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The role of metabolic
reprogramming in liver cancer
and its clinical perspectives
Mengxiao Lu*, Yingjie Wu, MinMing Xia and Yixin Zhang

Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People’s Hospital of Ningbo
University, Ningbo, China
Primary liver cancer (PLC), which includes hepatocellular carcinoma (HCC) and

intrahepatic cholangiocarcinoma (iCCA), remains a leading cause of cancer-

related death worldwide. Chronic liver diseases, such as hepatitis B and C

infections and metabolic dysfunction-associated steatotic liver disease

(MASLD), are key risk factors for PLC. Metabolic reprogramming, a defining

feature of cancer, enables liver cancer cells to adapt to the demands of rapid

proliferation and the challenging tumor microenvironment (TME). This

manuscript examines the pivotal role of metabolic reprogramming in PLC, with

an emphasis on the alterations in glucose, lipid, and amino acid metabolism that

drive tumor progression. The Warburg effect, marked by increased glycolysis,

facilitates rapid energy production and biosynthesis of cellular components in

HCC. Changes in lipid metabolism, including elevated de novo fatty acid

synthesis and lipid oxidation, support membrane formation and energy storage

essential for cancer cell survival. Amino acid metabolism, particularly glutamine

utilization, supplies critical carbon and nitrogen for nucleotide synthesis and

maintains redox homeostasis. These metabolic adaptations not only enhance

tumor growth and invasion but also reshape the TME, promoting immune

escape. Targeting these metabolic pathways presents promising therapeutic

opportunities for PLC. This review underscores the interaction between

metabolic reprogramming and tumor immunity, suggesting potential

metabolic targets for innovative therapeutic strategies. A comprehensive

understanding of PLC’s intricate metabolic landscape may lead to more

effective treatments and better patient outcomes. Integrating metabolomics,

genomics, and proteomics in future research will be vital for identifying precise

therapeutic targets and advancing personalized therapies for liver cancer.
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1 Introduction

Primary liver cancer (PLC), encompassing hepatocellular

carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA),

is among the leading causes of cancer-related deaths globally. In

2022, liver cancer accounted for over 750,000 fatalities worldwide,

making it the third most common cause of cancer mortality,

following lung and colorectal cancers, and the sixth most

diagnosed malignancy. It ranks as the second deadliest cancer in

men, with incidence and mortality rates in men being two to three

times higher than in women across most regions (1). PLC is

predominantly linked to chronic liver conditions, including

hepatitis B and C infections and metabolic dysfunction-associated

steatotic liver disease (MASLD, also referred to as non-alcoholic

fatty liver disease, NAFLD) (2, 3). The prognosis for liver cancer

remains poor, especially in advanced stages, highlighting the need

for a comprehensive understanding of PLC pathogenesis to inform

the development of new treatment strategies.

Metabolic reprogramming is a key process by which tumor cells

sustain rapid proliferation and evade immune surveillance. Unlike

normal cells, cancer cells undergo significant metabolic adaptations

to satisfy their heightened requirements for energy, biosynthetic

precursors, and survival signals. These alterations span various

pathways, including enhanced glycolysis, increased fatty acid

synthesis, amino acid metabolism, and nucleotide production (3).
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Metabolic reprogramming not only facilitates tumor cell growth

and survival but also significantly influences the immune

modulation within the tumor microenvironment (TME).

This review examines the impact of metabolic reprogramming

on liver cancer initiation and progression, with a focus on how

shifts in metabolic pathways drive tumor growth, invasion, and

metastasis. Additionally, it explores the interaction between

metabolic alterations and tumor immunity, as well as how

targeting these pathways can modulate the immune landscape of

the TME. These insights lay the groundwork for developing

innovative therapeutic strategies for PLC. By characterizing the

metabolic features of PLC and evaluating metabolism-based

therapeutic potentials, this review aims to contribute to the

advancement of more effective treatment options for patients with

liver cancer.
2 Overview of metabolic
reprogramming in cancer

Tumor cells undergo metabolic reprogramming to meet the

demands of rapid proliferation, involving substantial alterations in

glucose, lipid, and amino acid metabolism, among other pathways

(Figure 1), which are intricately linked to the tumor immune

microenvironment (4).
FIGURE 1

Metabolic reprogramming of tumor cells. Tumor cells actively acquire glucose and other nutrients from the tumor microenvironment, and key
metabolic pathways, such as the PPP and lactic acid fermentation, become hyperactivated. Additionally, mitochondrial metabolic reprogramming
allows lipids and amino acids to be metabolized through the TCA cycle, generating abundant small-molecule products. These products provide
essential substrates and energy to support cell proliferation, migration, invasion, and other malignant behaviors. Metabolic reprogramming in tumor
cells encompasses diverse pathways, including glucose, lipid, and amino acid metabolism, enabling them to meet the demands of rapid growth and
survival in hostile environments.
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2.1 Warburg effect

As early as the 1920s, Otto Warburg observed that cancer cells,

even under oxygen-rich conditions, preferentially consume large

amounts of glucose and convert it to lactate through glycolysis—a

phenomenon termed the Warburg effect (5, 6). This metabolic

adaptation not only provides a rapid energy source but also

generates essential precursors for biosynthetic processes, such as

ribose-5-phosphate and NADPH, which are essential for

maintaining the anabolic state and redox balance required for

tumor cell growth and survival.

The mechanisms underlying the Warburg effect are multifaceted.

