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Introduction: Volumetric modulated arc therapy (VMAT) total body irradiation
(TBI) allows for greater organ sparing with improved target coverage compared
to 2D-TBIl. However, there is limited evidence of whether improved organ
sparing translates to decreases in toxicities and how its toxicities compare to
those of the 2D technique. We aimed to compare differences in toxicities among
patients treated with TBI utilizing VMAT and 2D techniques.

Methods/materials: A matched-pair single-institution retrospective analysis of
200 patients treated with TBI from 2014 to 2023 was performed. Overall survival
(OS) and progression-free survival (PFS) were analyzed using the Kaplan—Meier
method and compared using log-rank tests. Differences in characteristics and
toxicities between the VMAT and 2D cohorts were compared using Fisher's
exact test.

Results: Of the 200 patients analyzed, 100 underwent VMAT-TBI, and 100
underwent 2D-TBI. The median age for VMAT-TBI and 2D-TBI patients was
13.7 years and 16.2 years, respectively (p = 0.25). In each cohort, 53 patients were
treated with myeloablative regimens (8—-13.76 Gy), and 47 were treated with non-
myeloablative regimens (2—-4 Gy). For the entire VMAT-TBI cohort, lung Dmean,
kidney Dmean, and lens Dmax were spared to 60.6% + 5.0%, 71.0% + 8.5%, and
90.1% + 3.5% of prescription, respectively. For the non-myeloablative VMAT-TBI
cohort, testis/ovary Dmax, brain, and thyroid Dmean were spared to 33.4% +
7.3%, 75.4% + 7.0%, and 76.1% + 10.5%, respectively. For 2D-TBI, lungs were
spared using partial-transmission lung blocks for myeloablative regimens. The
VMAT-TBI cohort experienced significantly lower rates of any grade of
pneumonitis (2% vs. 12%), nephrotoxicity (7% vs. 34%), nausea (68% vs. 81%),
skin (16% vs. 35%), and graft versus host disease (GVHD) (42% vs. 62%) compared
to 2D-TBI patients. For myeloablative regimen patients, rates of pneumonitis (0%
vs. 17%) and nephrotoxicity (9% vs. 36%) were significantly lower with VMAT-TBI
versus 2D-TBI (p < 0.01). Median follow-up was 14.3 months, and neither median
OS nor PFS for the entire cohort was reached. In the VMAT versus 2D-TBI cohort,
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the 1-year OS was 86.0% versus 83.0% (p = 0.26), and the 1-year PFS was 86.6%
and 80.0% (p = 0.36), respectively.

Conclusion: Normal tissue sparing with VMAT-TBI compared to the 2D-TBI
translated to significantly lower rates of pneumonitis, renal toxicity, nausea, skin
toxicity, and GVHD in patients, while maintaining excellent disease control.

KEYWORDS

VMAT TBI, total body irradiation (TBI), stem cell transplant (SCT), radiation therapy,
radiation toxicity, IMRT-based TBI, modern TBI

Introduction

Total body irradiation (TBI) is an integral component of
conditioning regimens for patients undergoing allogeneic
hematopoietic stem cell transplantation and has been shown to
improve outcomes including overall survival and lower treatment-
related mortality in patients with some type of leukemia (1-5).
However, despite improved oncologic outcomes with the addition
of TBI, concerns over treatment-related toxicities have led to some
avoidance of the use of TBI-based treatment regimens (6).

The use of TBI is associated with acute side effects including
mucositis, nausea, diarrhea, and skin erythema, which may be in
part related to synergistic toxicity with concurrent chemotherapies
used in conditioning regimens. Long-term survivorship is
associated with significant adverse treatment-related effects that
may include growth impairment, endocrinopathies, pneumonitis,
nephrotoxicity, cardiovascular disease, gonadal toxicity, reduced
cognitive function, development of cataracts, and secondary
malignancies (7-9). This has led to increased interest in
improving radiation techniques to minimize toxicities without
compromising oncologic outcomes.

