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Creating an interactive database
for nasopharyngeal carcinoma
management: applying machine
learning to evaluate metastasis
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Yanbo Sun, Jian Tan, Cheng Li, Di Yu and Wei Chen*

Department of Otorhinolaryngology, The Central Hospital of Wuhan, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China

Objective: Nasopharyngeal carcinoma (NPC) patients frequently present with
distant metastasis (DM), which is typically associated with poor prognosis. This
study aims to develop and apply machine learning models to predict DM, overall
survival (OS), and cancer-specific survival (CSS) in NPC patients to provide
optimal tools for improved predictive accuracy and performance.

Methods: We retrieved over 8,000 NPC patient samples with associated clinical
information from the Surveillance, Epidemiology, and End Results (SEER)
database. Utilizing two methods for handling missing values—imputation or
deletion—we created various cohorts: DM-all, DM-slim, OS-all, OS-slim, CSS-
all, and CSS-slim. Five machine learning models were deployed for the binary
classification task of DM, and their performance was evaluated using the area
under the curve (AUC). For the survival prediction tasks of OS and CSS, we
constructed 45 combinations using nine survival machine learning algorithms.
The Concordance Index (C-index), 5-year AUC, and Brier score assessed model
accuracy. Patients were stratified into two risk groups for survival analysis, and the
survival curves were presented.

Results: This study examines the relationships between clinical factors and
survival in NPC patients. The analysis, visualized through forest plots, indicates
that demographic and clinical variables like gender, marital status, tumor grade,
and stage significantly affect metastatic risks and survival. Specifically, factors
such as advanced stages increase metastasis and survival risks, while enhanced
treatments improve survival rates. In the cohort for DM prediction, results
revealed that the random forest model was the most effective, with an AUC of
0.687. In contrast, when predicting overall survival (OS), the random survival
forest (RSF) model consistently showed superior performance with the highest
mean C-index of 0.802, a 5-year AUC of 0.857, and a Brier score of 0.167.
Similarly, for cancer-specific survival (CSS) prediction, the RSF model
demonstrated a mean C-index of 0.822, a 5-year AUC of 0.884, and a Brier
score of 0.165. An online Shiny server was developed to allow the models to be
used freely and efficiently via http://npcml.shinyapps.io/NPCpre.
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Conclusion: This study successfully established an online tool by machine
learning models for NPC metastasis and survival prediction, providing valuable
references for clinicians.

nasopharyngeal carcinoma, distant metastasis, machine learning, random survival
forest, survival prediction

1 Introduction

Nasopharyngeal carcinoma (NPC), with an incidence that is
steadily increasing, is among the most common cancers affecting
the human head and neck (1). Although it is relatively rare globally,
NPC is notably prevalent in Eastern and Southeastern Asia (2). In
areas with high incidence, rates can reach 15-50 per 100,000 people
(3). Epstein-Barr virus (EBV) infection is considered the primary
cause of NPC, with the virus utilizing various strategies to support
the immune escape during both latency and productive infection
(4). Factors such as smoking, preserved foods, and air pollution also
contribute to the development of NPC (5). Unlike other cancers,
surgical resection is not the primary treatment option for NPC due
to its inaccessible anatomical location. Instead, radiotherapy, either
alone or combined with chemotherapy, is the mainstay treatment
for early or non-metastatic NPC (6). Treatment protocols differ
significantly between patients with non-metastatic NPC and those
with recurrent or metastatic disease. For metastatic NPC, anti-PD-1
monoclonal antibodies have effectively improved survival. A recent
meta-analysis found that the overall response rate of metastatic
NPC was 73% when anti-PD-1 antibodies were combined with
Gemcitabine and Cisplatin (7). These treatment variations between
non-metastatic and metastatic NPC underscore the importance of
accurate predictions for NPC metastasis. Furthermore, accurate
predictions of OS and CSS help customize treatments and improve
patient prognoses. Early and aggressive interventions for
individuals identified as high-risk for metastasis or poor survival
can prolong life and minimize complications.

Recently, machine learning (ML) has significantly transformed
the field of survival prediction due to its ability to process these non-
linear interactions within data. For instance, a stacked predictive
ML model demonstrated an 85.9% accuracy in stratifying NPC
patients into survival probability groups (8). In another study,
survival support vector machines and random survival forests
were used to predict NPC survival outcomes, with C-index values
0f 0.785 and 0.729, respectively (9). These studies demonstrate that
ML algorithms can accurately predict survival outcomes for patients
with NPC. Despite these advancements, there remains a clear gap in
the availability of an ML-based online tool for predicting metastasis
and survival in NPC. Our study seeks to address this gap by
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developing online tools that apply popular ML algorithms for
NPC metastasis and survival prediction, aiming to advance
treatment strategies and improve patient care through more
precise prognostic assessments.