First, tumor cells often exhibit mitochondrial dysfunction due to the

limited repair capacity of mitochondrial DNA, which lacks introns and

protective histones, coupled with a high mutation rate, leading to

impaired mitochondrial function (7, 8). Second, dysregulation of

oncogenic pathways and tumor suppressor genes, such as RAS, PI3K/

AKT, and mutated P53, shifts cellular energy metabolism toward

glycolysis, making cancer cells increasingly glycolysis-dependent (9–

11). Third, the rapid proliferation of tumor cells generates a hypoxic

internal microenvironment, which stabilizes hypoxia-inducible factor 1

alpha (HIF-1a), further enhancing glycolytic activity and inhibiting

oxidative phosphorylation (OXPHOS) under low oxygen conditions

(12). Despite evidence that the electron transport chain (ETC) and

OXPHOS are still involved in tumorigenesis, increased aerobic glycolysis

is a consistent finding across various cancers, reinforcing the Warburg

effect as a central concept in tumor metabolism. This highlights the

intricate interplay between geneticmutations, metabolic reprogramming,

and the tumor microenvironment (TME) in promoting cancer cell

proliferation and survival, offering insights into potential therapeutic

strategies targeting cancer metabolism.
2.2 Lipid metabolism

Tumor cells also upregulate de novo fatty acid synthesis to

support membrane biosynthesis and energy storage by increasing

the expression of key enzymes such as fatty acid synthase (FASN)

and acetyl-CoA carboxylase (ACC) (13). This pathway is critical for

rapidly dividing cancer cells, which require substantial lipid

quantities for new membrane formation. FASN catalyzes the

synthesis of palmitate, a fundamental saturated fatty acid, while

ACC provides malonyl-CoA for fatty acid chain elongation. The

upregulation of these enzymes enables tumor cells to efficiently

produce the lipids necessary for sustained growth and division.
2.3 Amino acid metabolism

Amino acid metabolism, especially glutamine metabolism, is

pivotal for tumor cell proliferation, migration, and invasion.

Glutamine serves as a key nutrient for many cancers, providing

both carbon and nitrogen that support multiple cellular functions. It

acts as a precursor for the synthesis of purines and pyrimidines,

which are essential for DNA and RNA production, thereby enabling

the rapid cell division characteristic of cancer. Additionally,
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glutamine plays a critical role in maintaining redox homeostasis

within tumor cells by contributing to the production of glutathione, a

major antioxidant that shields cancer cells from oxidative stress and

damage, thereby enhancing their survival (14). Given these

dependencies, certain cancers exhibit “glutamine addiction,” heavily

relying on glutamine to sustain their metabolic processes (15). This

dependency creates a potential therapeutic opportunity, as targeting

glutamine metabolism could selectively affect cancer cells while

sparing normal cells that have a lower reliance on this amino acid.

Thus, a deep understanding of glutamine’s role in cancer metabolism

could facilitate the development of therapies aimed at disrupting

these pathways to inhibit tumor growth and progression.
2.4 Other metabolisms

Tumor cells also reprogram other metabolic pathways,

including the pentose phosphate pathway (PPP), the one-carbon

cycle, and nucleotide metabolism, to fulfill their biosynthetic and

energetic demands (16). These metabolic adaptations are essential

for supporting the rapid proliferation of cancer cells and can

significantly influence the stability of the TME. For instance,

glucose-6-phosphate dehydrogenase (G6PDH), a key regulatory

enzyme in the PPP, is upregulated by oncogenic signals such as

ATM, PI3K/AKT, RAS, and SRC (16, 17). The upregulation of

G6PDH represents a key adaptation, as it activates the pentose

phosphate pathway (PPP), supplying cancer cells with ample

pentose phosphate and NADPH. Pentose phosphate is vital for

nucleic acid synthesis, enabling the rapid DNA replication and

repair necessary for tumor growth (16). NADPH is equally

important, as it supports fatty acid synthesis and helps maintain

cellular redox balance, shielding cells from oxidative stress. By

activating the PPP, tumor cells secure a continuous supply of

these essential molecules, thus fulfilling their anabolic

requirements and promoting survival and proliferation. These

metabolic changes do not occur in isolation but are intricately

connected with other pathways, such as the one-carbon cycle and

nucleotide metabolism, forming a comprehensive network that

meets the high biosynthetic and energy needs of cancer cells (17).

Understanding the interactions among these pathways offers

valuable insights into potential therapeutic targets, as disrupting

these networks could compromise the metabolic adaptability of

cancer cells and inhibit tumor growth.
2.5 Metabolism and TME

The metabolic activity of tumor cells is intricately linked to

immune cell function within the TME. Metabolites such as lactic

acid can modulate immune cell behavior and facilitate tumor

immune evasion (18). Competition for metabolic resources

between tumor cells and immune cells influences immune efficacy

and impairs tumor immune surveillance (18). Tumor cell metabolic

reprogramming not only sustains their growth and survival but also

drives tumor progression and metastasis by reshaping the TME and

modulating immune responses. These metabolic adaptations
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present diverse therapeutic targets for novel strategies aimed at

exploiting the metabolic vulnerabilities of tumor cells. Further

research is needed to unravel the complexities of tumor

metabolism and develop targeted metabolic therapies to improve

cancer patient outcomes (19).
3 Role and related mechanisms of
metabolic reprogramming in PLC

