberg false discovery rate (FDR) procedure,


tailored to the hierarchical and interdependent nature of our data


(15). At each category level, we set an FDR corrected significance


threshold of 0.05, based on the effective number of independent


tests at each category level. With liver category p = 0.05/8 = 6.3 ×


10^-3, cardiovascular p = 0.05/16 = 7.1 × 10^-3, kidney p = 0.05/9 =


5.6 × 10^-3, osteoarthritis p = 0.05/8 = 1.67 × 10^-2, diabetes p =


0.05/2 = 2.5 × 10^-2, and hormones p = 0.05/3 = 1.67 × 10^-2. For


identifying more precise causal associations, we employed an FDR


significance threshold of p < 0.05. We utilized the MR-Egger


regression intercept to detect potential pleiotropy (16). If the MR-


Egger intercept was not statistically significant (p > 0.05), there was


no evidence suggestive of pleiotropy. We performed Cochran’s Q


statistical analysis in the IVW mode to check for potential


heterogeneity amongst the selected IVs (17). If heterogeneity was


present (p < 0.05), we further validated through the IVW random


effects model and IVW multiplicative random effects model.


Additionally, we employed leave-one-out sensitivity analyses to


test the potential influence of individual SNPs on the observed


causal effects. Moreover, we assessed the strength of the IVs chosen


in our study by calculating the F-statistic, with the final SNPs


included in the analysis being F > 10. This enabled us to rule out the


possibility of weak instrument bias affecting our estimation of the


causal relationship. The formula for the F-statistic was F= R^2/(1-


R^2) * (n-k-1)/k, where R^2 represented the proportion of variance


explained by SNPs, n was the sample size, and k was the number of


IVs included. R^2 was estimated using the MAF and b values, with


the formula: R^2 = 2 * MAF * (1 - MAF) * b^2. Finally, we
conducted reverse MR analysis to explore the causal effects of lung
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cancer on biomarkers, following the same protocol as the previous


MR. All statistical analyses were conducted using R software


(Version 4.3.0), with the R packages TwosampleMR and


MR-PRESSO.

Results


Causal effects of biomarkers on
lung cancer


The IVW analysis results shown in Table 1 suggest a potential


causal relationship between genetically predicted total bilirubin


levels and a lower risk of small cell lung cancer (b: -0.285, P:
0.015, FDR: 0.12). A more precise negative causal relationship was


found between urate levels and non-small cell lung cancer (b:
-0.158, P: 0.004, FDR: 0.036*). Serum calcium showed a potential


negative causal relationship with squamous cell carcinoma (b:
-0.256, P: 0.046, FDR: 0.138), while urine creatinine showed a


potential positive causal relationship with squamous cell


carcinoma (b : 1 .233, P: 0.024, FDR: 0.216). Gamma-


glutamyltransferase also showed a potential positive causal


relationship with squamous cell carcinoma (b: 0.241, P: 0.009,
FDR: 0.072), while non-albumin exhibited a potential negative


causal relationship with squamous cell carcinoma (b: -0.272, P:
0.020, FDR: 0.180). SHGB was potentially negatively causally


related to lung squamous cell carcinoma (b: -0.209, P: 0.033,
FDR: 0.297), while sodium in urine showed a potential positive


causal relationship with lung squamous cell carcinoma (b: 1.166, P:
0.010, FDR: 0.090). Total protein demonstrated a potential negative


causal relationship with lung squamous cell carcinoma (b: -0.402, P:
0.009, FDR: 0.072), while AST/ALT revealed a potential positive


causal relationship with lung adenocarcinoma (b: 0.293, P: 0.009,
FDR: 0.072). Except for the causal relationships between


Gamma_glutamyltransferase, SHBG, Sodium_in_urine and lung


squamous cell carcinoma, the other seven causal relationships


were all validated by five types of MR analysis, and generated

TABLE 1 Mendelian randomization study results of biomarkers and lung cancer.


Biomarkers Lung cancer b P FDR OR OR (95% Cl)


Total Bilirubin Small cell lung cancer -0.285 0.015 0.12 0.752 0.597 0.947


Urate Non-small cell cancer -0.158 0.004 0.036* 0.854 0.766 0.952


Calcium Lung squamous cell carcinoma -0.256 0.046 0.138 0.774 0.601 0.995


Urinary Creatinine Lung squamous cell carcinoma 1.233 0.024 0.216 3.433 1.181 9.983


Gamma-Glutamyltransferase Lung squamous cell carcinoma 0.241 0.009 0.072 1.272 1.060 1.526


Non-Albumin Lung squamous cell carcinoma -0.272 0.020 0.180 0.762 0.606 0.958


SHBG Lung squamous cell carcinoma -0.209 0.033 0.099 0.811 0.669 0.984


Urinary Sodium Lung squamous cell carcinoma 1.166 0.010 0.090 3.210 1.317 7.826


Total Protein Lung squamous cell carcinoma -0.402 0.009 0.072 0.669 0.495 0.903


AST/ALT Ratio Lung Adenocarcinoma 0.293 0.009 0.072 1.341 1.029 1.748

fr

*FDR:P<0.05.
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consistent effect estimation directions (Supplementary Table S2).


