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Problem: Nasopharyngeal carcinoma (NPC) is a common malignant tumor with

high heterogeneity and is mainly treated with chemoradiotherapy. It is important

to predict the outcome of patients with advanced NPC after chemoradiotherapy

to devise customized treatment strategies. Traditional MRI methods have limited

predictive power, and better predictive models are needed.

Aim: To evaluate the predictive value of a clinical–radiomics nomogram based

on multisequence MRI in predicting the outcome of advanced NPC patients

receiving chemoradiotherapy.

Methods: This prospective study included a retrospective analysis of 118 patients

with advanced NPC who underwent MRI prior to chemoradiotherapy. The

primary endpoint was progression-free survival (PFS). The maximum ROIs of

lesions at the same level were determined via axial T2-weighted imaging short-

time inversion recovery (T2WI-STIR), contrast-enhanced T1-weighted imaging

(CE-T1WI), and diffusion-weighted imaging (DWI) with solid tumor components,

and the radiomic features were extracted. After feature selection, the radiomics

score was calculated, and a nomogram was constructed combining the

radiomics score with the clinical features. The diagnostic efficacy of the model

was evaluated by the area under the receiver operating characteristic curve

(AUC), and the clinical application value of the nomogram was evaluated by

decision curve analysis (DCA) and a correction curve. Patients were divided into a

high-risk group and a low-risk group, and themedian risk score calculated by the

joint prediction model was used as the cutoff value. Kaplan−Meier analysis and

the log-rank test were used to compare the differences in survival curves

between the two groups.

Results: The AUCs of the nomogram model constructed by the combination of

the radiomics score and neutrophil-to-lymphocyte ratio (NLR) and T stage in the

training group and validation group were 0.897 (95% CI: 0.825–0.968) and 0.801

(95% CI: 0.673–0.929), respectively. Kaplan-Meier survival analysis demonstrated
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that the model effectively stratified patients into high- and low-risk groups, with

significant differences in prognosis.

Conclusion: This clinical–radiomics nomogram based on multisequence MRI

offers a noninvasive, effective tool for predicting the outcome of advanced NPC

pat ients receiv ing chemoradiotherapy, promoting indiv idual ized

treatment approaches.
KEYWORDS

nasopharyngeal carcinoma, magnetic resonance imaging, radiomics, nomogram,
survival models
Introduction

Nasopharyngeal carcinoma (NPC) is one of the most common

malignant tumors of the head and neck. In 2020, approximately

133,000 new cases and 80,000 deaths were reported worldwide, and

the incidence and mortality of NPC in China were significantly

higher than the global average (1–3). NPC is a highly heterogeneous

malignant tumor, and the choice of treatment is mainly based on

the tumor node metastasis (TNM) staging system (4). The current

standard treatment strategy is concurrent chemoradiotherapy

(CCRT) combined with or without adjuvant chemotherapy (AC)

and induction chemotherapy (IC) (5). However, this staging system

has many shortcomings in predicting the treatment effect and

outcome of patients (6, 7). Nor does it accurately reflect the

likelihood of metastasis and continued invasiveness after

treatment. Especially for patients with advanced NPC, even

patients with the same TNM stage have different progression-free

survival (PFS) rates after receiving chemoradiotherapy (8).

In recent years, several biomarkers, such as the plasma protein

(9), neutrophil-to-lymphocyte ratio (NLR) (10), gene expression

marker (11), and EB virus (12) levels, have been shown to be

highly important for predicting the outcome of patients with NPC.

However, these indicators often can predict only the probability of

invasion and distant metastasis and are not predictors of treatment

response. Therefore, a better method to predict the PFS of NPC

patients after receiving chemoradiotherapy is urgently needed to

allow for the formulation of an optimal treatment strategy and to

adjust the individualized treatment regimen in a timely manner. The

rise of radiomics, which can extract high-dimensional quantitative

features that cannot be recognized by the naked eye from images,

provides a new approach to overcoming this challenge (13).