As the primary organ regulating metabolism, the liver is closely

associated with the pathogenesis of liver cancer, with metabolic

disorders playing a significant role in its development. Major risk

factors for liver cancer include HBV/HCV infection, alcohol

consumption, obesity, and metabolic dysfunction-associated

steatotic liver disease (MASLD). Additional risk factors for iCCA

include aflatoxin exposure, liver fluke infection, bile duct cysts, and

primary sclerosing cholangitis (PSC) (20). These factors may

contribute to PLC through metabolic reprogramming

mechanisms (21). Elucidating the metabolic alterations in PLC is

therefore critical for identifying pathogenic mechanisms and

therapeutic targets. The following section will focus on HCC to

illustrate the central role of metabolic reprogramming in

PLC (Figure 2).
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3.1 Glucose metabolism in HCC

Systematic analyses of metabolic gene expression and

untargeted metabolomic profiling have identified aerobic

glycolysis, lipid metabolism, and amino acid metabolism as the

predominant metabolic alterations in HCC tissues (22). These

findings underscore the significance of the Warburg effect as a

central metabolic adaptation in certain HCC tumors. Elevated

expression of glucose transporter 1 (GLUT1) is commonly

observed in HCC and is associated with poorer patient prognosis

(23, 24), largely due to its correlation with TP53 mutations and

activation of the PI3K/AKT/mTOR signaling pathway (25).

Hexokinase 2 (HK2), which catalyzes the conversion of glucose to

glucose-6-phosphate (G6P) in the initial step of glycolysis, is also

upregulated in HCC, with higher expression linked to reduced

overall survival (26–28). Multiomic analysis of 65 human HCC

organoids further delineated two distinct metabolic subtypes,

enhancing the understanding of metabolic diversity in HCC

tissues. Notably, glucose-6-phosphate dehydrogenase (G6PD)

emerged as a potential therapeutic target, particularly in drug

metabolism-enriched pathways (29).

A comprehensive meta-analysis of 521 HCC samples and 2,761

metabolic genes revealed 284 upregulated and 350 downregulated

metabolic genes in HCC cohorts (30). Upregulated genes were
FIGURE 2

Metabolic reprogramming drives HCC progression. In HCC, oncogenic factors stimulate the abnormal activation of various metabolic enzymes.
Glucose is taken up by cancer cells and converted into pyruvate via glycolysis. While the majority of pyruvate is fermented to lactate, a smaller
portion is transported into mitochondria and converted to acetyl-CoA, fueling the TCA cycle and OXPHOS. Cancer cells also show enhanced lipid
uptake and synthesis, storing lipids or utilizing them for beta-oxidation in mitochondria. Amino acids, such as glutamine, replenish the TCA cycle
through conversion to alpha-ketoglutarate. The PPP, a branch of glycolysis, produces ribulose-5-phosphate, NADPH, and precursors for the
biosynthesis of cholesterol, fatty acids, and nucleotides, as well as reducing glutathione. Additionally, the serine synthesis pathway branches from
glycolysis, with SHMT converting serine to glycine, generating THF and 5,10-methylene-THF for DNA and RNA synthesis, or conversion to the
methyl-donor S-adenosylmethionine.
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associated with glycolysis, PPP, nucleotide biosynthesis, TCA,

OXPHOS, proton transport, and membrane lipid and glycan

metabolism. In contrast, downregulated genes were primarily

involved in xenobiotic, fatty acid, and amino acid metabolism.

Given the hypoxic and nutrient-poor environment encountered by

cancer cells, metabolic reprogramming is necessary to satisfy energy

and biosynthetic demands. Retrospective studies have consistently

shown that elevated serum LDH levels correlate with poor

prognosis in HCC and iCCA following radical resection or

standard therapies (31, 32). Under hypoxic conditions, enhanced

glycolysis in liver cancer cells activates lactate dehydrogenase A

(LDHA), leading to increased lactate production (33). Lactate

accumulation not only acidifies the microenvironment but also

induces lactoylation of adenylate kinase 2 (AK2) at lysine 28,

impairing its kinase activity and disrupting energy homeostasis,

thereby promoting tumor proliferation, invasion, and metastasis

(34). Notably, the triterpenoid compound demethylzeylasteral

(DML) has been shown to inhibit tumorigenesis in liver cancer

stem cells (LCSCs) by interfering with lactylation at histone marks

H3K9la and H3K56la, linked to metabolic stress responses (35).

Hypoxia also activates macropinocytosis through the HIF-1a/EH
domain-containing protein 2 (EHD2) pathway to facilitate nutrient

uptake in several HCC cell lines and mouse models (36).

Additionally, other glucose metabolism pathways, including the

PPP and hexosamine biosynthesis pathway (HBP), exhibit

heightened activity in HCC tissues (37–39).
3.2 Lipid metabolism in HCC

A study employing single-cell RNA sequencing (scRNA-seq),

lipidomics, metabolomics, and proteomic analysis in 41 patients

with HCC classified the tumors into three metabolic subtypes (F1,

F2, and F3) based on fatty acid oxidation (FAO) activity.