Implementation of modern radiation techniques such as
volumetric modulated arc therapy (VMAT) has been shown to be
feasible and safe in a number of studies, with VMAT-TBI allowing
for greater organ sparing with improved target coverage compared
to 2D (10-18). However, it is unknown whether improved organ
sparing translates to a decrease in clinically observed toxicities and
whether these toxicities are significantly different among patients
treated with VMAT-TBI compared to the 2D technique. Thus, we
aimed to compare differences in toxicities and outcomes among
patients treated with TBI utilizing VMAT and 2D techniques.

Methods
Patient cohort

In this institutional review board (IRB)-approved single-
institution retrospective study, patients who received VMAT-TBI
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from 2019 to 2023 were identified. Patients treated with VMAT-TBI
were matched with 2D-TBI patients with a 1:1 ratio based on age
and total radiotherapy dose received. To minimize bias, the 2D-TBI
patients were matched consecutively going back in time. Data were
collected from patient medical records including demographics,
disease characteristics, treatment details, outcomes, and follow-up.

VMAT-TBI and 2D-TBI planning

Treatment planning for VMAT-TBI was described in our
previous works, and only a brief summary will be given here
(16, 17, 19, 20). A full-body CT scan was acquired on a Siemens
BiographTM PET-CT scanner using a 4-5-mm slice thickness. For
patients taller than 115 cm, two sets of plans had to be created due
to the longitudinal limitations of the treatment couch: VMAT plans
with the patient positioned in the head-first supine (HFS) position
and anteroposterior and posteroanterior (AP/PA) plans with the
patient positioned in the feet-first supine (FES) position. To
streamline the transition between the VMAT and anteroposterior
and posteroanterior (AP/PA) treatment plans, the patients were
simulated on a custom rotational couch top, “Spinning Manny”.
Ball bearings (BBs) were placed at the patient mid-separation, 5 cm
superior to the umbilicus. Only longitudinal shifts were permitted
between isocenters during treatment planning. All VMAT beams
were optimized together using a dose rate of 600 MU/min. Field-in-
field modulation was used to control hotspots in the AP/PA plans.
After optimization, the average dose rate to fields treating lungs was
kept at 100-200 MU/min to limit the average dose rate at lungs to
20 cGy/min. For the myeloablative regimen, the spared organs at
risk were the lungs, kidneys, and lenses. For the non-myeloablative
regimen, in addition to lungs, kidneys, and lenses, the brain,
thyroid, and ovaries/testes were spared. All plans were normalized
to deliver 100% of the prescription dose to 90% of the target volume
while ensuring Dlcc was less than 120% of the prescription dose.
The entire planning process was automated using treatment
planning system scripting, which decreases planning time from
days to less than 4-5 hours and better standardizes plan quality as
compared to manual planning (19, 20).
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2D-TBI planning was performed using MU calculations based
on clinical simulation measurements for an AP/PA technique at an
extended Source to Skin Distance (SSD) (~608 cm), collimators at
45° and 135°, 40 x 40 cm (2) field size, and a 15-MV beam energy.
The compensator layers were used to homogenize the dose
distribution based on the following midline points: head, chin,
neck, suprasternal notch, xiphoid, umbilicus, hip/pubis, thigh, knee,
calf, and ankle. Lung blocks were generated using the lung contour
contracted by 1 cm (lung-1cm) and 1 cm below the clavicle with the
constant thickness of 2.5 cm of Cerrobend for every patient treated
with myeloablative regimen. For patients treated with non-
myeloablative regimens, lung blocks were not used. Block
transmission values were verified to be 50% for a 15-MV beam
using measurements in the middle of a 10-cm-thick lung slab
sandwiched between two 4-cm-thick solid water slabs. For
patients treated with lung blocks, electron chest wall boost fields
were created and prescribed to 50% of TBI photon prescription to
the depth of maximum dose. Electron energy was chosen based on

QVMAT = e

Ratio of Total Structure Volume [%)
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Ratio of Total Structure Volume (%)
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the chest wall thickness measurement and ranged from 6 MeV to
20 MeV.