Our research employed clinical variables to develop 5 binary
machine learning classifiers for predicting metastasis and 45 survival
machine learning classifiers to predict OS and CSS. Evaluations on
testing datasets have shown that these classifiers can accurately
predict outcomes. To enhance accessibility and usability, we created
an online web server. This platform enables clinicians and patients to
easily access these predictive tools, facilitating better decision-making
in treatment strategies and improving patient outcomes through
timely and personalized interventions.

2 Materials and methods
2.1 Data selection

We conducted a retrospective study on NPC patients using data
from the SEER program. The SEER dataset, covering the period
from 2000 to 2021 and including records from 17 registries,
comprises over 9 million tumor records. This dataset mirrors the
overall demographic composition, cancer incidence, and mortality
rates across the nation. Access to the SEER database was granted
following a formal application process, and the data was retrieved
using SEER*Stat software. Since SEER is a publicly available
database with de-identified data, institutional review board
approval and formal patient consent were not required for this
study. This study adhered to the World Medical Association’s
Declaration of Helsinki for Ethical Human Research.

The inclusion criteria for NPC samples in the SEER database
included the following: (1) The primary site disease code for selecting
NPC is CI1 (10). (2) The selected histology subtypes in patients
included keratinizing squamous cell carcinoma (KSCC),
differentiated non-keratinizing carcinoma (DNKC), undifferentiated
non-keratinizing carcinoma (UNKC), and Others. (3) NPC was the
first and only primary malignancy. (4) Additionally, patients’ survival
time should be over 0 months. (5) We excluded patients with missing
or unknown survival data and those whose reporting source was
autopsy or death certificate only.
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2.2 Variables of interest

This study organized, categorized, and preprocessed the
downloaded clinical baseline data. The demographic variables
examined included age (continuous variable), sex (male or
female), race (Hispanic, white, black, American Indian or Alaska
Native (AA), and Asian or Pacific Islander (AP)), and marital status
(partnered: married or domestic partner; previously partnered:
divorced, separated, widowed; and single). The clinical variables
include histological subtypes, tumor site, tumor grade, Tumor-
node-metastasis (TNM) staging system, overall stage, and tumor
size. Histological subtypes were classified into DNKC, KSCC,
UNKGC, and Others. Tumor sites were detailed as anterior wall,
lateral wall, overlapping lesion, posterior wall, superior wall, and
unspecified sites. Tumors were graded as Grade I, Grade II, Grade
III, and Grade IV. TNM staging system was delineated as T1 to T4,
NO to N3, and M0 to M1. Tumor size (continuous variable) was also
included. Treatment Variables included Surgery for the primary site
(SurgPS), Surgery for lymph nodes (SurgLN), Chemotherapy,
Radiotherapy, and Time-to-treatment. SurgPS was categorized as
No Surgery, Local Excision, Pharyngectomy, and unspecified
Surgery. SurgLN included Biopsy, Lymph Nodes Removed, and
None. Chemotherapy was recorded as No/Unknown and Yes, while
radiotherapy was categorized as Beam Radiation, Other Radiation,
and No/Unknown. Time-to-treatment (time from diagnosis to
treatment in days) was quantified as Timely (<30 days),
Intermediate (30-90 days), and Long (>90 days).

The study’s primary outcomes focused on Distant Metastasis
(DM), Overall Survival (OS), and Cancer-Specific Survival (CSS)
among patients with NPC. DM was defined as M1 in the TNM
staging system. OS was defined as the duration from diagnosis to
death from any cause, while CSS was defined as the time from
diagnosis until death directly attributable to NPC. In the DM
cohort, demographic variables included age, gender, race, and
marital status, while clinical variables included histology subtype,
site, grade, tumor size, T stage, and N stage. For the OS and CSS
cohorts, demographic variables included age, gender, race, and
marital status, and clinical variables included histology subtype,
site, grade, tumor size, T stage, N stage, and M stage. Additionally,
treatment variables included primary surgery (SurgPS), lymph node
surgery (SurgLN), chemotherapy, radiotherapy, and time-
to-treatment.