Figure 2 illustrates the scatter plots of the study results. After FDR


correction, only the IVW estimate for urate (OR = 0.854, 95%CI =


0.766–0.952, FDR = 0.036*) remained significantly associated with


small cell lung cancer.

Causal effects of lung cancer
on biomarkers


Reverse MR analysis revealed causal associations of lung cancer


on biomarkers. As shown in Table 2, IVW analysis results show that


genetically predicted risk of small cell lung cancer has a positive


causal relationship with Creatinine (b: 0.022, P: 0.002, FDR: 0.018*),
Cystatin C (b: 0.026, P: 0.005*, FDR: 0.045*), and Haemoglobin


HbA1c (b: 0.013, P: 0.014, FDR: 0.028*), a potential positive causal
relationship with AST-ALT_ratio (b: 0.021, P: 0.022, FDR: 0.176),
and a clear negative causal relationship with eGFR (b: -0.022, P:
0.003, FDR: 0.027*), and a potential negative causal relationship


with Gamma Glutamyltransferase (b: -0.013, P: 0.019, FDR: 0.152).
Non-small cell lung cancer exhibits potential positive causal


relationships with Cystatin C (b: 0.022, P: 0.006, FDR: 0.054), and
C-reactive protein (b: 0.013, P: 0.04, FDR: 0.28), a clear negative


causal relationship with albumin (b: -0.024, P: 0.002, FDR: 0.016*),
and potential negative causal relationships with phosphate (b:
-0.013, P: 0.008, FDR: 0.072), and urine potassium (b: -0.011, P:
0.012, FDR: 0.108). Lung squamous cell carcinoma has a clear


causal relationship with creatinine (b: 0.021, P: 1.16×10-5, FDR:
1.05×10-3*), Cystatin C (b: 0.028, P: 0.004, FDR: 0.036*), potential
positive causal relationships with urate (b: 0.012, P: 0.020, FDR:
0.180), urea (b: 0.010, P: 0.046, FDR: 0.141), and Glycated


Haemoglobin HbA1c (b: 0.019, P: 0.049, FDR: 0.098), and a clear


negative causal relationship with eGFR (b: -0.022, P: 9.58×10-6*,
FDR: 8.62×10-5*), and a potential negative causal relationship with


SHBG (b: -0.020, P: 0.036, FDR: 0.108). Adenocarcinoma has a clear


positive causal relationship with alkaline phosphatase (b: 0.015, P:
0.011, FDR: 0.033*).


Except for small cell lung cancer with AST/ALT ratio and


squamous cell carcinoma with Cystatin_C, the other 17 causal


associations were all validated by all five types of MR analysis


(Supplementary Table S3). The scatter plots of each test are shown


in Figures 3 and 4. After FDR correction, associations remained


significant between small cell lung cancer and creatinine, eGFR,


cystatin C, glycated haemoglobin A1c, non-small cell lung cancer


and albumin, lung squamous cell carcinoma and eGFR, creatinine,


cystatin C. Lung adenocarcinoma and alkaline phosphatase.

Sensitivity analysis


To further validate the causal associations, sensitivity analyses


were performed to assess pleiotropy and heterogeneity in the MR


results. The MR Egger intercept test showed no significant evidence


of pleiotropy (all P-values > 0.05) (Supplementary Table S4).


However, evidence of heterogeneity was found in some cases
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based on Cochran’s Q test (Supplementary Table S5). For results


exhibiting heterogeneity, we re-evaluated them using the IVW


random-effects model and the multiplicative random-effects


model. The results remained consistent with those obtained from


the IVW method (Supplementary Tables S6, S7). Additionally,


leave-one-out analyses indicated that no single SNP was driving


the identified causal associations (Supplementary Figures S1, S2).

Discussion


In this study, we initially employed bidirectional Mendelian


randomization (MR) analyses to investigate the causal relationships


between 35 blood and urine biomarkers and various types of lung


cancer. In the forward MR analysis, we identified seven potential


causal associations. Five biomarkers showed inverse causal


relationships with lung cancer risk: total bilirubin with small cell


lung cancer (SCLC), urate with non-small cell lung cancer (NSCLC),


serum calcium with lung squamous cell carcinoma (LSCC), non-


albumin proteins with LSCC, and total protein with LSCC.