Figure 1 shows the dosimetric comparison between VMAT and
2D-TBI plans for patients treated with myeloablative and non-
myeloablative regimens. For these VMAT-TBI plans, a 2D AP/PA
plan was created replicating the institution’s clinical setup with the
patient positioned at extended SSD with a compensator to account
for differences in patient thickness, 50% transmission daily lung
blocks, and electron chest-wall boosts prescribed to 50% of the
photon prescription. Clinically relevant metrics were analyzed and
compared between the VMAT and 2D plans on the dose-volume
histograms (DVHs).

Outcomes and statistical analysis

Time-to-event analysis was performed with the date of
completion of radiation therapy as time zero, and outcomes were
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Comparison between VMAT and 2D-TBI dose distribution and DVHs for patients treated with (A) myeloablative regimen and (B) non-myeloablative
regimen. 2D AP/PA plans were generated by replicating the institution’s clinical setup with the patient positioned at extended SSD with a
compensator to account for differences in patient thickness, 50% transmission daily lung blocks, and electron chest-wall boosts prescribed to 50%
of the photon prescription. The dose cloud is thresholded to 50% of the prescription dose. For patients treated with non-myeloablative regimens,
the 2D plan also spares testes using testis block (B), although it is not performed in clinical practice. VMAT, volumetric modulated arc therapy; TBI,

total body irradiation; DVHs, dose—volume histograms.
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calculated to the date of death or censoring at the last time of
contact. Overall survival (OS) was analyzed using the Kaplan-Meier
method, and groups were compared using log-rank tests. Time to
progression-free survival (PFS) was defined as time from the start of
radiation treatment until the date of relapse or failure with death as
a competing risk and patients censored at the last time of contact.
Relapse was defined as biopsy-proven recurrent disease in patients
with malignant diseases. For patients with non-malignant diseases,
relapse was defined by blood work and bone marrow biopsy results.

Toxicity data were identified from chart review of the weekly
visit notes, the patient's hospital admission notes during the peri-
transplant period, and records from subsequent follow-up visits
with the stem cell transplantation team. Acute toxicities were
graded using Common Terminology Criteria for Adverse Events
version 5.

Variables were compared using Fisher’s exact test. A p-value <0.05
was considered statistically significant, and all p-values were
obtained from two-sided tests. All analyses were performed using
R (version 4.2.2).

Results

Patient, disease, and
treatment characteristics

A total of 200 patients were identified and included in the
analysis. One hundred patients received VMAT-TBI, and 100
patients received 2D-TBI. The median follow-up time for the
entire cohort was 14.3 months (range 1-155.7 months). The
median age for patients undergoing VMAT-TBI and 2D-TBI was
13.7 years and 16.2 years, respectively. Most patients were treated
for malignant diseases, and the most common disease treated
overall was acute lymphoblastic leukemia (ALL) (38% and 35%
for VMAT and 2D, respectively), followed by acute myeloid
leukemia (AML) (15% and 18% for VMAT and 2D, respectively).
There were no significant differences between patient and disease
characteristics (Table 1). The proportions of patients undergoing a
myeloablative treatment were the same in both groups, as defined
by the matching process. The most commonly used myeloablative
radiation treatment regimen was 12 Gy in six fractions (25% of all
patients), and the most commonly used non-myeloablative
radiation treatment regimen used was 2 Gy in a single fraction
(30% of all patients).

Outcomes

The median OS for the entire cohort was not reached. The 1-
year and 2-year OS was 83.9% and 77.9%, respectively
(Supplementary Figure 1). The OS was not significantly different
between the VMAT-TBI and 2D-TBI cohorts, with a 1-year OS of
86.0% and 83.0%, respectively (Figure 2; p = 0.26).
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The median PFS for the entire cohort was not reached. The 1-
year and 2-year PFS was 82.4% and 73.9%, respectively
(Supplementary Figure 2). The PFS was not significantly different
between the VMAT-TBI and 2D-TBI cohorts, with a 1-year PFS of
86.6% and 80.0%, respectively (Figure 3; p = 0.36).