2.3 Cohort separation and data preparation

Managing missing values in datasets is a widely debated topic
within data science. Our research used the K-Nearest Neighbors
method to impute missing values. Alternatively, another strategy
involves removing variables with more than 30% missing values and
excluding samples with any missing values. These methodologies
led to the formation of two distinct sets of cohorts for each group.
For the DM group, we created the DM-all cohort, where missing
values were imputed, and the DM-slim cohort, which consists only
of samples with complete data. For the OS group, we created the
OS-all cohort with imputed missing values and the OS-slim cohort
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with only complete data. Similarly, the CSS-all cohort includes
imputed data for the CSS group, while the CSS-slim cohort
comprises only fully observed data. These approaches allow for
comprehensive data analysis while catering to different data
integrity preferences. Subsequently, these cohorts were randomly
divided into training (70%) and testing (30%) subsets.

2.4 Models for binary classification of
DM status

Due to the imbalance ratio of distant metastasis vs. non-distant
metastasis, we employed a method to balance the dataset. This study
applied the Synthetic Minority Oversampling Technique (SMOTE)
to the metastasis samples in the training sets. SMOTE offers four
key advantages over other techniques. (1) It has been widely
validated and is known for effectively addressing class imbalance
in medical datasets, including those involving survival analysis and
binary classification problems (11). (2) A significant benefit of
SMOTE is its simplicity and transparency, as it generates
synthetic samples for the minority class based on the k-Nearest
Neighbors algorithm. (3) SMOTE provides a good balance between
efficiency and performance. While generative adversarial networks
show advantages for handling imbalanced datasets (12), SMOTE is
more straightforward to implement. (4) SMOTE enhances the
representation of minority classes without significantly altering
the overall data distribution, thereby helping to maintain model
generalizability. In this study, SMOTE was only applied to the
training set.

In this study, we constructed models using five machine
learning algorithms: Gradient Boosting Machine (GBM), Decision
Tree (Tree), K-Nearest Neighbors (KNN), Random Forest (RF),
and Generalized Linear Model (GLM). We trained five models
using the training sets from DM-all and DM-slim cohorts and then
tested the models on testing sets from DM-all and DM-slim
cohorts. To determine the ideal model parameters, we used a
random hyperparameter search and average AUC values under 5-
fold cross-validation for every methodology. Additionally, we used
plots to assess the relative importance values of clinical variables
using the random forest model.

2.5 Models for survival classification of OS
and CSS

In analyzing right-censored survival data, various machine
learning methods are employed to handle datasets effectively. The
“rfSRC” model utilizes the Random Survival Forest methodology,
constructing an ensemble of survival trees that enhance prediction
accuracy through a collective voting mechanism (13). The “CoxPH”
model applies the traditional Cox Proportional Hazards framework
to efficiently estimate hazard ratios without defining a baseline
hazard (14). The “CoxBoost” model extends this approach by
incorporating boosting techniques to improve the performance of
the Cox proportional hazards model. The “GBM” method employs
Gradient Boosting Machine principles, adeptly correcting
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prediction errors sequentially with an assembly of decision trees,
effectively managing nonlinear relationships within censored
survival data. Additionally, “superPC” utilizes principal
component analysis optimized for survival outcomes,
concentrating on the most significant predictors. The “stepCox”
method streamlines the variable selection process within the Cox
model, enhancing accessibility and ease of use. Regularization
techniques such as “Lasso”, “Ridge”, and “Enet” are implemented
to prevent overfitting and improve model accuracy by imposing
penalties on complex models, thus enhancing their generalization
across different datasets. After building individual models for each
survival machine learning algorithm, we performed model
combinations by integrating their outputs and calculating the
mean of two models. For example, if the predicted values from
the rfSRC and CoxPH models are 0.6 and 0.8, respectively, the
combined prediction from the rfSRC_plus_CoxPH model would be
0.7. This combination approach resulted in a total of 45 machine
learning models, consisting of 9 individual models and 36
combined models.

2.6 Evaluation of survival machine
learning models

The OS-all, OS-slim, CSS-all, and CSS-slim cohorts were
randomly separated into training (70%) and testing (30%) sets.
We followed a comprehensive machine learning workflow (MLW)
for training and testing: 45 survival machine learning models were
trained on the training set and validated on the testing set. We
conducted cross-validation within the training set to reduce
potential bias from the random split. Specifically, we divided the
training set into five folds, where in each iteration, one fold served as
the validation set while the remaining four folds were used for
training. This MLW process ensured that all samples in the dataset
were used for testing. The machine learning combinations were
validated by assessing the performance of discrimination and
calibration between the five folds of training and validation sets.
The C-index, the AUC at five years, and the Brier score were used to
assess the models’ discriminating ability. A higher C-index and
AUC prove the model’s predictions and actual events agree.
Conversely, a lower Brier score indicates higher accuracy in
survival data. Finally, the importance values of clinical variables
in the models were plotted.