The emergence and development of radiomics technology

provides the possibility of realizing individualized diagnosis and

treatment of tumors. Among them, in the field of NPC research,

many studies have shown that radiomic features based on MRI are

highly important for evaluating treatment efficacy and predicting

patient outcome (14–18). Zhang et al. (17) accurately predicted the

outcome of patients with advanced NPC through a multiparameter
02
MRI radiomics nomogram, providing a useful example for

precision medicine. Kim et al. (18) established a survival model

based on MRI radiomics to conduct early risk assessments by

predicting the PFS of NPC patients. The accuracy of the clinical +

stage + radiomics survival model was better than that of the clinical

TNM stage. Therefore, we aimed to establish a nomogram model

for predicting the PFS of patients with advanced NPC after

chemoradiotherapy by combining multisequence MRI with

clinical risk factors to optimize individual treatment strategies for

better survival outcomes.

The contribution of our study is threefold. First, we selected a

high-throughput method to extract radiomic features from the MR

images of patients with advanced NPC and combined these with

clinical risk factors to establish a prediction model based on a

multisequence MRI clinical−radiomics nomogram, which can

predict the outcome of patients with advanced NPC after

chemoradiotherapy earlier. Second, compared with other

radiomic studies in the field of NPC, we added DWI sequences

and extracted important radiomic features from them, which is

highly important for prognostic models. Finally, we combined T

stage, the NLR and the radiomic features to develop a more

comprehensive prognostic model.

The rest of this paper is organized as follows: In the second part,

we introduce the general information, examination methods and

specific treatment strategies, as well as the specific steps to

implement this study. In the third part, we obtain the results of

this study and analyze the results. Finally, we discuss the methods

and results of this study and explain its practical significance

and shortcomings.
Methods

Study population

A retrospective analysis was performed on 118 patients newly

diagnosed with advanced NPC on the basis of pathology at the First

Affiliated Hospital of Bengbu Medical University from August 2018
frontiersin.org
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to November 2020. The detailed patient inclusion criteria are

illustrated in Figure 1. The First Affiliated Hospital of Bengbu

Medical University Ethics Committee approved this study, which

was conducted according to all relevant regulations. This

retrospective study was exempt from the need for informed

consent (Ethical Approval Number: 2023YJS158).

The inclusion criteria were as follows: (1) clinical stage II–IV

(AJCC 8th edition); (2) received a 3.0 T magnetic resonance

examination within 2 weeks before treatment; (3) intensity-

modulated radiotherapy (IMRT) with the following chemotherapy

modalities: CCRT, IC+CCRT, AC+CCRT; and (4) complete follow-

up data.

The exclusion criteria were as follows: (1) received other

antitumor therapy before treatment; (2) had other primary

tumors; and (3) had severe heart, liver or other organ diseases.
Treatment and follow-up

Intensity-modulated radiation therapy (IMRT) was used: Each

patient received an IMRT plan according to the Chinese Guidelines

for Radiotherapy for NPC (2020 edition) or our hospital standards

[nasopharyngeal primary site prescription dose: planning target

volume (PTV)-gross tumor volume (GTV) |nx|, total dose (DT) 68

−76 Gy/30−33 cycles; PTV-clinical target volume 1 (CTV1), DT60

−64 Gy/30−33 cycles; PTV-CTV2, DT50−54 Gy/30−33 cycles]. For

concurrent chemotherapy, patients received cisplatin monotherapy

starting from Day 1 of radiotherapy with an intravenous drip at a

dose of 100 mg/m2 and ending at the same time as radiotherapy.

For patients with advanced NPC (stage III~IV), CCRT was

combined with IC or AC. The IC consisted of 2 cycles and was

repeated every 21 days. The chemotherapy regimen was based on

platinum (cisplatin/nedaplatin), and the common IC regimens used
Frontiers in Oncology 03
include docetaxel + cisplatin + fluorouracil (TPF), gemcitabine +

cisplatin (GP), and cisplatin + fluorouracil (PF), among others. The

ACs were subjected to TPF or PF regimens once every 21 days for a

total of 1~3 cycles.