Four patients in the entire cohort experienced primary graft
failure: two in the VMAT-TBI cohort and two in the 2D-TBI
cohort. Three patients in the entire cohort experienced secondary
graft failure: two in the VMAT-TBI cohort and one in the 2D-
TBI cohort.

TABLE 1 Patient, disease, and treatment characteristics.

VMAT-TBI,  2D-TBI,  p-
N (%) N (%) Value
Age at RT (median, 13.7 (0.1-64) 16.2 (1.3-57.7) 0.25
years, range)
Gender 0.31
Male 60 (60%) 52 (52%)
Female 40 (40%) 48 (48%)
Race 0.55
Asian 23 (23%) 16 (16%)
Black or African 4 (4%) 4 (4%)
American
Hispanic 30 (30%) 39 (39%)
White 38 (38%) 34 (34%)
Other 5 (5%) 3 (3%)
ECOG PS 1.0
0-1 87 (87%) 86 (86%)
2+ 13 (13%) 14 (14%)
Puberty 0.24
Pre 41 (41%) 32 (32%)
Post 59 (59%) 68 (68%)
Diagnosis/disease 0.29
Aplastic anemia 16 (16%) 23 (23%)
MDS 2 (2%) 5 (5%)
ALL 38 (38%) 35 (35%)
AML 15 (15%) 18 (18%)
Other 29 (29%) 19 (19%)
RT dose 1.0
Non-myeloablative = 47 (47%) 47 (47%)
(2-4 Gy)
Myeloablative 53 (53%) 53 (53%)
(8-13.76 Gy)

VMAT, volumetric modulated arc therapy; TBI, total body irradiation; RT, radiation therapy;
ECOG PS, Eastern Cooperative Oncology Group Performance Status; MDS, myelodysplastic
syndrome; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia.
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FIGURE 2
Overall survival of VMAT vs. 2D-TBI cohorts. VMAT, volumetric
modulated arc therapy; TBI, total body irradiation.

Toxicities

In the entire cohort, the most common toxicity of any grade was
mucositis (80.5%), followed by nausea (74.5%) and diarrhea (59.5%;
Table 2). The most common grade 3+ (G3+) toxicity was mucositis
(39%). The rates of any grade nausea were significantly lower in the
VMAT-TBI cohort compared to the 2D-TBI cohort (68% versus
81%; p = 0.05). The rates of any grade of pneumonitis (2% versus
12%; p = 0.01) and nephrotoxicity (7% versus 34%; p < 0.01) were
both lower for the VMAT-TBI group versus the 2D-TBI group. In
the VMAT-TBI cohort, pneumonitis incidence was limited to grade
1 pneumonitis developed by two patients treated with non-
myeloablative regimens, and nephrotoxicity incidence was limited
to six patients with grade 1 and one patient with grade 3 toxicity.
The rates of graft versus host disease (GVHD) were significantly
lower for the VMAT-TBI cohort compared to the 2D cohort (42%
vs. 62%, p < 0.01).

Fifty-three patients from each cohort received a myeloablative
regimen (dose range, 8-13.76 Gy). In this group of patients who
underwent a myeloablative regimen, the most common toxicity of
any grade was mucositis (95.3%), followed by nausea (87.0%), fatigue
(67%), and diarrhea (66%; Table 3). The most common grade 3+
toxicity was mucositis (58.5%). The rate of any pneumonitis was
significantly lower in the VMAT-TBI group compared to the 2D
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Number At Risk

VMAT 100 3 0 0 0 0 0
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FIGURE 3

Progression-free survival of VMAT vs. 2D-TBI cohorts. VMAT,
volumetric modulated arc therapy; TBI, total body irradiation.
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group (0% versus 17%, p < 0.01). The rates of any nephrotoxicity were
also significantly lower in the VMAT-TBI cohort when compared to
the 2D-TBI cohort (9% versus 36%; p < 0.01).