2.7 Survival differences of different
risk groups

The random survival forest model was used for every patient in
the testing set to generate the overall risk score. Patients were divided
into low- and high-risk categories using the median risk score as a
guide. Using log-rank tests and Kaplan-Meier survival curves, the OS
and CSS of patients in risk categories were plotted and contrasted.
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2.8 Online web server by Shiny

To make the predictive models accessible, we developed an
online web server using the Shiny package in R. We formatted the
data to meet Shiny’s input and output requirements. Machine
learning models were connected to provide real-time predictions.
A simple interface was created with fields for clinical variables and
results for predicted DM risk scores and survival. The online web
server was hosted on a cloud server to ensure easy access and
scalability. Our online platform allows medical professionals and
researchers to offer patients with NPC more tailored treatment
plans and risk evaluations.

3 Results

3.1 The association of variables
with outcomes

After screening, our study incorporated 6,709 nasopharyngeal
carcinoma (NPC) samples into the Disease Metastasis (DM) cohort,
characterized by 10 unique clinical variables. Additionally, we
analyzed 8,315 NPC samples in the Overall Survival (OS) cohort
and 8,186 samples in the cancer-specific survival (CSS) cohort, each
with 16 distinct clinical variables (Figure 1). We used a forest plot to
visualize the odds ratios (ORs) of various variables associated with
the metastasis of NPC (Figure 2A). Notably, being male, single, and
having a larger tumor size are associated with increased odds of
metastasis. Additionally, advanced T stages (T3, T4) and N stages
(N1, N2, N3) significantly elevate the odds of metastasis. Race also
plays a role, with White patients showing lower odds compared to
American Indian or Alaska Native (AA). These findings highlight
the influence of demographic, clinical, and tumor-specific variables
on the metastatic progression of NPC.

The forest plot from the univariate Cox proportional hazards
model highlights the influence of various factors on OS (Figure 2B).
Key findings reveal that older age and male gender are linked to
modest increases in hazard ratios. Specific racial groups such as
Asian or Pacific Islanders (AP), Blacks, and Hispanics exhibit
significantly better survival rates compared to AA. Tumors
located in the Lateral Wall, Posterior Wall, and Superior Wall
demonstrate improved survival compared to those in the Anterior
Wall. Contrary to most tumor types, higher tumor grades are
associated with enhanced survival. Advanced TNM staging and
larger tumor sizes, particularly when involving metastasis,
significantly elevate the risks. Treatment strategies also play a
crucial role: extensive surgeries and chemotherapy boost survival,
whereas time-to-treatment correlates with poorer outcomes.
Specifically, beam radiation markedly improves survival. Similar
associations of clinical variables with the survival outcome of
Cancer-Specific Survival (CSS) are observed through a forest
plot (Figure 2C).
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FIGURE 1

Flowchart of patient selection and model construction in this study.

3.2 Data preprocessing and
cohort separation

Our approach used the KNN method to impute missing values,
forming the Distant Metastasis (DM), Overall Survival (OS), and
Cancer-Specific Survival (CSS) cohorts, named DM-all, OS-all, and
CSS-all, respectively. Alternatively, we removed samples with any
missing values, thus creating the DM-slim, OS-slim, and CSS-slim
cohorts. Comprehensive baseline information for these cohorts can
be found in Supplementary Tables 1-Supplementary Tables 6.
Then, we divided the data set into the training and testing sets in
a 7:3 ratio using random sampling. For the predictive modeling
phase, the DM-all cohort included 4,699 patients in the training and
2,010 in the testing set, with 10 available variables. The DM-slim
cohort comprised 4,014 and 1,719 patients in the training and
testing sets, respectively, with 8 variables. In the OS-all cohort, 5,823
patients were allocated to the training and 2,492 to the testing set
with 16 variables. The OS-slim cohort included 3,605 patients in the
training set and 1,542 in the testing set, with 14 clinical variables.
Similarly, the CSS-all cohort had 5,732 patients in the training set
and 2,454 in the testing set with 16 variables. In comparison, the
CSS-slim cohort included 3,565 patients in the training set and
1,526 in the testing set with 14 clinical variables. These allocations
are designed to ensure robust training and validation phases,
enhancing the accuracy and reliability of our predictive models
across these specific cohorts.