Subtype-specific therapeutic strategies were explored by analyzing

clinical, mutational, epigenetic, metabolic, and immunological

characteristics. The F1 subtype, with the lowest FAO activity,

responded favorably to treatments such as YM-155, Alisertib,

sorafenib, anti-PD1, anti-PD-L1, and the combination of

atezolizumab and bevacizumab (T+A). In contrast, the F3

subtype, characterized by the highest FAO activity, showed

responsiveness to transarterial chemoembolization (TACE), while

F2 represented an intermediate state between F1 and F3 (40). In

high-fat diet (HFD)-induced HCC or steatohepatitis, the FAO

pathway is typically downregulated, potentially protecting HCC

cells from lipotoxicity (41). Concurrently, increased expression of

fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), key

enzymes involved in de novo fatty acid synthesis, is observed in

HCC, with elevated lipogenesis often linked to poor outcomes in

advanced HCC cases (42–45). Interestingly, liver-specific ACC

knockout in diethylnitrosamine (DEN)-induced HCC mouse

models revealed that inhibiting de novo lipogenesis could

accelerate tumor progression by activating the antioxidant defense

system, underscoring the metabolic adaptability of tumors and the

necessity for further investigation into its role in HCC (46). Lipid
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metabolic pathways, including FASN and stearoyl-CoA desaturase

(SCD) signaling, also play pivotal roles in maintaining cancer

stem cell (CSC) populations, thereby driving metastasis and drug

resistance in HCC (47). Moreover, a high-cholesterol diet

disrupts metabolism and calcium signaling, leading to HCC

development in mouse models (48–50). Integrated proteomic and

phosphoproteomic studies have demonstrated that targeting

sterol O-acyltransferase 1 (SOAT1) to lower plasma membrane

cholesterol content offers a promising therapeutic approach for

early-stage HCC, as validated in patient-derived xenograft mouse

models (51). Conversely, elevated serum cholesterol levels have

been associated with improved outcomes in patients with HCC by

inhibiting tumor metastasis, suggesting that cholesterol distribution

and homeostasis play significant roles in the onset and progression

of HCC (52).
3.3 Amino acid metabolism in HCC

Studies have consistently demonstrated that amino acid

metabolism is upregulated in liver tumors compared to non-

tumor tissues (20, 53, 54). Glutamine, the most abundant amino

acid in human blood, serves as a critical carbon source for the

TCA cycle and provides essential nitrogen for the synthesis of

purine and pyrimidine nucleotides, which are necessary for DNA

and RNA production (55). In HCC models, glutamine addiction,

particularly in tumors overexpressing glutamine synthetase (GS),

supports mTOR-dependent cell proliferation and survival (46).

Additionally, tumor tissues exhibit an increased glutamate-to-

proline biosynthetic flux, which facilitates HCC cell growth and

tumor expansion (56). Urea cycle dysregulation is a characteristic

metabolic alteration in human HCC, where tumor cells redirect

urea metabolism away from arginine synthesis toward pyrimidine

biosynthesis. Consequently, HCC cells become reliant on

exogenous arginine, and arginine deprivation triggers a GCN2

kinase-mediated stress response, leading to cell cycle arrest and

reversible quiescence. Inhibition of GCN2 disrupts these protective

responses, inducing senescence and sensitizing HCC cells to

apoptosis via senolytic agents (57). In mTOR-driven HCC

models, tumor cells also enhance arginine uptake while reducing

its conversion to polyamines, thus promoting oncogenic

metabolism through the arginine-binding protein RNA binding

motif protein 39 (RBM39). Folate-mediated one-carbon (1C)

metabolism plays a pivotal role in supplying the building blocks

needed for tumor cell proliferation (17, 58–61). In PLC, the

expression of key enzymes involved in 1C metabolism is

significantly dysregulated (62, 63). The metabolism of serine,

glycine, and methionine is closely linked to the generation of 1C

units, with glycine-derived 1C units contributing to purine and

pyrimidine biosynthesis in HCC, thereby promoting tumor

progression through the glycine cleavage system (GCS) (64).

Recent studies have also revealed that dietary folate

supplementation can enhance tumor development by integrating

methionine and 1C metabolism, as observed in DEN/HFD-induced

HCC mouse models (65).
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3.4 Metabolism in iCCA

The metabolism of iCCA shares many features with HCC,

including increased glycolytic activity and impaired mitochondrial

oxidative phosphorylation. Positron emission tomography using

fluorodeoxyglucose (FDG-PET), based on the Warburg effect, has

proven valuable in clinical settings for diagnosing, staging, detecting

tumor recurrence, guiding treatment, and assessing prognosis (66, 67).

Elevated expression of GLUT1 is associated with poor outcomes in

both HCC and iCCA (23, 68). The reduced levels of succinic acid and

3-phosphoglycerate in iCCA tumors further indicate the presence of

the Warburg effect and increased fatty acid catabolism (54). Pyruvate

dehydrogenase kinase 3 (PDK3) expression is significantly higher in

iCCA tissues—27 times greater than in benign tissues—and elevated

serum PDK3 levels correlate with shorter patient survival (69).

Overexpression of PGC-1a enhances OXPHOS in iCCA cells,

promoting metastasis (70). HIF-1a transcriptionally upregulates

PDK, which suppresses TCA cycle activity while driving the

Warburg effect through HIF-1a/PDK signaling (71). Moreover,

higher expression levels of PGC-1a or mitochondrial complex II are

linked to poorer prognosis and early recurrence in patients with iCCA,

suggesting that oxidative mitochondrial metabolism supports CSC

populations in iCCA (72). In vitro studies on human iCCA cell lines

indicate a strong dependence on glutamine. To elucidate the role of

glutamine in iCCA, glutamine-independent derivative cell lines (GD

cells) were established. These studies showed that hypoxia-induced

resistance to cisplatin or gemcitabine was abolished in GD cells, an

effect attributed to reduced c-Myc expression, highlighting the role of

glutamine metabolism in chemoresistance development in CCA (73).