All the cases of grade 3+ nephrotoxicity were in patients who
underwent a myeloablative treatment regimen. Only one patient
developed G3+ nephrotoxicity in the VMAT-TBI cohort. No
patients who underwent VMAT-TBI experienced any grade 3+
pneumonitis. Of the three patients who experienced grade 3+
pneumonitis in the 2D-TBI group, all of them underwent a
myeloablative treatment regimen.

Dosimetry

The relevant average achieved DVH metrics for the VMAT-TBI
cohort are shown in Table 4. The average patient height was 149 +
29.6 cm (range, 83.6-197.3 cm), and the average maximum patient
width was 41.7 + 8.9 cm (range, 24.9-60.3 cm). The volume of the
target receiving prescription dose was equal to 90% for all cases
except for one patient where 85% of the target volume received the
prescription dose. The average Dlcc to the target was 120.7% +
6.3%. Lung and lung-1cm average mean doses were 60.6% + 5.0%
and 44.4% + 6.7% of prescriptions, respectively. The average kidney
mean dose was 71% + 8.5% of the prescription dose. For the patients
receiving non-myeloablative doses, the average mean doses to the
brain, thyroid, and ovaries/testes were 75.4% * 7.0%, 76.1% +
10.5%, and 33.4% + 7.3% of prescription, respectively.

In the 2D-TBI cohort, all organs received close to the
prescription dose except for lungs that were spared using 50%
transmission daily lung blocks for patients treated with
myeloablative regimens. Chest wall boosts to an additional 6 Gy
in two fractions were delivered to reach full coverage of the ribs
and chest wall behind the lung blocks. From the dosimetric
analysis based on 10 patients with simulated 2D-TBI plans, the
mean lung dose was on average 80% of prescriptions compared to
55.1% of prescriptions with VMAT-TBI (16, 19). The VMAT
technique also enabled a decrease of dose to other organs [kidney
Dmean (-32.5%) and lens Dmax (-5.3%)], and in addition, for 2
Gy prescription: testes/ovaries Dmean (-41.5%), brain Dmean
(—22.6%), and thyroid Dmean (-18.2%). In addition, VMAT-TBI
enabled statistically significant improvement in average Planning
Target Volume (PTV) D90% coverage (100% with VMAT-TBI
and 92.9% with 2D-TBI, p < 0.001) and average PTV Dmean dose
(103.9% with VMAT and 100.7% with 2D-TBI, p < 0.001). The
average PTV Dmax and Dmin did not have statistically significant
differences between VMAT-TBI and 2D-TBI techniques (118.8%
vs. 116.8% and 54.7% vs. 55.1%, respectively). The average PTV
V110% was also similar between techniques, at 1.6% with VMAT-
TBI and 1.5% with 2D-TBI (p = 0.44).

Discussion

This single-institution retrospective study is the largest series
comparing the outcomes and toxicities between patients treated
with VMAT-TBI and 2D-TBI and builds upon our previously
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TABLE 3 VMAT vs. 2D-TBI toxicities for myeloablative regimens.

VMAT-TBI, VMAT-TBI 2D N = 53
N (%) p-Value N =53 (N, %) (N, %)