3.3 Model performance for predicting DM

To develop predictive models for DM, we trained five different
machine learning algorithms on the training set of the DM-all
cohort. We evaluated their performance on the corresponding
testing set. Parameter tuning was conducted using five-fold cross-
validation within the training set, and the optimal models were
subsequently saved. The evaluation of model efficacy, based on
AUC scores, indicated that the random forest algorithm achieved
the highest score of 0.687 (Figure 3A). Analysis of feature
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importance in the random forest model revealed that N stage, T
stage, and tumor size were the most influential variables in
predicting DM (Figure 3B). Similarly, we trained and tested the
machine learning models for the DM-slim cohort. In this cohort,
the generalized linear model (GLM) yielded the highest AUC value
of 0.66 (Figure 3C). Clinical variables such as N stage, age, and T
stage were identified as having the most significant impact on DM
prediction in the DM-slim cohort (Figure 3D).

3.4 Model performance for predicting OS

The study’s OS-all dataset comprised 8,315 NPC samples with
16 clinical variables. These were randomly divided into a training
set containing 5,823 samples and a testing set containing 2,492. We
adopted a comprehensive machine learning workflow (MLW),
training 45 survival machine learning models on the training set
and validating their performance on the testing set using three key
metrics: the C-index, AUC, and IBS scores. To ensure robustness
and reduce bias from the random division, we performed cross-
validation within the training set by dividing it into five folds. In
each iteration, one fold was the validation set, and the remaining
four were used for model training. This procedure guaranteed that
every sample in the dataset was utilized for testing.

Among all model combinations in the OS-all cohort, the rfSRC
model achieved the highest average C-index value of 0.802, with
individual fold results ranging from 0.760 to 0.821 and testing at
0.771 (Figure 4A). The rfSRC model also excelled in 5-year AUC
(Figure 4B) and Brier score (Figure 4C), recording 0.857 and 0.167
respectively. For the OS-slim cohort, which included 3,605 patients
in the training set and 1,542 in the validation set with 14 clinical
variables, the rfSRC_plus_stepCox combination displayed the
highest mean C-index (Figure 4D) and 5-year AUC (Figure 4E)
values of 0.742 and 0.782, respectively. In terms of the Brier score
(Figure 4F), the rfSRC model stood out by showing the lowest mean
value of 0.198, indicating its high predictive accuracy. The rfSRC
model calculated each variable’s importance (VIMP) using the
VIMP method, which helped rank the variables by importance.
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The associations of clinical variables with distant metastasis (DM), overall survival (OS), and cancer-specific survival (CSS).
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Logistic regression analysis

was used for the DM analysis (A). Univariate Cox regression analysis was used for the OS (B) and CSS (C) analyses. Abbreviations: American Indian or
Alaska Native (AA); Asian or Pacific Islander (AP); Keratinizing Squamous Cell Carcinoma (KSCC), Differentiated Non-Keratinizing Carcinoma (DNKC),

Undifferentiated Non-Keratinizing Carcinoma (UNKC).

The six most critical variables identified in predicting OS-all were

Age, M stage, tumor size, T stage, chemotherapy, and radiation

(No) (Figure 4G). The six most critical variables identified in
predicting OS-slim were Age, M stage, T stage, radiation (No), N
stage, and radiation (beam radiation) (Figure 4H).
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3.5 Model performance for predicting CSS

The CSS-all dataset included 5732 patients in the training set and
2454 in the validation set, with 16 clinical variables. Among all 45

machine learning combinations, rfSRC performed the best, showing
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Five machine learning models for predicting the DM of NPC. (A) The AUC values of models in the testing set of the DM-all cohort. (B) The relative
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model (GLM).

the highest mean C-index (0.822), the highest 5-year AUC (0.884), and
the lowest Brier score (0.165) as illustrated in Figures 5A-C,
respectively. The CSS-slim dataset included 3565 patients in the
training set and 1526 in the validation set, with 14 clinical variables.
rfSRC-related models performed as the best model in this cohort,
showing the highest mean C-index (0.742), the highest 5-year AUC
(0.782), and the lowest Brier score (0.200), as shown in Figures 5D-F.
For the CSS-all dataset, the top three most important variables in
predicting outcomes were M stage, Age, and Tumor size, as shown in
Figure 5G. For the CSS-slim dataset, the top three most important
variables were the M stage, Age, and T stage, as shown in Figure 5H.