Unlike in HCC, decreased FASN expression was observed in

human iCCA and mouse models. Hydrodynamic injection of AKT/

Ras led to the development of both HCC and iCCA lesions in wild-

type mice but resulted exclusively in iCCA lesions in FASN

knockout mice (74). Furthermore, FASN ablation did not affect

iCCA development induced by AKT/Notch intracellular domain 1,

indicating that iCCA cells compensate for the absence of FASN by

upregulating lipoprotein lipase, CD36, and SLC27A to maintain

fatty acid levels. De Gauna et al. (75) observed that rapidly

proliferating human iCCA cells depend on lipid and lipoprotein

uptake for energy in vitro (76), and higher serum levels of CD36 are

linked to poorer survival outcomes in patients with iCCA (77). In

contrast, high FASN expression correlated with advanced disease

stages and lower survival rates in a cohort study involving 155

patients with iCCA from Srinagarind Hospital, Khon Kaen

University. Knockdown of FASN in iCCA cells reduced growth,

migration, and invasion capabilities in vitro (44).
3.5 Metabolism in tumor-associated
immune cells and HCC

The metabolism of tumor-associated immune cells is crucial in

HCC progression, with dysregulatedmetabolic byproducts from cancer

cells significantly impacting immune cells within the TME.

Accumulated glucose in the TME enhances CD8+ T cell function by

upregulating the costimulatory molecule CD27 through
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mTOR-FOXM1 signaling, as shown in immunocompetent

orthotopic and spontaneous HCC models (78). Meanwhile, lactate, a

byproduct of glycolysis, promotes regulatory T cell (Treg) stability and

function through lactoylation of Lys72 in MOESIN, whereas reducing

lactate levels decreases Treg induction, bolsters anti-tumor immunity,

and limits tumor growth (79). Additionally, HCC cells secrete

substantial amounts of adenosine, which, in conjunction with

granulocyte-macrophage colony-stimulating factor (GM-CSF) from

activated tumor-associated macrophages (TAMs), suppresses the

immune function of T cells and myeloid cells (80, 81).

Nutrient depletion represents another key mechanism through

which tumors suppress immune responses. Glutamine metabolism is

vital for both proliferating cancer cells and activated CD8+ T cells. In

the TCGA HCC cohort, a higher expression score for genes involved

in glutamine metabolism was associated with poorer patient

prognosis. In vitro co-culture studies demonstrated that glutamine

deficiency in the TME induces mitochondrial dysfunction and

apoptosis in CD8+ T cells, compromising their tumor-killing

capabilities (82). HCC cells compete with CD8+ T cells for

glutamine, reducing T cell numbers and impairing their cytolytic

function (83). Beyond glutamine, glucose availability is also essential

for the metabolic fitness of tumor-infiltrating cytotoxic CD8+ T cells

(84). Hypoxia in HCC further contributes to adenosine accumulation

and extracellular secretion, exacerbating immune suppression.

Nutritional status within liver cancer tissues also influences

macrophage polarization between anti-tumor M1-like macrophages

(M1j) and pro-tumorM2-like macrophages (M2j), with low ferrous

iron levels favoring M2j polarization (85). The hypoxic environment

of HCC drives tumor cells to outcompete macrophages for iron by

upregulating the transferrin receptor (TFRC), the primary receptor

for transferrin-mediated iron uptake, leading to M2-like TAM

polarization in vitro (86). Thus, liver cancer cells not only dampen

anti-tumor immune activity through nutrient competition but also

reshape the metabolic phenotype of immune cells, effectively

“stressing” them to sustain tumor growth, thereby facilitating liver

cancer development and progression.

Collectively, these metabolic adaptations enable HCC cells to

thrive in the TME, driving tumor growth and metastasis. These

insights deepen the understanding of HCC’s metabolic complexity

and highlight novel potential targets for the diagnosis, treatment,

and prognosis of HCC.
3.6 Brief summary of metabolism in PLC

Carcinogenic factors disrupt hepatocyte metabolism, initiating

HCC, while cancer cells further drive tumor progression through

metabolic reprogramming. The reprogramming of glucose, lipid, and

amino acid metabolism in HCC cells is intricate and interconnected,

with these metabolic pathways mutually reinforcing each other. The

interaction between tumor cells and immune and stromal cells creates

a complex tumor microenvironment, resulting in various malignant

outcomes such as drug resistance, radiotherapy resistance, and tumor

recurrence. The similarities and differences in the metabolic

reprogramming of HCC and iCCA indicate that therapeutic

approaches for these cancers can be informed by each other’s
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treatment strategies while also requiring differentiation. For instance,

Sorafenib has shown some efficacy against both HCC and iCCA in

vitro, but its clinical effectiveness in iCCA has been limited, restricting

its broader application (87). This limitation has also driven research

into combination therapies aimed at enhancing Sorafenib’s

therapeutic effects on iCCA (88).