Conversely, two biomarkers exhibited positive causal relationships


with lung cancer phenotypes: urinary creatinine with LSCC and the


AST/ALT ratio with lung adenocarcinoma (LADC).


In the reverse MR analysis, we identified 17 potential causal


relationships. SCLC showed positive causal relationships with


creatinine, cystatin C, and glycated hemoglobin A1c (HbA1c),


and negative causal relationships with eGFR and gamma-glutamyl


transferase (GGT). NSCLC showed positive causal relationships


with cystatin C and C-reactive protein (CRP), and negative causal


relationships with albumin, phosphate, and urinary potassium.


LSCC showed positive causal relationships with creatinine, urate


urea, and HbA1c, and negative causal relationships with eGFR and


SHBG. LADC showed a positive causal relationship with alkaline


phosphatase (ALP).


After adjusting for the false discovery rate (FDR), we confirmed


10 more robust causal associations (Table 3), including: urate as a


protective factor for NSCLC; SCLC increasing blood creatinine


levels, decreasing eGFR, increasing cystatin C levels, and increasing


HbA1c levels; NSCLC decreasing albumin levels; LSCC decreasing


eGFR and increasing blood creatinine cystatin C levels; and LADC


increasing ALP levels. Fourteen other potential causal relationships


were identified.


Bilirubin possesses potent antioxidative properties, which may


help protect respiratory tissues from oxidative stress (18–21). Maria


J. Monroy-Iglesias et al. (22) found in a Cohort Study and Meta-


Analysis that total bilirubin is a protective factor for lung cancer.


Laura Jane Horsfall et al. (23) also demonstrated via Mendelian


randomization study using total bilirubin single nucleotide


polymorphisms (SNPs) that total bilirubin is a protective factor


for lung cancer, particularly among heavy smokers. Our study


results corroborate these findings, confirming that plasma total


bilirubin levels serve as a protective factor for SCLC.


Serum urate exhibits potent antioxidant properties in vitro and


is the most abundant antioxidant molecule in human blood (24, 25).


It’s estimated that up to 50% of antioxidant capacity in human
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blood is attributable to the action of serum urate (26). Not only is


urate highly concentrated in the blood, but it’s also present in high


amounts in human respiratory tissues and epithelial lining fluid of


the airways, potentially providing an important first line of defense


against environmental oxidants in smoke and pollutants (27, 28).


While Haruka Fujikawa et al. (29) suggested a certain negative


correlation between urate and lung cancer, Laura J. Horsfall et al.


(30) did not find an association in their cohort and one-sample


Mendelian randomization study. However, an observational study
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by A. Bozkır (31) found that lung cancer patients had significantly


higher urate levels than healthy controls. Our study results show


that urate has a protective effect on NSCLC, while LSCC increases


the level of serum urate.


Studies have found that signals from the 1,25(OH)2D3 receptor


(VDR) and calcium-sensing receptor (CaSR) can inhibit tumor


proliferation and metastasis, and promote tumor differentiation and


apoptosis (32, 33). However, Yumie Takata et al. (34) found no


correlation between calcium intake and lung cancer, while Haihao

FIGURE 2


Mendelian randomization scatter plot of biomarkers and lung cancer.
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Yan et al. (35) showed via a Mendelian randomization study that


serum calcium is a protective factor for lung cancer, including


SCLC, LADC, and LSCC. Our study supports the latter finding,


showing that serum calcium is a protective factor for LSCC.


The term “non-albumin” refers to proteins other than albumin


in the blood, the majority of which are immunoglobulins. Extensive


research has been conducted on the protective role of


immunoglobulins against tumors. Our results align with these


findings, showing an inverse relationship between non-albumin


proteins and LSCC.


Plasma total protein represents the sum of all proteins in the


blood, primarily including albumin and globulin. These proteins


play crucial roles in maintaining fluid balance, transporting


nutrients, immune responses, and blood clotting processes. The


level of plasma total protein can reflect the body’s nutritional status,


liver function, kidney function, and immune status. Füsun Sahin


(36) found no difference in total protein levels between lung cancer


patients and healthy individuals in a cross-sectional study, whereas


Priyanka Gaur (37)reported significantly lower total protein levels


in lung cancer patients compared to healthy controls. Our study


indicates that plasma total protein is a protective factor for LSCC.