3.6 Survival analysis of subgroup analysis
based on risk stratification

We divided NPC samples into subgroups based on the median
predicted risk of death as determined by the machine learning model

Frontiers in Oncology
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(rfSRC). This division was done to highlight the benefits of risk
stratification. In conducting survival analyses of these different risk
subgroups, we observed distinct prognostic outcomes: individuals in
the high-risk group exhibited poorer prognoses, whereas those in the
low-risk group demonstrated better prognoses. This pattern was
consistently observed across various datasets: in OS-all (Figure 6A),
OS-slim (Figure 6B), CSS-all (Figure 6C), and CSS-slim (Figure 6D).

3.7 Development of an online distant
metastasis and survival estimate calculator

To facilitate its use by clinicians, we developed an online tool
using the ‘shiny’ package. This web server is available at http://
npcml.shinyapps.io/NPCpre. Upon entering the required clinical
parameters, the tool displays predicted rates of distant metastasis
(DM) and survival curves, illustrating changes in survival rates over
time. Figures 7A-C demonstrates the use of this tool for predicting
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The 45 machine learning combinations for predicting the OS in the OS-all and OS-slim cohorts. The C-index (A), 5-year AUC (B), and Brier score (C)
of models in the OS-all cohort. The C-index (D), 5-year AUC (E), and Brier score (F) of models in the OS-slim cohort. The importance values of

clinical variables in the random survival forest model from the OS-all (G)

DM and overall survival (OS). For instance, Figure 7A presents
a case from the SEER database of a real-world NPC patient with
ID 897528, who belongs to the testing cohort of our study
and is therefore not used in model training. The NPCpre web
server predicts that this patient’s DM probability is 0.068, and actual

Frontiers in Oncology

and OS-slim (H) cohort.

follow-up data confirmed that the patient did not develop
DM. Similarly, to showcase the prediction capability of our
tool regarding OS, we randomly selected two NPC patients
(62896440 and 9081770) from the testing cohort. Figure 7B
illustrates that the survival rate for patient 62896440 was
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The 45 machine learning combinations for predicting the CSS in the CSS-all and CSS-slim cohorts. The C-index (A), 5-year AUC (B), and Brier score
(C) of models in the CSS-all cohort. The C-index (D), 5-year AUC (E), and Brier score (F) of models in the CSS-slim cohort. The importance values of
clinical variables in the random survival forest model from the CSS-all (G) and CSS-slim (H) cohort.

predicted to drop significantly from 1 to 0.5 within the first
2.5 years, aligning with actual follow-up data indicating the
patient’s death approximately 1 year after the treatment.
Figure 7C reveals that patient 9081770 maintained a survival
rate higher than 0.5 for over 20 years, corroborated by follow-up
data showing this patient is still alive after over 13 years.
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The consistency between predictions from NPCpre and
actual follow-up data indicated our model’s and webserver’s
robustness. This tool provides a valuable resource, allowing
physicians and patients to individually and visually evaluate
the survival probabilities of each patient by common
clinical variables.
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FIGURE 6

KM curves of survival are based on the machine learning-based risk score. KM curves of groups of OS from OS-all cohort (A) and OS-slim cohort
(B). KM curves of groups of CSS from CSS-all cohort (C) and CSS-slim cohort (D).

4 Discussion

Accurately predicting distant metastasis (DM), overall survival
(0S), and cancer-specific survival (CSS) in patients with
nasopharyngeal carcinoma (NPC) is crucial for advancing
research in this field. These predictive capabilities allow for the
customization of treatments, planning of follow-ups, and
improvement of patient prognosis, particularly given the
treatment variations between non-metastatic and metastatic NPC.
The current study demonstrates the effectiveness of machine
learning (ML) models in accurately predicting DM, OS, and CSS
in NPC patients. To the best of our knowledge, this might be the
first online tool that utilizes ML models for assessing metastasis and
survival outcomes in NPC. This study shows the potential of
integrating artificial intelligence into clinical prognostics, offering
a more accessible and potentially precise method for healthcare
professionals to evaluate disease progression and survival rates.