Diarrhea Diarrhea

Any 58 (58%) 61 (61%) 0.77 Any 35 (66%) 35 (66%) 1.0

Grade 1-2 57 (57%) 60 (60%) 0.77 Grade 1-2 35 (66%) 35 (66%) 1.0

Grade 3+ 0 (0%) 1 (1%) 0.99 Grade 3+ 0 (0%) 1.(2%) 0.99
Fatigue ‘ Fatigue ‘

Any 49 (49%) 63 (63%) 0.06 Any 29 (55%) 42 (79%) <0.01*

Grade 1-2 49 (49%) 63 (63%) 0.06 Grade 1-2 29 (55%) 42 (79%) <0.01*

Grade 3+ 0 (0%) 0 (0%) 1.0 Grade 3+ 0 (0%) 0 (0%) 1.0
Nausea ‘ Nausea ‘

Any 68 (68%) 81 (81%) 0.05* Any 44 (83%) 48 (91%) 0.39

Grade 1-2 66 (66%) 80 (80%) 0.038* Grade 1-2 43 (81%) 48 (91%) 0.26

Grade 3+ 2 (2%) 1 (1%) 1.0 Grade 3+ 1(2%) 0 (0%) 0.99
Mucositis ‘ Mucositis ‘

Any 84 (84%) 77 (77%) 0.28 Any 50 (94%) 51 (96%) 0.99

1-2 47 (47%) 36 (36%) 0.15 1-2 24 (45%) 15 (28%) 0.11

3+ 37 (37%) 41 (41%) 0.66 3+ 26 (49%) 36 (68%) 0.075
Pneumonitis ‘ Pneumonitis ‘

Any 2 (2%) 12 (12%) 0.01* Any 0 (0%) 9 (17%) <0.01*

1-2 2 (2%) 9 (9%) 0.058* 1-2 0 (0%) 6 (11%) 0.026*

3+ 0 (0%) 3 (3%) 0.25 3+ 0 (0%) 3 (6%) 0.024*
Nephrotoxicity ‘ Nephrotoxicity ‘

Any 7 (7%) 34 (34%) <0.01* Any 5 (9%) 19 (36%) <0.01*

1-2 6 (6%) 30 (30%) <0.01* 1-2 4 (8%) 15 (28%) 0.01*

3+ 1(1%) 4 (4%) 0.37 3+ 1(2%) 4 (8%) 0.05*
Skin ‘ Skin ‘

Any 16 (16%) 35 (35%) <0.01% Any 12 (23%) 18 (34%) 0.28

1-2 16 (16%) 35 (35%) <0.01* 1-2 12 (23%) 18 (34%) 0.28

3+ 0 (0%) 0 (0%) 1.0 3+ 0 (0%) 0 (0%) 1.0
GVHD ‘ GVHD ‘

Any 42 (42%) 62 (62%) <0.01* Any 27 (51%) 37 (70%) 0.07

1-2 34 (34%) 51 (51%) 0.02* 1-2 24 (45%) 27 (51%) 0.69

3+ 8 (8%) 11 (11%) 0.63 3+ 3 (6%) 10 (19%) 0.07

VMAT, volumetric modulated arc therapy; TBI, total body irradiation; GVHD, graft versus
host disease.
* denotes statistical significance.

published experience on early outcomes and toxicities of the first
patients treated with VMAT-TBI at our institution (10). In this
cohort of patients who underwent VMAT-TBI matched to patients
who underwent 2D-TBI, VMAT-TBI resulted in a more favorable
toxicity profile with excellent oncologic outcomes. The normal
tissue sparing with VMAT-TBI compared to the 2D-TBI
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VMAT, volumetric modulated arc therapy; TBI, total body irradiation; GVHD, graft versus
host disease.
* denotes statistical significance.

translated to significantly lower rates of pneumonitis, renal
toxicity, nausea, skin toxicity, and GVHD in patients while
maintaining excellent disease control.

In our study, no patients treated with VMAT-TBI experienced
grade 3+ pneumonitis, which compares favorably not only to our
matched 2D-TBI cohort but also to historically reported high rates
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TABLE 4 Plan quality metrics achieved for 100 patients treated with
VMAT-TBI.

. Average
nstraint
Constra % of Ra) ©
Myelo- and PTV Dlcc < 120% 120.7% 6.3%
non-myeloablative
regimen Lungs Dmean < 55% 60.6% 5.0%
Lung-lcm Dmean < 40% 44.4% 6.7%
Kidneys Dmean < 75% 71.0% 8.5%
Lenses Dmax < 90% 90.1% 3.5%
Non-myeloablative Testes/
. . Dmax < 30% 33.4% 7.3%
regimen ovaries
Brain Dmean < 75% 75.4% 7.0%
Thyroid Dmean < 75% 76.1% 10.5%

VMAT, volumetric modulated arc therapy; TBI, total body irradiation.