Creatinine is a metabolite of creatine, and elevated serum


creatinine levels are commonly used as a biomarker indicating


impaired kidney function. Urinary creatinine, primarily filtered


from the blood by the glomeruli and excreted in the urine,


decreases in cases of kidney failure and increases with elevated
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blood creatinine levels. There is currently insufficient research on


the direct link between urinary creatinine levels and the


mechanisms of lung cancer development, and no direct studies


on the relationship between urinary creatinine and lung cancer have


been reported. Our research shows a causal relationship between


elevated urinary creatinine and LSCC. We also found that SCLC


and LSCC can cause elevated serum creatinine levels, similar to


findings by Miroslava Sarlinova (38), who observed that both


primary and secondary lung cancers cause significant increases in


creatinine, glucose, citrate, and acetate, while pyruvate, lactate,


alanine, tyrosine, and tryptophan significantly decrease. Elevated


creatinine may result from obstructed creatine utilization and


increased creatinine production, with kidney dysfunction


also contributing.


Aminotransferases, including aspartate aminotransferase (AST)


and alanine aminotransferase (ALT), are well-known biomarkers


for l iver damage . Studies have also l inked elevated


aminotransferases to systemic regulation of human diseases and


metabolic functions (39). The AST/ALT ratio, also known as the De


Ritis ratio, was initially proposed to study the etiology of hepatitis


and is commonly used to distinguish between different causes of


liver diseases such as fatty liver. Currently, the AST/ALT ratio is


also employed as an effective biomarker for non-hepatic diseases


like cardiovascular diseases, various cancers, and T2DM. Initially, a


high AST/ALT ratio was reported to predict poor prognosis in non-


metastatic renal cell carcinoma. Since then, further retrospective

TABLE 2 Lung cancer and biomarkers Mendelian randomization study results.


Lung cancer Biomarker b P FDR OR OR (95% CI)


Small cell lung cancer Creatinine 0.022 0.002 0.018* 1.023 1.008 1.037


eGFR -0.022 0.003 0.027* 0.978 0.964 0.992


Cystatin C 0.026 0.005 0.045* 1.026 1.008 1.045


Glycated Haemoglobin HbA1c 0.013 0.014 0.028* 1.014 1.003 1.025


Gamma Glutamyltransferase -0.013 0.019 0.152 0.987 0.977 0.998


AST/ALT 0.021 0.022 0.176 1.021 1.003 1.039


Non-small cell lung cancer Albumin -0.024 0.002 0.016* 0.977 0.963 0.992


Cystatin C 0.022 0.006 0.054 1.023 1.006 1.039


Phosphate -0.013 0.008 0.072 0.987 0.978 0.997


Urinary Potassium -0.011 0.012 0.108 0.990 0.981 0.998


C Reactive Protein 0.013 0.04 0.28 0.025 1.013 1.001


Lung squamous cell carcinoma eGFR -0.022 9.58×10-6 8.62×10-5* 0.979 0.969 0.988


Creatinine 0.021 1.16×10-5 1.05×10-3* 1.021 1.010 1.031


Cystatin C 0.028 0.004 0.036* 1.029 1.009 1.049


Urate 0.012 0.020 0.180* 1.012 1.002 1.022


SHBG -0.020 0.036 0.108 0.981 0.963 0.999


Urea 0.010 0.046 0.141 1.010 1.000 1.019


Glycated Haemoglobin HbA1c 0.019 0.049 0.098 1.019 1.000 1.038


Lung adenocarcinoma Alkaline Phosphatase 0.015 0.011 0.033* 1.015 1.003 1.027

fr

*FDR:P<0.05.
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studies have validated the association between the AST/ALT ratio


and cancer prognosis. However, no studies have specifically


investigated its relationship with lung cancer. Our study indicates


that the AST/ALT ratio is a risk factor for LADC and that SCLC can


also cause an elevated AST/ALT ratio. Although direct studies on


the relationship between the AST/ALT ratio and lung


adenocarcinoma are lacking, some indirect evidence suggests a


potential association. For instance, Wangyang Chen (40)


examined the relationship between the AST/ALT ratio and


various cancers, concluding that while there was no significant


association with lung cancer overall, there was a notable connection


with colorectal cancer risk. The primary mechanism suggested is


that an elevated AST/ALT ratio may indicate liver damage, leading


to the accumulation of toxic metabolites, which is associated with


systemic inflammatory responses and metabolic diseases—all of
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which are factors related to colorectal cancer. This mechanism


could similarly help explain a possible link between the AST/ALT


ratio and lung adenocarcinoma, as lung adenocarcinoma may


exhibit a stronger correlation with these factors compared to


other types of lung cancer.Furthermore, Sofia Christakoudi (41)


reported a negative correlation between ALT levels and lung cancer


risk in men, suggesting that elevated ALT might be linked to


obesity-related non-alcoholic fatty liver disease (NAFLD) and


liver fibrosis, conditions that can reduce platelet counts and


potentially lower lung cancer risk. This relationship may also


partially explain why an elevated AST/ALT ratio might serve as a


risk factor specifically for lung adenocarcinoma. As for the increase


in the AST/ALT ratio often observed in patients with small cell lung


cancer (SCLC), this may be due to the distinct characteristics of


SCLC, which is generally more aggressive than other lung cancer

FIGURE 3


Lung cancer and biomarkers Mendelian randomization scatter plot.
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types. SCLC has a higher propensity for liver metastasis, is


associated with a more pronounced systemic inflammatory


response, carries a higher risk of tumor lysis syndrome, and is


more likely to produce ectopic hormone secretion. These factors


collectively increase the risk of liver function impairment, and the


AST/ALT ratio may serve as a marker for the extent of liver damage


in this context.