DM, the primary cause of treatment failure in advanced NPC,
remains a significant challenge. Predicting DM is essential for
guiding individualized treatment plans for NPC patients.
Traditional methods have used genomic and clinical features for
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this purpose. For instance, a nomogram based on immune markers
(PD-L1+ CD163+, CXCR5, CD117) showed predictive
performance with a C-index of 0.729 in the validation cohort
(15). Another study’s nomogram achieved a C-index of 0.718 in
the validation cohort (16). Given the superior performance of
machine learning models over traditional nomograms, developing
machine learning models for predicting DM holds great promise for
enhancing predictive accuracy. Besides, these studies usually focus
on predicting DM after chemotherapy. However, the prediction of
DM at the primary diagnosis should also be included. In the current
study, we used machine learning models to predict the DM at
primary diagnosis instead of nomograms to predict DM after
treatment. We selected five machine learning algorithms to
predict DM, a binary classification task (non-metastasis or
metastasis). Despite adopting these machine learning models, the
number of variables in the SEER database for predicting DM at
primary diagnosis is limited. Our study used age, gender, race,
marital status, histology type, tumor site, tumor grade, tumor size, T
stage, and N stage.

The prognosis of cancer is influenced by multiple factors,
making traditional linear statistical models potentially unreliable
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FIGURE 7

Examples of Using NPCpre to Predict DM (A) and OS (B, C). Parameter Descriptions for Predicting DM (A). Age in years; Gender: Male (1), Female (2);
Race of Patient: Hispanic, American Indian or Alaska Native (AA), Asian or Pacific Islander (AP), Black, and White; Marital Status: Partnered, Previously
Partnered, Single; Histology Subtype: Keratinizing Squamous Cell Carcinoma (KSCC), Differentiated Non-Keratinizing Carcinoma (DNKC),
Undifferentiated Non-Keratinizing Carcinoma (UNKC), Others; Tumor Locations: Anterior wall, lateral wall, overlapping lesion, posterior wall, superior
wall, Not Otherwise Specified (NOS); Grade of Patient: | to IV; Tumor Size in centimeters; T Stages: 1 to 4; N Stages: O to 3. Additional Parameters
for Predicting OS (B, C). M Stage: 0 to 1; Surgery for the Primary Site (SurgPS): Local Excision, Pharyngectomy, Surgery Not Otherwise Specified, No
Surgery; Surgery for Lymph Nodes (SurgLN): O for None, 1 for Biopsy, 2 for Lymph Nodes Removed; Chemotherapy: 1 for No/Unknown, 2 for Yes;
Radiation: Beam Radiation, No Radiation, Other Radiation Types; Time-to-treatment: 1 for Timely (<30 days), 2 for Intermediate (30-90 days), 3 for
Long (>90 days). For example, plot (C) features a 36-year-old female, race AP, partnered, with UNKC subtype, tumor location NOS, Grade IV, tumor
size 4.5 cm, T1, N2, MO, did not receive SurgPS and SurgLN, received Chemotherapy and beam radiation. The days between diagnosis and treatment
were 30-90 days.

for predicting survival. In many studies, nomograms using
conventional models are prevalent tools for predicting the
survival of NPC patients. One research group developed a
nomogram using eight clinical variables to predict overall survival
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(OS) in patients aged 18 to 59 with NPC, reporting a C-index of 0.69
and a 5-year AUC of 0.729 (17). Another group provided interactive
nomograms for predicting OS in NPC, achieving a 5-year AUC of
0.74 and a C-index of 0.70 in their testing cohorts (18). A different
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nomogram, constructed using four independent risk indicators
(histology, radiation therapy, chemotherapy, and metastatic
status), reported AUC values of 0.733 for 3-year cancer-specific
survival (CSS) and 0.719 for 5-year CSS (19). Other research groups
have also constructed nomograms for OS prediction in NPC (20,
21). However, the main drawback of non-machine learning models
is their suboptimal performance, with C-index and AUC values
typically below 0.80.

To develop more advanced prediction models with C-index and
AUC values exceeding 0.80, researchers have begun adopting
several machine learning (ML) algorithms to predict NPC
prognosis. A review summarized various publications employing
ML for NPC management (22). Using 123 MRI images, one study
developed a radiomics nomogram by integrating a radiomics
signature, achieving a C-index of 0.863 for personalized risk
stratification (23). Another study applied neural networks to
analyze pathological microscopic features, reaching a C-index of
0.723 (24). Additionally, some research focuses on using clinical
factors, which are easier to implement in clinical practice. One
research group developed a stacked predictive ML model showing
an accuracy of 85.9%. At the same time, the XGBoost algorithm
achieved 84.5% accuracy after the training and testing phases (8).
Another study used a survival support vector machine and random
survival forest models to predict NPC survival, obtaining a C-index
of 0.785 for the survival-SVM model and 0.729 for the RSF model
(9). However, unlike nomogram-based studies, which are easily
accessible to clinicians, these ML-based studies have not provided
user-friendly tools, such as web applications, for broader
clinical use.