PFS was defined as the period from randomization to disease

progression, death, or cutoff date (November 30, 2023), with a

minimum follow-up of 36 months. Patients were divided into a

progression group (disease progression, death) and a nonprogression

group on the basis of the follow-up results. The patients were

randomly divided into a training group (n=70, of which 31 were in

the progression group and 39 were in the nonprogression group) and

a validation group (n=48, of which 21 were in the progression group

and 27 were in the nonprogression group) at a ratio of 6:4.
MRI image acquisition

A Philips Achieva 3.0 T double gradient superconducting

magnetic resonance instrument (The Netherlands) was used.

Gadobenate meglumine was used as the contrast agent for

enhanced scanning. Image postprocessing was performed via

ITK-SNAP and AK software. A 16-channel combined head and

neck coil was used to scan from the skull base to the thoracic

entrance. The scan sequences included T1-weighted imaging

(T1WI), T2WI-short-time inversion recovery (T2WI-STIR),

DWI, sagittal T1WI, and coronal, sagittal, and axial contrast-

enhanced T1-weighted imaging (CE-T1WI) scan sequences. For

DWI, the excitation time was 1, the b value was 0 s/mm² or 1000 s/

mm². The contrast agent was subsequently injected into the cubital

vein at a total amount of 0.1 mmol/kg at a rate of 2 ml/s, and a

multidirectional T1WI-STIR enhanced examination was

subsequently performed. The detailed scanning parameters of

each sequence are shown in Table 1.
FIGURE 1

Flowchart of patient selection.
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Radiomic features extraction

Axial T2WI-STIR, CE-T1WI and DWI images of patients were

imported into the medical-Darwin platform in the original image

format (DICOM), and manual segmentation was adopted. In the

software, the region of interest (ROI) was delineated for the largest

lesions at the same level, showing solid tumor components on axial

T2WI-STIR, CE-T1WI and DWI (Figure 2). After all of the lesions

were sketched, the ROI of the sketched area of interest was imported

into the relevant platform to extract the radiomic features, such as

exponential, logarithm, square, square root, gradient, local binary

pattern-2-dimensional (LBP-2D), and log-sigma features, which

were extracted from the original multimodal MR images to create

transformed images. The second-order features included a gray-

level concurrence matrix (GLCM), gray-level size zone matrix

(GLSZM), gray-level run length matrix (GLRLM), neighborhood

gray tone difference matrix (NGTDM), and gray-level dependency

matrix (GLDM).
Feature selection

The minimum maximum normalization method and Select K

Best were used to select the features and remove the low-

performance, redundant, and irrelevant features. Finally, least

absolute shrinkage and selection operator (LASSO) was used to

further reduce the dimension and screen the best features with

nonzero coefficients. The eigenvalues and regression equation

coefficients were linearly combined to obtain a Rad score for

each patient.
Model construction

In the training group, clinical risk factors such as age, tumor

length, sex, the NLR and the platelet-to-lymphocyte ratio (PLR) of

each patient were analyzed via backward stepwise logistic

regression, and a clinical information model was constructed. The

radiomics score and clinical information were then combined, and

RStudio software was subsequently used to construct a nomogram

to visualize the prediction model. The ROC curve was used to

evaluate the ability of the joint prediction model to differentiate

between the training set and the validation set, and the AUC was

compared with that of the clinical information model and the

radiomics model. The calibration curves of the training set and

validation set were drawn via the bootstrap resampling method to

evaluate the degree of calibration of the prediction model and
Frontiers in Oncology 04
compare the consistency of the model-predicted probability and