Cystatin C (Cys-C) is a non-glycosylated, low molecular weight,


basic protein composed of 120 amino acids (42). It is considered a


housekeeping gene, with stable production by all nucleated human
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cells (40). Early studies indicated that cystatin C levels in healthy


individuals were independent of age, muscle mass, or body mass


index (BMI) (43, 44). Additionally, initial reports suggested that the


production rate of cystatin C remains constant and is not altered


under inflammatory conditions (45, 46). However, recent reports


have found an association between serum cystatin C levels and


inflammatory biomarkers such as C-reactive protein (CRP) (47, 48).


Recent research has also linked serum cystatin C levels with tumors.


Wojciech Naumnik (49) observed higher serum cystatin C


concentrations in lung cancer patients compared to healthy

FIGURE 4


Lung cancer and biomarkers Mendelian randomization scatter plot.
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individuals, a conclusion also reached by Qingyong Chen (50). Our


study confirms these findings, showing that SCLC, NSCLC, and


LSCC lead to elevated cystatin C levels. In cancer, increased cysteine


protease activity, if not balanced by a corresponding increase in


cysteine protease inhibitors, leads to the remodeling and


degradation of extracellular matrix proteins—an event associated


with tumor dissemination, invasion, and metastasis (51). Elevated


expression of cystatins is expected to reduce tumor-related


proteolytic activity, and indeed, evidence suggests that tumor-


associated cystatins play an inhibitory role across various cancer


types (52). Therefore, the high expression of cystatin C in lung


cancer primarily acts as a tumor suppressor.


Glycated hemoglobin (HbA1c) is closely related to blood


glucose levels and diabetes. The relationship between HbA1c and


lung cancer is controversial. J C de Beer (53) found that elevated


HbA1c does not lead to lung cancer. Similarly, Kai Liu (54), using


Mendelian randomization analysis, concluded that HbA1c does not


cause lung cancer, though he did not investigate whether lung


cancer could cause elevated HbA1c levels. Our study also shows that


HbA1c does not cause lung cancer, but SCLC and LSCC can lead to


increased HbA1c levels. The elevation of glycated hemoglobin


(HbA1c) in lung cancer is primarily attributed to cancer-induced


hyperglycemia. The mechanisms by which lung cancer contributes


to elevated blood glucose include: 1) Chemotherapy-Induced


Pancreatic Damage: Certain chemotherapy agents can harm


pancreatic islet cells, impairing insulin synthesis and secretion.


Additionally, glucocorticoids, commonly used as adjuvants in


lung cancer therapy, promote gluconeogenesis in the liver, inhibit


glucose uptake and utilization in peripheral tissues, enhance the


action of hyperglycemic hormones (such as growth hormone,


epinephrine, and glucagon), and may also damage islet cell


function. 2)Ectopic Hormone Secretion: Ejaz et al. (55) reviewed


43 cases of Cushing’s syndrome induced by ectopic ACTH secretion


from tumors, finding that 48.9% of primary tumor sites were


located in the chest. The most common symptoms were


hyperglycemia (77%), venous thrombosis (14%), and infections


(23%). The lung, as an endocrine organ, may contribute to


hyperglycemia through the secretion of various bioactive
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substances. For instance, Unger et al. (56) detected glucagon in


lung cancer tissue, which can promote hepatic glycogen breakdown


and gluconeogenesis, thereby raising blood glucose levels. In some


patients with elevated blood glucose, tumor treatment normalized


glucose levels, only for hyperglycemia to return upon cancer


relapse. 3)Cytokine-Mediated Insulin Resistance: Many advanced


cancer patients exhibit low-grade CRP elevation, indicative of a


chronic inflammatory state, which can raise IL-2, CRP, and cortisol


levels, disrupting glucose metabolism. Additionally, tumor cells can


secrete large amounts of IL-6 and TNF-a, leading to insulin


resistance and subsequent hyperglycemia (57).