Metabolic classification can thus aid in understanding tumor

metabolic heterogeneity and guide the development of personalized

treatment strategies. Advances in omics technologies have enabled

multi-omics approaches that integrate genome, transcriptome,

metabolome, and single-cell analyses to elucidate the distinct

metabolic landscapes of HCC, leading to the identification of

novel prognostic and therapeutic targets. However, these findings

urgently require validation through preclinical studies and clinical

trials to ensure their effective translation into clinical practice,

thereby expanding treatment options for liver cancer.
4 Metabolism and MASLD

MASLD is a clinicopathological syndrome characterized by

excessive fat accumulation in hepatocytes, excluding alcohol and

other established liver-damaging factors, and is closely linked to the

development of liver cancer. A 21-year longitudinal study by Allen

and colleagues in Olmsted County, Minnesota (1997–2016),

compared cancer incidence in adults with MASLD to those

without the condition, revealing a nearly threefold higher risk of

developing cancer among patients with MASLD. The highest risk

was for liver cancer, followed by gastrointestinal and uterine cancers

(89). The association between MASLD and cancer risk is even

stronger than that observed with obesity alone, with a similar

correlation found in a Korean population study (90). Metabolic

dysfunction-associated steatohepatitis (MASH), a more severe form

of MASLD characterized by inflammation, fat accumulation, and

hepatocyte injury, significantly elevates the risk of HCC. In patients

with MASH and cirrhosis, the cumulative incidence of HCC ranges

from 2.4% to 12.8% over a 7-year period, whereas patients with

non-cirrhotic MASLD have a cumulative HCC mortality of 0% to

3% over a span of up to 20 years (91). Approximately 1% of MASH-

associated liver cancer cases involve the development of both HCC

and CCA. With the global rise in obesity, MASLD/MASH is

projected to become the leading cause of HCC in the near future.

Obesity, defined as a body mass index (BMI) of 30 or more, and

severe obesity (BMI over 40), significantly elevate the risk of liver

cancer. A large U.S. cohort study with 2,162 liver cancer cases reported

a 75% increase in liver cancer incidence among obese individuals, with

a higher prevalence in men than women (92). Visceral fat, which

surrounds abdominal organs such as the liver and pancreas,

contributes to fatty liver disease (93, 94), disrupted lipid and glucose

homeostasis, and insulin resistance, particularly when metabolized

through the portal vein (95). In patients with MASH, the

accumulation of toxic saturated fatty acids and ceramides in the liver

impairs hepatocyte function. The breakdown of long-chain fatty acids

in peroxisomes generates reactive oxygen species (ROS) and toxic lipid

intermediates, damaging the mitochondrial respiratory chain, leading

to cytochrome c release and apoptosis (96, 97). Furthermore, ROS and
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oxidative stress can harm the endoplasmic reticulum, activating

proteases that cause severe hepatocellular injury and cell death.

Insulin resistance and hyperglycemia contribute to the upregulation

of insulin and insulin-like growth factor 1 (IGF-1), which stimulate

hepatocyte proliferation and inhibit apoptosis through activation of the

PI3K and MAPK signaling pathways (98).

Dysregulation of signaling pathways in MASLD is a key factor in

liver cancer development. Notch signaling, implicated in MASH-

associated fibrosis, plays a significant role in MASLD progression

(99–101). Zhu et al. demonstrated that MASH-induced sustained

Notch activation promotes tumorigenesis even without genomic

driver mutations in genes like CTNNB1 or Notch pathway

components (102). Teresa Auguet and colleagues further explored

the correlation between Notch signaling and MASLD severity, finding

that the expression of Notch proteins and ligands was positively

associated with genes involved in hepatic lipid metabolism and Toll-

like receptor expression (103). Additional pathways, including TNFa,
IL6, and androgen-mediated signaling, contribute to increased hepatic

cell turnover. The combined effects of ROS, oxidative stress, and

chronic inflammation increase the likelihood of DNA mutations,

with genetic instability in patients with MASH estimated to be 10 to

20 times higher than in those withMASLD.Mutations in genes such as

PNPLA3, TM6SF2, MBOAT7, GCKR, HSD17b13, and MARC1 are

commonly found in patients with MASH (98, 104). Evidence suggests

that the development of HCC driven by MASH is a multifactorial

process involving disrupted lipid metabolism, mitochondrial

dysfunction, oxidative stress, inflammatory signaling, and even the

influence of the gut microbiota (Figure 3).
5 Therapeutic strategies targeting
metabolic reprogramming in PLC

Metabolic reprogramming is a key target in cancer therapy,

leading to the development and FDA approval of various drugs

targeting specific metabolites or metabolic pathways for PLC

treatment. In vitro, preclinical, and clinical studies have explored

metabolic targets for PLC therapy (Table 1).
5.1 Targeting the glucose metabolism

Metformin, commonly used for glycemic control in patients with

diabetes, has shown significant anti-liver cancer effects. In vitro

studies demonstrate that metformin inhibits HCC cell proliferation,

migration, and invasion, reduces tumor growth in xenograft mouse

models, and extends survival (105, 106). Clinical trials indicate that

metformin therapy can lower the incidence of type 2 diabetes (107).