of pulmonary toxicity of up to 71% with 2D-TBI treatments (21).
For myeloablative treatments, 50% of patients in our 2D-TBI cohort
experienced some type of pulmonary toxicity compared to 0% in
the VMAT-TBI cohort. Our results showing low rates of
pneumonitis are supported by previously published single-
institutional experiences using VMAT-TBI (11-15). Tas et al.
reported outcomes for 30 patients with AML or ALL treated with
VMAT-based TBI and found no incidence of grade 3+ toxicities
(12). In a series of 29 patients treated with VMAT-TBI using
myeloablative regimens, Melton et al. found only one instance of
pneumonitis (15). In another retrospective study that included 44
patients (32 myeloablative and 14 non-myeloablative), Zhang-
Velten et al. reported 9% of grade 3+ pneumonitis, but of the
four cases, only one (2%) was deemed to be likely attributable to
radiation therapy alone (13). A study by Ladbury et al. performed a
matched-pair retrospective review of tomotherapy-based TBI
versus 2D-TBI and found no rates of pneumonitis in the
tomotherapy cohort and 19.2% of pneumonitis in the 2D-TBI
cohort (18), similar to our findings in patients treated with
myeloablative regimen (0% in VMAT-TBI cohort vs. 17% in 2D-
TBI cohort, p < 0.01).

In our study, the rates of nephrotoxicity of any grade were also
low in the VMAT-TBI cohort and compared favorably to the 2D
cohort: 7% in the VMAT-TBI cohort and 31% in the 2D-TBI
cohort. Out of seven patients who developed nephrotoxicity in the
VMAT-TBI cohort, six of them developed grade 1 toxicity. Grade 3
+ nephrotoxicity was observed in one patient (1%) in the VMAT-
TBI cohort and four patients (4%) in the 2D-TBI cohort, which
compared favorably with previously published reports. Although
most VMAT-TBI studies report no nephritis attributable to
radiation, there are a few studies that report varying rates of
nephrotoxicity rates including acute kidney injury and nephritis
(13%-28%) (13, 15). The series by Melton et al., who treated using
VMAT-TBI, reported a 14% rate of grade 3+ acute kidney injury,
while the study by Zhang-Velten et al. reported a 13% rate of grade
3+ nephrotoxicity (13, 15). These studies reported no sparing of
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kidneys, whereas, in our study, we spared kidneys to a mean dose of
71% of the prescription. This dosimetric limit is motivated by
Lawton et al. showing that kidney toxicity decreased from 29% vs.
0% when 30% kidney shielding was used (22).

Mucositis was the most common G3+ toxicity in our study: 37%
in the VMAT-TBI cohort compared to 41% in the 2D-TBI cohort.
Mucositis rates vary greatly in the literature on VMAT or
tomotherapy-based TBI: 100% (11), 71% (13), 55% (14), and
34%-39.5% (10, 15). Differences in the rate of reported mucositis
in VMAT-TBI studies may be attributable to differences in
radiotherapy prescription, limiting dose heterogeneity during
planning, mucositis reporting criteria, concurrent conditioning
systemic therapy regimens, etc. In our study, the plan global
maximum was limited to 120% of prescriptions, and the dose
within the oral cavity was limited to 110% of prescriptions.
Unfortunately, we found that changing the technique from 2D-
TBI to VMAT-TBI did not significantly improve the mucositis
rates. In addition, we observed G3+ mucositis in 16 patients
undergoing low-dose VMAT or 2D-TBI, indicating that mucositis
is likely multifactorial in the settings of concomitant chemotherapy,
GVHD prophylaxis, and transplant toxicity not fully attributable to
TBI. Keit et al. reported two deaths from G5 oral mucositis after
VMAT-TBI, which led to the institution lowering the
oropharyngeal mucosa mean dose to less than 6.9 Gy (14).
Although no further deaths from mucositis were observed by Keit
et al,, lowering the dose to the oral cavity did not reduce G3+
mucositis rates.