Our research indicates that SCLC and LSCC result in decreased


eGFR. Cancer patients are at risk of acute kidney injury due to


sepsis, direct damage to the kidneys from primary cancer, metabolic


disorders, nephrotoxic effects of anticancer therapies, and


hematopoietic stem cell transplantation (58–60). Nearly all


hematologic and solid organ cancers are associated with tumor


lysis syndrome, leading to uric acid nephropathy (61).


Hypercalcemia occurs in up to 30% of patients with advanced


cancer, often resulting in renal dysfunction due to AKI or CKD


(61). Moreover, direct invasion and metastasis of cancer, infectious


diseases caused by immunosuppression from cancer and its


treatment, and various metabolic disorders can also lead to renal


dysfunction (61, 62), contributing to decreased eGFR. Soonsu Shin


(63) found that low eGFR is significantly associated with increased


lung cancer risk, while Yutaka Hatakeyama (64) discovered that


most cancers, particularly those of the kidney, urinary system, liver,


or pancreas, cause decreased eGFR. Our study also found that SCLC


and SCC result in decreased eGFR, but did not find that decreased


eGFR causes lung cancer.


Gamma-glutamyltransferase (GGT) is located on cell


membranes and is abundant in tissues with transport functions,


such as the kidneys and biliary system (65). Elevated serum GGT is


considered a marker of liver damage and alcohol consumption, but


it is also a marker for various other diseases, including diabetes,


cardiovascular diseases, and metabolic syndrome (66–68).


Persistent elevation of serum GGT reflects chronic inflammation


and oxidative stress, which contribute to tumor development and

TABLE 3 Results of bidirectional Mendelian randomization study on lung cancer and biomarkers (FDR < 0.05).


Biomarkers/lung cancer Biomarkers/Lung cancer b P FDR OR OR (95% CI)


Urate Non-Small Cell Lung Cancer -0.158 0.004* 0.036* 0.854 0.766 0.952


Small cell lung cancer


Creatinine 0.022 0.002* 0.018* 1.023 1.008 1.037


eGFR -0.022 0.003* 0.027* 0.978 0.964 0.992


Cystatin C 0.026 0.005* 0.045* 1.026 1.008 1.045


Glycated Haemoglobin HbA1c 0.013 0.014* 0.028* 1.014 1.003 1.025


Non-small cell lung cancer Albumin -0.024 0.002* 0.016* 0.977 0.963 0.992


Lung squamous cell carcinoma


eGFR -0.022 9.58×10-6* 8.62×10-5* 0.979 0.969 0.988


Creatinine 0.021 1.16×10-5* 1.05×10-3* 1.021 1.01 1.031


Cystatin C 0.028 0.004* 0.036* 1.029 1.009 1.049


Lung adenocarcinoma Alkaline Phosphatase 0.015 0.011* 0.033* 1.015 1.003 1.027

fr

*P<0.05.
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progression (69, 70). In lung cancer patients, alveolar macrophages


and lymphocytes continuously produce GGT due to chronic


inflammation-induced cytokines and growth factors (71, 72). Ye


Jin Lee (73), through an observational study, linked persistently


elevated GGT with lung cancer in men. D J F Brown (74) found


significantly higher GGT levels in advanced lung cancer patients


compared to healthy individuals. N V Liubimova (75)


demonstrated that GGT is an effective marker for liver metastasis


in lung cancer. However, Peter Groscurth (76) argued that lung


cancer does not cause elevated GGT levels. Our study concludes


that SCLC leads to decreased GGT levels. Our study found that


small cell lung cancer (SCLC) may lead to decreased g-glutamyl


transferase (GGT) levels; however, the underlying mechanism has


not yet been explored in the literature.


C-reactive protein (CRP) is a commonly used systemic marker


primarily employed in diagnosing chronic and acute inflammation.


It is produced by hepatocytes, and during an inflammatory


response, such as infection or other injuries, certain molecular


substances known as pro-inflammatory cytokines are generated.


These cytokines stimulate hepatocytes to produce CRP. Therefore,


elevated levels of CRP in the body may indicate an ongoing


inflammatory response. In the context of cancer, CRP levels may


also be elevated, making it a potential cancer biomarker. Jian Yin


(77) studied the association between plasma high-sensitivity CRP


(hsCRP) levels and lung cancer risk, finding no association between


CRP levels and lung cancer risk in younger populations but a


significant association in older populations. Elevated baseline CRP


levels increased lung cancer risk in individuals with lower


educational levels but not in those with higher educational levels.