In iCCA, metformin reduces cancer stem cell (CSC)-associated

marker expression and suppresses tumor growth in mouse models

(72). Currently, three ongoing clinical trials are investigating

metformin’s effects in HCC (NCT03184493, NCT04033107,

NCT04114136), and a Phase IB/II trial is underway for iCCA

(NCT02496741). Approximately 20% of cholangiocarcinomas

harbor IDH1 and IDH2 mutations; ivosidenib has been approved

for treating IDH1-mutant CCA.
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Targeted therapies against GLUT1 have been evaluated for HCC

and CCA treatment. Local administration of the Glut1 inhibitor

BAY-876 effectively reduces glucose uptake, proliferation, and

epithelial-mesenchymal transition in mouse HCC models. The

mTOR inhibitor everolimus impedes glucose uptake and tumor

angiogenesis by downregulating HIF-1a expression. Additionally,

resveratrol enhances the efficacy of sorafenib in HCC by suppressing

HK2 expression (108). Similarly, 2-deoxy-D-glucose (2-DG), a

glucose analog, sensitizes mouse liver tumors to sorafenib by

targeting HK2 activity (109).
5.2 Targeting the lipid metabolism

Elevated lipid synthesis is a hallmark of PLC, making it a major

focus of metabolic therapies. Sterol regulatory element-binding protein

1c (SREBP-1c) is a key regulator of lipogenesis; its inhibition induces

cell cycle arrest and apoptosis in HCC, whereas overexpression

promotes tumor proliferation (47). Fatostatin, a small molecule that

inhibits SREBP activation, reduces body weight, blood glucose, and

liver fat accumulation in obese ob/ob mice (110) and suppresses

prostate cancer growth and metastasis in mouse models (47, 111).

Lipastatin derivatives, such as FGH10019 (compound 24), have shown

promise due to their high water solubility and membrane permeability,

positioning them as seed molecules for developing anti-SREBP drugs

(112). FASN inhibitors, such as TVB3664, prevent HCC development

driven by PTEN/c-MET or AKT/NRAS mutations and enhance the

efficacy of sorafenib or cabozantinib in c-Myc-driven HCC (113).

Conserved lipid kinases SPHK1 and SPHK2 produce sphingosine-

1-phosphate (S1P), which supports cancer cell survival. In a Phase I
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clinical trial for advanced solid tumors, a partial response was observed

in a patient with advanced CCA treated with the S1P inhibitor

ABC294640. Ongoing studies include a Phase I/IIA trial in iCCA

(NCT03377179) and a Phase II trial in HCC (NCT02939807) (114).
5.3 Targeting the amino acid metabolism

Crisantaspase, an anti-leukemia agent that depletes cellular

glutamine, effectively reduced glutamine availability and inhibited

HCC growth in xenograft mouse models when combined with

methionine-L-sulfoxide (115). Glutaminase 1 (GLS1) facilitates the

conversion of glutamine to glutamate, and co-treatment with the GLS1

inhibitor CB-839 and the glutamine transporter inhibitor V-9302

induced apoptosis in mouse liver cancer cells and suppressed HCC

xenografts (116). Hydroxychloroquine, an autophagy inhibitor

approved for rheumatoid arthritis, demonstrated superior efficacy in

a Phase II clinical trial for advanced HCC, with a combination of

sorafenib and hydroxychloroquine achieving a response rate of

25%, compared to 2% with sorafenib alone (NCT03037437).

Ongoing trials are evaluating the combination of trametinib (a MEK

inhibitor) and hydroxychloroquine in KRAS mutation-resistant

CCA (NCT04566133).
5.4 Targeting the metabolism of tumor-
associated immune cells

The interaction between cancer cells and immune cells within

the TME often limits the effectiveness of immunotherapy. The
FIGURE 3

Metabolic reprogramming drives MASLD progression. In MASLD and its more advanced form, MASH, lipid toxicity and insulin resistance create a
microenvironment conducive to HCC development. Activation of both innate and adaptive immune responses, along with cytokine release and
CD8+ T cell infiltration, promotes the expression of genes associated with cell proliferation, migration, and survival. Key regulatory molecules such
as SOCS3 and PTEN are downregulated, failing to inhibit oncogenic signaling pathways in liver cancer. A high-fat diet and excessive carbohydrate
intake exacerbate pro-inflammatory cytokine profiles and increase DNL in the liver, promoting lipid peroxidation and ultimately leading to cirrhosis
and liver cancer.
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integration of immune and metabolic therapies has emerged as a

promising strategy. In a low-glucose TME, tumor cells produce

lactic acid through glycolysis, which is absorbed by Tregs via

monocarboxylate transporter 1 (MCT1), facilitating NFAT1

translocation into the nucleus and upregulating PD-1 expression.

In contrast, effector T cells downregulate PD-1 expression, leading
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to immune escape by activated Tregs expressing PD-1, which

contributes to therapeutic failure (117). Combining the MCT1

inhibitor AZD3965 with anti-PD-1 therapy offers a novel

approach to overcome this challenge.

IFNa can inhibit HIF1a signaling to decrease glucose

consumption by tumor cells, resulting in a higher-glucose TME.
TABLE 1 Clinical trials on metabolic targets in PLC.