In addition to lower lung and kidney toxicity, patients treated
with VMAT-TBI compared to 2D-TBI experienced lower nausea,
skin, and GVHD toxicity. The lower rates of nausea seen in the
VMAT-TBI cohort may be due to limiting hotspots to the bowel
with VMAT-TBI, more accurate dose calculation, better image
guidance compared to 2D-TBI, and improved patient comfort
when lying down during the delivery of VMAT-TBI. The rate of
any GVHD in the VMAT-TBI cohort was 42%, which was
significantly lower than the 62% seen in the 2D-TBI cohort.
Consistent with our findings, Ladbury et al. reported reduced
grade 2-4 GVHD for patients treated with tomotherapy-based
TBI compared to 2D-TBI (41.7% vs. 79.2%, p = 0.02) (18). The
incidence of grade 3+ GVHD in our study for patients undergoing
VMAT-TBI was 8%, with no deaths due to GVHD. There have been
previously published data suggesting that a TBI-containing regimen
is a significant risk factor for GVHD (23-25). It has been
hypothesized that TBI may cause an increased release of more
inflammatory cytokines that result in increased endothelial cell
damage that precipitates a cytokine storm that is associated with
GVHD (26, 27). Although the exact mechanisms are unknown, the
importance of reducing the risk of GVHD is paramount, as a few
series using tomotherapy-based TBI have reported deaths due to
GVHD (28-30).

There are several limitations to our single-institution
retrospective study. A key limitation is our heterogeneous patient
cohort, which includes multiple disease types treated, radiation
treatment doses, and fractionation schemes. Although there was a

frontiersin.org


https://doi.org/10.3389/fonc.2024.1459287
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Hui et al.

significant difference in the doses and fractionations used between
the two cohorts, the proportion of patients treated with a
myeloablative versus non-myeloablative radiation regimen was
the same, as our matching criteria were based on whether
patients received a myeloablative regimen. Another limitation of
our study is that we included patients treated over the span of a
decade in the 2D-TBI cohort in order to find matched patients,
while the VMAT-TBI cohort is more modern since this modality
was adopted more recently. However, no changes to the 2D-TBI
technique were found during this time. Finally, reporting of adverse
events such as pneumonitis and nephrotoxicity is not standardized
in the existing published TBI literature. The lack of standardization
in reporting criteria may account for differences seen between the
toxicities that were found in this study and others, as well as the
difficulty of attributing toxicities to TBI alone. We reported no
nephrotoxicity for cases that were clearly not due to TBI such as
acute kidney injuries from medications with timing not consistent
with radiation-induced nephrotoxicity. In efforts to help
standardize pneumotoxicity reporting, we utilized criteria from
the Vogel et al. review paper focused on pulmonary toxicities
after TBI (21).

Additionally, our team initiated the workflow automation and
implementation of total marrow irradiation (TMI) and total
marrow and lymphoid irradiation (TMLI) in our clinic. TMI and
TMLI represent novel approaches to the targeted delivery of large-
field radiotherapy in hematopoietic stem cell transplantation
(HSCT) conditioning. TMI/TMLI not only focuses specifically on
the marrow or the marrow and lymphoid system, allowing for
further improvement in sparing of organs at risk and dose
escalation, but also addresses a new patient population, including
those with relapsed or refractory disease ineligible for standard
transplant regimens, older patients over 60, those with
comorbidities that preclude myeloablative TBI, patients with
haplo-identical donors, and those needing larger fraction sizes or
treatment for multiple myeloma (31-33). Further studies on the use
of both VMAT-TBI, TMI, and TMLI techniques and the inclusion
of these techniques in large, ongoing clinical trials with
standardized toxicity data collection are necessary to validate our
findings. Further prospective data are necessary to help develop
standardized dose constraints for organs at risk, and collaboration
among institutions, professional organizations, and research groups
can help standardize TBI protocols and may lead to new insights,
addressing gaps in clinical knowledge.

Conclusion

VMAT-TBI offers improved organ sparing when compared to
2D-TBI. Lower doses to organs at risk translated to significantly
lower rates of pneumonitis, renal toxicities, nausea, skin toxicities,
and GVHD in patients without compromising oncologic outcomes.
Longer-term follow-ups are necessary to further evaluate late
toxicities. Implementation of VMAT-TBI into clinical trials
should be considered to minimize toxicities for patients
undergoing conditioning regimens.
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