Stratification by BMI revealed a positive association between hsCRP


levels and lung cancer risk in individuals with a BMI < 24, but no


such association was observed in those with a BMI ≥ 28. Mengmeng


Ji (78), through Mendelian randomization, demonstrated a


significant correlation between circulating CRP levels and the risk


of different histological subtypes of lung cancer. Although the


etiological role of CRP in lung cancer has not been confirmed,


circulating CRP may serve as an early diagnostic marker for lung


cancer in current smokers. Our study did not find that CRP causes


lung cancer, but it did show that non-small cell lung cancer


(NSCLC) leads to elevated CRP levels. This is associated with the


chronic inflammatory response induced by lung cancer. In the


tumor microenvironment, large amounts of pro-inflammatory


cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-


a (TNF-a), are secreted. These cytokines stimulate the liver to


synthesize and secrete C-reactive protein (CRP), resulting in


increased serum CRP concentrations. Additionally, as the tumor


grows, tissue necrosis may occur, releasing cellular contents and


triggering further inflammatory responses that activate the immune


system and stimulate additional CRP production.


Albumin is a water-soluble 65 kd protein synthesized by the liver.


It is the most abundant blood protein in the human body, accounting


for about half of the serum protein, and is responsible for the colloidal


osmotic pressure of the blood. Some primary functions of albumin


include binding insoluble molecules in the serum and transporting
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drugs and hormones (79). Hypoalbuminemia can result from


malnutrition (insufficient intake), advanced liver disease (impaired


synthesis), kidney disease (increased loss), and extreme catabolic


states (increased breakdown) such as sepsis and metastatic cancer.


Cancer can lead to hypoalbuminemia in several ways. Firstly, cancer


patients may experience hypoalbuminemia due to the continuous


consumption of nutrients, including albumin, by the tumor, leading


to a deficiency of these essential nutrients in the body. Secondly, the


metabolic products of the tumor may damage liver function,


impairing the liver’s ability to synthesize albumin and thus causing


a decrease in albumin levels. Additionally, cancer can cause cachexia,


wasting, and reduced food intake, leading to insufficient nutrient


intake and decreased albumin levels. Our study shows that NSCLC


can lead to hypoalbuminemia.


Phosphate is crucial for normal cellular function as it provides


fundamental components for DNA, cell structures, signal


transduction, and energy production. Phosphate homeostasis is


regulated by hormones such as fibroblast growth factor (FGF)


(80) and parathyroid hormone (PTH). Hyperphosphatemia is


usually caused by impaired kidney function. Conversely,


hypophosphatemia may result from reduced dietary intake,


malabsorption, or renal phosphate wasting due to genetic or


acquired conditions. Phosphate toxicity is associated with


tumorigenesis because high levels of inorganic phosphate in the


tumor microenvironment can activate cell signaling pathways,


promoting cancer cell growth. Ronald B. Brown (81) proposed


that the association between alcohol and breast cancer is mediated


by phosphate toxicity, i.e., the accumulation of excessive inorganic


phosphate in body tissues. Phosphate homeostasis disruption


leading to hypophosphatemia is common in cancer patients.


Shreedhar Adhikari (82) elucidated the mechanisms and reasons


for cancer-induced hypophosphatemia. Our study did not observe a


causal relationship between phosphate and lung cancer, but it did


find that NSCLC causes reduced phosphate levels.


Potassium is the most abundant electrolyte in active cells.


Potassium homeostasis is maintained through various


mechanisms, including internal and external processes. Urinary


potassium generally reflects kidney function. Low urinary


potassium excretion is associated with CKD progression. Kathrin


Schilling (83) observed significantly lower urinary potassium levels


in pancreatic cancer patients compared to healthy controls. Our


study shows that NSCLC causes decreased urinary potassium levels.


Serum urea is the end product of protein metabolism, filtered


through the renal glomeruli, and excreted from the body. There are


very few studies evaluating the impact of serum urea on cancer


development.Yandi Sun (84), through Mendelian randomization,


demonstrated a positive association between serum urea levels and


female-specific RCC (renal cell carcinoma) risk. Haoyan Chen (85),


through single-cell transcriptomics, microbiome analysis,


metabolomics, and clinical analysis of colorectal adenomas and


cancer tissues, found significant activation of host urea cycle


metabolism during colorectal cancer development, with low


bacterial urease abundance and high urea load detected in


colorectal cancer. M. C. Winter (86) proved that elevated pre-
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treatment serum urea is an important predictor of early mortality in


SCLC. Our study shows that LSCC increases serum urea levels. Our


study indicates that squamous cell carcinoma may elevate serum


urea levels, potentially due to tumor-induced kidney dysfunction


and the high catabolic state associated with malignancy.


SHBG is a glycoprotein that binds with high affinity to 17b-
hydroxy steroid hormones, including testosterone and estradiol. Its


concentration regulates the balance between bound and free


hormones, serving as a transport carrier and modulating the


bioactivity of sex hormones (87). Women have SHBG levels twice


as high as men, reducing exposure to androgens and estrogens (88).