observed probability. Decision curve analysis (DCA) was performed

on the prediction model in the training set and validation set to

evaluate the clinical practicability of the model and to compare it

with the clinical indicator model and the radiomics model.
Statistical analysis

SPSS 26.0 and RStudio software were used for the statistical

analyses. The Kolmogorov−Smirnov test was used to test the

normality of the quantitative data (age and tumor length and

diameter). The normally distributed data are presented as the

means ± standard deviations, and the independent sample t test

was used for comparisons between two groups. Qualitative data

(sex, presence of nodules, presence of lymph node metastasis at first

diagnosis, etc.) are presented as n (%). The chi-square test or

Fisher’s exact probability method was used to compare the two

groups. The prediction model constructed via Cox proportional risk

regression was used to calculate the risk score of each patient, and

the patients were divided into a high-risk group and a low-risk

group, with the median risk score as the cutoff value. The Kaplan

−Meier curve and log-rank test were subsequently used to analyze

the survival of the high-risk group and low-risk group. P < 0.05 was

considered to indicate statistical significance.
Results

Patient clinical information

No statistically significant differences in the PLR, age, tumor

length, sex, presence or absence of bloody nasal discharge, presence

or absence of lymph node metastasis at first diagnosis, or clinical

stage were observed between the training group and the validation

group (P > 0.05, Table 2).
Feature selection and model building

A total of 3372 radiomic features were extracted from all

patients’ multimodal MR images, including 1125 features

extracted from T2WI-STIR images, 1122 features extracted from

CE-T1WI images, and 1125 features extracted from DWI images.

First, the features extracted from the MR images were selected via

single factor feature selection and correlation analysis, and 15

features were selected. LASSO regression was subsequently used
TABLE 1 Scanning parameters for various scan sequences.

Scan
Sequence

TR (ms) TE (ms) FOV
Layer

Thickness
Layer

Spacing
Layer

Number

T2WI-STIR 7620 60 230*260 2 mm 0.5 mm 37

CE-T1WI 500 8 240*240 2 mm 0.5 mm 37

DWI 5200 70 20*20 2 mm 0.5 mm –
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to select the 6 features that were most valuable for predicting the

efficacy of chemoradiotherapy against NPC (Figure 3), including 1

feature on T2WI-STIR, 3 features on CE-T1WI, and 2 features

on DWI.

The formula for calculating the radiomics score is as follows:

Score=-0.632-0.667*exponential_glszm_LowGrayLevelZone
Frontiers in Oncology 05
Emphasis_T1C-0.893*logarithm_gldm_SmallDependence

LowGrayLevelEmphasis_T1C+0.903*square_glcm_Cluster

Prominence_T1C-1.007*wavelet-HL_firstorder_Skewness_T2FS-

0.659*wavelet-HH_firstorder_Mean_DWI-1.734*wavelet-

LL_gldm_LargeDependenceHighGrayLevelEmphasis_DWI. After

univariate and multivariate logistic regression analyses of the
TABLE 2 Clinical information of the patients.

Index

Training set Validation set

Nonprogression
group

Progression
group

P value
Nonprogression
group

Progression
group

P value

n 39 31 27 21

NLR (Mean ± SD) 2.522 ± 1.038 3.131 ± 1.319 0.034 2.910 ± 0.844 3.469 ± 1.457 0.102

PLR (Mean ± SD) 172.730 ± 107.879
217.685
± 185.216

0.208 172.936 ± 126.439 158.840 ± 83.833 0.662

Age (years, Mean ± SD) 47.051 ± 13.677 52.290 ± 8.661 0.068 52.519 ± 9.545 54.286 ± 13.573 0.599

Tumor length (cm, Mean ± SD) 3.223 ± 0.652 3.081 ± 0.520 0.325 3.207 ± 0.484 3.210 ± 0.703 0.99

Sex (%) 0.495 0.411

F 13 (33.3) 8 (25.8) 5 (18.5) 6 (28.6)

M 26 (66.7) 23 (74.2) 22 (81.5) 15 (71.4)

Bloody nasal discharge (%) 0.495 0.658

No 26 (66.7) 23 (74.2) 12 (44.4) 8 (38.1)

Yes 13 (33.3) 8 (25.8) 15 (55.6) 13 (61.9)

Lymph node metastasis (%) 0.463 0.696

No 2 (5.1) 3 (9.7) 4 (14.8) 4 (19.0)

Yes 37 (94.9) 28 (90.3) 23 (85.2) 17 (81.0)

T stage (%) 0.035 0.034

T1-T2 25 (64.1) 12 (38.7) 16 (59.3) 6 (28.6)