We tested different combinations of nine machine learning
algorithms (rfSRC, CoxPH, CoxBoost, GBM, superPC, stepCox,
Lasso, Ridge, and Enet) to identify the optimal model combinations
for survival prediction in NPC. The performance results showed
that the random forest survival (rfSRC) model and its combinations
had superior accuracy in predicting survival outcomes. For
predicting overall survival (OS), the best model achieved a C-
index of 0.802, a 5-year AUC of 0.857, and a Brier score of 0.167.
For predicting cancer-specific survival (CSS), the best model
achieved a C-index of 0.822, a 5-year AUC of 0.884, and a Brier
score of 0.165. These results outperform the models discussed in the
previous paragraph, either in terms of available variables or overall
performance. Furthermore, our models are publicly available for
easy use by clinicians and patients, as we have deployed them on an
online web server.

Based on the median predicted risk of death determined by the
rfSRC model, we found that individuals in the high-risk group
exhibited poorer prognoses. In contrast, those in the low-risk group
demonstrated better outcomes. However, there are limitations to
interpreting the Kaplan-Meier curves. One limitation is that
Kaplan-Meier curves are based on categorical groupings (e.g.,
high-risk vs. low-risk) and may not fully capture the continuous
nature of risk scores provided by the model. This categorization can
lead to simplistic information about individual risk levels.
Additionally, Kaplan-Meier curves do not account for competing
risks, such as death from causes other than NPC, which could affect
the interpretation of survival probabilities.
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Data preprocessing, including handling missing values, is
crucial in constructing machine learning models. Our study
employed two distinct strategies for handling missing data:
imputation and deletion. We utilized the KNN method to
estimate missing values for the imputation strategy. On the other
hand, our deletion strategy involved removing any variables with
more than 30% missing data and excluding any samples with
missing values. This approach resulted in a reduced dataset size.
Specifically, in the OS-all cohort, the data comprised 5,823 patients
in the training and 2,492 in the testing set, with 16 clinical variables
maintained. Conversely, the OS-slim cohort, formed under the
deletion strategy, included 3,605 patients in the training set and
1,542 in the testing set, with only 14 clinical variables. To compare
their efficacy, we independently constructed models on both the
imputation-generated and deletion-generated cohorts. The
evaluation of model performance revealed that the imputation-
based models consistently outperformed those generated from the
deletion strategy. This superior performance can be attributed to
the more significant number of variables and samples retained in
the imputation approach, which are crucial for enhancing the
predictive accuracy of machine learning models.

In this study, we developed machine learning models to predict
distant metastasis, overall survival, and cancer-specific survival in
patients with NPC. These models enhance patient stratification and
inform clinical decision-making by allowing healthcare
professionals to personalize treatment strategies based on
metastatic or survival status. Patients predicted to have metastatic
disease or worse survival outcomes may receive more aggressive
systemic treatments like combination chemotherapy, targeted
therapy, or immunotherapy. Conversely, those predicted not to
have metastatic disease can focus on local treatments such as
radiotherapy or concurrent chemoradiotherapy. By accurately
identifying metastatic and survival status, clinicians can select
treatments to optimize outcomes and minimize unnecessary
toxicity. The accessibility of our models via an online Shiny
server facilitates their integration into clinical practice. This
represents a significant step toward improving patient outcomes
through personalized, data-driven care.

Several limitations need to be addressed. Firstly, the SEER
database provides limited information on tumor genetic profiles
and biomolecular markers, essential for accurately assessing overall
survival (OS) and cancer-specific survival (CSS) outcomes. For
instance, incorporating genetic and biomolecular markers could
improve predictive accuracy and offer deeper insights. Secondly,
while metastasis information in the SEER database is recorded at
initial diagnosis, metastasis data from follow-up in non-metastatic
patients would be more valuable for this group. Thirdly, we lacked
an external dataset with a larger sample size to test the
generalization capability of our optimal model, and acquiring new
data may be necessary for further validation.

5 Conclusion

In conclusion, we have established an online web tool using
machine learning models that incorporate clinical features to
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predict metastasis and survival in NPC patients. This tool aims to
enhance decision-making in treatment strategies and improve
patient outcomes through timely and personalized interventions.
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