Researchers have found associations between sex hormones and


cancer in several studies. Zoë Hyde and her team discovered that


higher testosterone levels are associated with an increased risk of


prostate and lung cancer (89). Niki Dimou found that SHBG levels


are negatively correlated with breast cancer risk (90). Katherine


Ruth observed a positive correlation between female testosterone


levels and endometrial cancer risk (91). Furthermore, according to


the Women’s Health Initiative, individuals with the highest SHBG


levels are more than twice as likely to develop colon cancer


compared to those with the lowest SHBG levels (92). Our study


results suggest a bidirectional causal relationship between


squamous cell carcinoma and SHBG.


Alkaline phosphatase (ALP) is a glycoprotein that catalyzes


hydrolysis and phosphate transfer reactions. Elevated serum ALP


has been reported in bone and liver-related diseases (93, 94).


Additionally, serum ALP has been found to be an independent


prognostic factor in NSCLC, gastric cancer, breast cancer, and other


cancer types. Elevated ALP levels are also associated with bone or


liver metastases in patients with lung cancer, prostate cancer, breast


cancer, and other types of cancer (95). TAO YANG (95) found that


elevated serum ALP levels in NSCLC patients are associated with


bone or liver metastases. N Walach (96) found that compared to


CEA levels, LAP scores are a more reliable marker for detecting lung


cancer, especially metastatic lung cancer. Our study similarly found


that adenocarcinoma causes elevated LAP, consistent with the


aforementioned studies.


In this study, we conducted a comprehensive assessment of the


association between blood/urine biomarkers and lung cancer using


a bidirectional Mendelian randomization approach. Our findings


identified several potential causal relationships between blood and


urine biomarkers and lung cancer, with some confirmed through


FDR-adjusted significance. This research can contribute to


understanding the mechanisms underlying lung cancer


development. Additionally, we suggest that screening for these


blood and urine biomarkers can help identify individuals with


abnormalities who may benefit from LDCT screening, enabling


early clinical intervention, regardless of age or smoking status.


Our study comprehensively investigated the associations


between blood/urine biomarkers and lung cancer. The sample size


maximized the power of the genetic analysis. However, this study


has several limitations. First, the lung cancer dataset is from the


Finnish database, which is predominantly composed of individuals


of European descent. Therefore, caution is needed when applying


our findings to other ethnic populations. Second, the use of
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residuals might affect the magnitude of the reported effects; future


studies should consider alternative methods to further validate our


findings. In future research, it is necessary to use independent


clinical samples or cohorts to validate our findings and to


investigate the potential biological mechanisms underlying the


associations between candidate blood and urine biomarkers and


lung cancer. Third, the methods and accuracy of biomarker


measurements in the UK Biobank could influence our results.


Fourth, some results exhibit heterogeneity, and although we used


the IVW random-effects model and multiplicative effects model to


verify consistency, this does not entirely resolve the issue of


heterogeneity. Fifth, we applied the modified FDR correction for


p-values, which may impact the results.


In our study, while we used bidirectional two-sample


Mendelian randomization to assess the potential causal


relationships between blood and urinary biomarkers and lung


cancer, we acknowledge that more sophisticated analyses are


needed to further elucidate the connections between these


biomarkers and lung cancer development. In particular, the


scPagwas method developed by Ma et al. (2023) offers an


innovative approach that combines single-cell RNA sequencing


(scRNA-seq) data with summary statistics from genome-wide


association studies (GWAS), identifying cell subpopulations and


pathways associated with complex diseases (97). Applying this


method may help uncover lung cancer-related immune cell types


and key proteins that mediate the causal relationships between


blood and urinary biomarkers and lung cancer.


Moreover, Ma et al. (2022) demonstrated the potential of


integrating blood cell scRNA-seq data with GWAS data in


identifying risk genes, inflammatory factors, and immune cell


types associated with severe COVID-19. This work provides a


valuable framework for investigating potential links between


blood and urinary biomarkers and lung cancer (98). These


findings underscore the importance of single-cell analyses in


identifying disease-related cellular subpopulations and may offer


crucial insights into the pathophysiology of lung cancer.


Although our study did not directly employ the scPagwas


method, these studies highlight the promise of adopting similar


approaches in future research to identify specific immune cell


subpopulations and key proteins involved in the initiation and


progression of lung cancer. Such approaches could deepen our


understanding of the causal relationships between blood


biomarkers and lung cancer and may help identify novel


therapeutic targets. Future studies could utilize scPagwas to


integrate lung cancer GWAS data with blood cell scRNA-seq data


to identify lung cancer-associated cell subtypes, providing a


stronger theoretical basis for early screening and therapeutic


monitoring of lung cancer.
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