Metabolic Pathway
Metabolic
Target

Compounds Cancer Type
Clinical Trials or
Approved Drugs

References

Glycolysis

Glut1 Aspirin HCC FDA approved drug (122, 123)

mTOR Everolimus CCA
FDA approved
cancer drug

(124)

PDK Dichloroacetate
Recurrent and/or metastatic

solid tumors
NCT00566410 (125)

MCT1 AZD-3965 Advanced cancer NCT01791595 (126)

TCA cycle

Mitochondrial
complex I

Metformin
HCC recurrence after hepatic

resection, Advanced
solid tumors

NCT03184493

(127, 128)

NCT02145559

NCT04033107

NCT02672488

NCT02496741

IDH1/2

AG120(Ivosidenib)
Previously treated patients with

nonresectable or
metastatic CCA

NCT02989857

(129–131)

NCT06081829

NCT05876754

NCT04088188

AG120(Ivosidenib) combined
with Nivolumab/Ipilimumab

Advanced solid tumors
(including CCA)

NCT05921760

NCT02073994

NCT05921760

NCT02073994

Metformin + chloroquine CCA CCA

Lipid metabolism

FASN TVB2640 MASLD NCT03938246 (111, 112, 132)

HMG-
CoA reductase

Pravastatin HCC

NCT01075555

(133, 134)

NCT01357486

NCT01418729

NCT01903694

Atorvastatin
HCC recurrence after
curative treatment

NCT03024684

Simvastatin HCC in patients with cirrhosis NCT02968810

Statin
HCC recurrence after
liver transplantation

NCT03490461

SPHK2 ABC294640
CCA, CCA, advanced

solid tumor

NCT03377179

(114)NCT01488513

NCT02939807

Amino acid metabolism

Glutaminase CB-839 HCC NCT02071862

(116)
Glutamine

DRP-104 combined
with Durvalumab

Advanced fibrolamellar HCC NCT06027086
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This increased glucose availability stimulates CD27 expression on

CD8+ T cells via mTOR-FOXM1 signaling, thereby enhancing

cytotoxic T cell activity in immunocompetent and spontaneous

HCC models. Consequently, IFNa and anti-PD-1 combination

therapy represents a promising strategy for HCC treatment (78).

Additionally, ongoing clinical trials are investigating AG120

(ivosidenib) in combination with nivolumab/ipilimumab and the

glutamate analog DRP-104 with durvalumab, further exploring the

potential of combined metabolic and immune-targeted therapies.
5.5 Targeting the MASLD

Given the association between obesity, MASLD, and increased

HCC risk, strategies such as caloric restriction, weight loss, and

diabetes management are essential for HCC prevention. Short-term

fasting (24–72 hours) or intermittent fasting has been investigated as

a potential approach to prevent or treat HCC. The underlying theory

is that during energy deprivation, healthy cells halt growth and enter

maintenance and repair modes, which protects them from

chemotherapy or radiation-induced damage. In contrast, cancer

cells persist in their growth despite nutrient scarcity, making them

more vulnerable to anti-cancer therapies (118). In various cancer

models, short-term fasting has been shown to reduce chemotherapy-

related toxicity, enhance the efficacy of chemotherapy and radiation,

and improve survival rates in animal studies. In a DEN-induced liver

cancer rat model, intermittent fasting significantly decreased the

number and size of precancerous nodules after 52 weeks of

observation (119). Another study demonstrated that short-term

fasting led to a temporary reduction in liver weight and regression

of precancerous liver lesions by decreasing hepatocyte volume and

proliferation and inducing apoptosis (120). However, fasting followed

by refeeding can paradoxically accelerate hepatocarcinogenesis,

potentially due to compensatory cell proliferation. For instance,

adding three cycles of 3-day fasting to a tumor-promoting regimen

doubled the incidence of HCC compared to control rats. Similarly,

refeeding after fasting hastened HCC development in response to a

sublethal dose of DEN (20 mg/kg), suggesting that fasting followed by

refeeding promotes hepatocyte turnover, thereby increasing HCC

risk, which contrasts with the effects seen in other organs (121).

Overall, research on metabolic reprogramming in cancer is

gradually uncovering the ways tumor cells exploit metabolic

pathways to support survival and proliferation, providing a

scientific foundation for metabolic-based therapeutic strategies.

From mitochondrial function and the roles of specific metabolic

enzymes to the interplay between metabolism and the immune

system, these studies collectively outline a broad landscape for

future cancer treatments. The findings suggest that metabolic

therapy could become a key component of a comprehensive

cancer treatment strategy.
6 Conclusions and prospects

In summary, metabolic reprogramming is pivotal in the

pathogenesis of PLC, characterized by increased glycolysis,
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disrupted lipid metabolism, and altered amino acid pathways,

with intricate interactions involving the TME and immune

system. Metabolic dysfunction associated with MASLD heightens

liver cancer risk, while metabolite exchange between tumor and

immune cells facilitates immune evasion and tumor progression.

However, as with other malignancies, treating liver cancer

through metabolic intervention presents significant challenges.

Firstly, since metabolism is essential for the survival of all cells,

therapies must selectively target cancer cells while preserving

normal cellular function. Secondly, the inherent adaptability and

heterogeneity of tumor metabolism make liver cancer prone to

developing drug resistance. Thus, a precise understanding of tumor

subtype-specific metabolic traits and employing combination

therapies to minimize resistance are critical.

Future liver cancer treatment strategies must evolve to address

the complexities of metabolic reprogramming. Integrating

metabolomics, genomics, and proteomics will facilitate the

identification of more specific and effective therapeutic

targets. Furthermore, combining metabolic therapies with

immunotherapy is anticipated to be a major research focus,

aiming to enhance immunotherapy responses and overcome

resistance by modulating the metabolic state of the TME.

Continuous investigation into the metabolic regulatory networks

of liver cancer will support more accurate disease classification,

innovative metabolic therapies, and improved clinical outcomes.
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