T3-T4 14 (35.9) 19 (61.3) 11 (40.7) 15 (71.4)

Clinical stage (%) 0.372 0.401

II-III 29 (74.4) 20 (64.5) 19 (70.4) 17 (81.0)

IV 10 (25.6) 11 (35.5) 8 (29.6) 4 (19.0)
fr
FIGURE 2

Manual outline of the ROI schematic at the maximum tumor level. (A–C): Results of manual lesion segmentation on T2WI-STIR, CE-T1WI and DWI
images, left to right.
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clinical risk factors, 2 types of clinical information (NLR and T

stage, Table 3) were ultimately selected. Finally, a clinical model,

radiomics model and clinical–radiomics model were established by

combining the obtained clinical information and radiomic features.
Model comparison and verification

Comparisons were made among the clinical model, the

radiomics model and the combined clinical–radiomics model.

The AUCs of the training group were 0.711, 0.863 and 0.897,

respectively. The 95% CIs were 0.587–0.834, 0.779–0.947 and

0.825–0.968, respectively. The specificities were 0.641, 0.769 and

0.795, respectively. The sensitivities were 0.774, 0.839 and 0.903,

respectively. The Youden indices were 0.415, 0.608 and 0.698,

respectively. In the validation group, the AUCs were 0.709, 0.787

and 0.801, respectively. The 95% CIs were 0.5555–0.863, 0.6577–

0.916 and 0.673–0.929, respectively. The specificities were 0.741,

0.593 and 0.815, respectively. The sensitivities were 0.619, 0.905 and

0.714, respectively. The Youden indices were 0.360, 0.498 and 0.529,

respectively (Table 4; Figure 4).

A comparison of the AUC, specificity and sensitivity of the

three models constructed above revealed that the predictive efficacy

of the clinical–radiomics model for the training group

(AUC=0.897) and validation group (AUC=0.801) was greater

than that of the single clinical or single radiomics model.
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Compared with those of the Delong test, the AUCs of the three

models were significantly different in both the training group and

the validation group (P < 0.05). Finally, a nomogram based on the

clinical–radiomics model was constructed to visualize the

prediction model (Figure 5). The higher the value calculated by

this model is, the greater the likelihood that the patient will progress

after chemoradiotherapy. In the training group and the validation

group, the calibration curve of the nomogram showed good

agreement between the probability of predicting the outcome of

NPC patients after chemoradiotherapy and the true probability

(Figure 6). The DCA curve also revealed that, compared with the

other two groups of models, the combined model had the greatest

net benefit and greater clinical application value (Figure 7).
Kaplan−Meier survival curve analysis

Patients were divided into high-risk and low-risk groups

according to the median risk score (-0.46) calculated with the

clinical–radiomics model as the cutoff value. Patients with a risk

score >-0.46 were classified into the high-risk group, and patients

with a risk score ≤-0.46 were classified into the low-risk group. The

Kaplan–Meier survival curve analysis revealed that patients in the

low-risk group (blue curve) had a better outcome than those in the

high-risk group did (red curve) (P<0.001). The survival curve of the

combined model is shown in Figure 8.
FIGURE 3

Six radiomic features were screened via the LASSO regression model.
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Discussion

In this study, we validated the possibility of predicting the

outcome of chemoradiotherapy in patients with advanced NPC

based on a multisequence MRI clinical-radiomics model

nomogram. A combined clinical–radiomics model was more

accurate in predicting PFS than a single clinical model or single

radiomics model. The multidimensional nomogram constructed by

combining the rad score, T stage and NLR had a good prediction

effect, enabled visualization of the prediction model, and helped to

accurately, independently and intuitively predict the outcome of

advanced NPC patients. Notably, the median risk score calculated

by the combined model was a critical value, and patients were

divided into high-risk and low-risk groups. The Kaplan−Meier

survival curve revealed that the PFS of the low-risk group was

significantly better than that of the high-risk group (P< 0.001).

Owing to the hidden anatomical location of NPC, surgical

treatment is generally not used for the initial treatment of NPC.

At present, CCRT combined with IC or AC has become the

standard treatment for advanced NPC. With advancements in

radiotherapy technology and drugs for medical treatment, the

clinical efficacy of treatment for NPC patients has gradually

improved, but some patients still experience local recurrence or
Frontiers in Oncology 07
metastasis after initial treatment (19, 20). Predicting the response of

patients to chemoradiotherapy before treatment, adjusting the

treatment plan in time, achieving standardized and time-effective

treatment, reducing the adverse reactions of patients with NPC and

improving their quality of life are particularly important. The value

of radiomics in determining the prognosis of NPC patients has

been proven in many studies (18, 21–23). Sararas et al. (21)

retrospectively analyzed 183 patients with NPC. As in this study,

each patient was followed up for at least 3 years, and efficient

radiomics features were obtained through screening. These features

were combined with clinical variables and the TNM stage to

establish a model to evaluate patient prognosis. The results

showed that multimodal radiomics combined with clinical data

had the highest performance. Most of the above NPC radiomics

studies used traditional T2WI and CE-T1WI sequences for

radiomic features analysis but did not include important DWI

sequences, and the image information was incomplete. Tumor

image information from multiple sequences can better reflect

tumor heterogeneity and radiomic multiparameters. DWI can

provide more subvoxel image information about tumor

heterogeneity, reflecting the limited Brownian motion and

microstructure in the tumor (24, 25). As a routine sequence of

MRI scans for NPC, DWI has important reference significance for
TABLE 4 Comparison of the groups with the three models.

Groups AUC (95% CI) Specificity Sensitivity Youden index

Training group

Clinical model 0.711 (0.587-0.834) 0.641 0.774 0.415

Radiomics model 0.863 (0.779-0.947) 0.769 0.839 0.608

Combined model 0.897 (0.825-0.968) 0.795 0.903 0.698

Validation group

Clinical model 0.709 (0.555-0.863) 0.741 0.619 0.360

Radiomics model 0.787 (0.657-0.916) 0.593 0.905 0.498

Combined model 0.801 (0.673-0.929) 0.815 0.714 0.529
TABLE 3 Univariate and multivariate logistic regression analyses of clinical information.

Parameter
Univariate Logistic Regression Multivariate Logistic Regression

OR 95% CI P value OR 95% CI P value

NLR 1.57 1.02-2.41 0.04 1.59 1.04-2.52 0.038

PLR 1.00 1.00-1.01 0.217 – – –

Age 1.04 1.00-1.09 0.074 – – –

Tumor length 0.66 0.29-1.49 0.321 – – –

Sex 1.44 0.51-4.08 0.496 – – –

Bloody nasal discharge 0.70 0.24-1.98 0.496 – – –

LN metastasis 0.50 0.08-3.23 0.47 – – –

T stage 2.83 1.07-7.49 0.037 2.96 1.09-8.42 0.036

Clinical stage 1.59 0.57-4.46 0.374 – – –
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evaluating the efficacy and prognosis of NPC (26). In this study, we

included DWI sequences and extracted important features from

them to construct the radiomic models.

By analyzing the combined images of the T2WI-STIR sequence,

CE-T1WI sequence and DWI sequence, six radiomic features were

obtained after feature extraction, selection and dimensionality

reduction, including 1 feature on T2WI-STIR, 3 features on CE-

T1WI, and 2 features on DWI. Preliminary results showed that the

DWI parameters were equally important. Through the exponential

transform, logarithmic transform and square root transform, three

radiomic features, all of which are high-order features, were

obtained. Three radiomic features were derived via wavelet

transform. The wavelet transform is a new transformation

analysis method in image processing that has gradually refined

signal processing on multiple scales through telescopic translation,

thus focusing on the details of the signal. Among the 6 radiomic

features extracted in this study, the wavelet transform accounted for
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the greatest proportion, which may be related to the high soft tissue

resolution and obvious detail display of the MR images.

We added economic and convenient indicators such as

hematology parameters to improve the convenience and

feasibility of the model in clinical practice. Univariate and

multivariate logistic regression analyses revealed that the T stage

and NLR were independent predictors (P < 0.05). At present, the

TNM staging system widely used in the staging of NPC mainly

focuses on the length and diameter of the tumor, the depth and

breadth of invasion, the location and size of the involved lymph

nodes, and the presence of distant metastasis (27). Zhao et al. (28)

retrospectively analyzed the clinical characteristics of 527 NPC

patients after IMRT. Cox risk regression revealed that the T stage

was an important risk factor for local relapse-free survival (LRFS).

The application of T stage helps NPC patients achieve higher local

tumor control rates and 5-year overall survival (OS) rates during

treatment. In tumors and other pathological conditions, the NLR
FIGURE 4

ROC curves for the 3 models in the training group and validation group.
FIGURE 5

The prognosis of nasopharyngeal carcinoma patients treated with chemoradiotherapy is predicted. Note: T stage—1 represents T3–T4, and 0
represents T1–T2.
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represents the dynamic relationship between innate (neutrophilic)

and adaptive (lymphocyte) cellular immune responses (10, 29, 30).

Numerous cytokines and angiogenic factors are released by

neutrophils during tumor cell growth, angiogenesis, and

metastasis (31). Lymphocyte infiltration plays an important role

in improving patient prognosis and therapeutic response (32). As a

result, the NLR may provide insights into the relationships among

tumors, inflammatory responses, and the immune system as a

whole. Through a literature review, numerous studies (33–35)

have shown that the peripheral blood NLR is an independent risk

factor for predicting the outcome of patients with NPC, but most of

those studies included only clinical indicators and did not include

radiomic characteristics in the analysis. Therefore, we extracted

easily available hematological indicators from NPC patients,

identified stable and efficient clinical markers, and incorporated

them into the radiomics nomogram. Compared with those in other

studies, the parameters included in our model are more universal,

so the model is more applicable. By measuring relevant parameters

before chemoradiotherapy, our nomogram helps to accurately and
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intuitively predict the outcome of patients with advanced NPC.

If NPC patients with a long PFS can be identified before

chemoradiotherapy, clinicians can improve the treatment plan

and choose a treatment with fewer side effects under the premise

of the same overall treatment outcome to improve the quality of life

of patients. Conversely, for patients with a short PFS predicted by

the model, intensive therapy and combined targeted therapy can be

used as appropriate, and poor prognostic factors can be considered.

However, this research still has some shortcomings. First, this

study included only patients with stage II–IV NPC, and future

studies should consider patients with other disease stages. Second,

this study did not distinguish in detail the different effects of IC and

AC on the prognosis of patients, and detailed subgroup studies on

different chemotherapy drugs should be conducted in the future.

Third, the minimum and maximum PFS times of our study were 3

years and 5 years, respectively. In the future, we will include more

patients from medical institutions in the same region and further

classify the 3-year PFS, 5-year PFS and long-term overall survival of

patients. Fourth, with advancements in medical technology, the
FIGURE 7

DCA curves of the training group and verification group.
FIGURE 6

Calibration curves of the training group and validation group with columns.
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survival time of patients with NPC has gradually increased,

resulting in a limited dataset for the death group in this study.

Finally, this study only sketched the two-dimensional ROI at the

largest level, and all of them were segmented manually, resulting in

the subjectivity of segmented images. At present, semi-automatic

and automatic segmentation techniques have been applied in the

research of NPC images (36), and three-dimensional and automatic

segmentation will be tried in the subsequent research. To this end,

we expect to expand the follow-up work and add more data from

studies over time to increase the robustness and reliability of

the model.

In conclusion, in this study, we combined T stage, NLR, and

radiomic features to develop and validate a clinical–radiomics

nomogram based on multisequence MRI and clinical risk factors

that can effectively predict the outcome of patients with stage II-IV

NPC. This model can be used as a noninvasive and beneficial tool to

promote the individualized treatment and optimal management of

NPC patients, provide new ideas for the establishment of a more

comprehensive prognostic model, and provide more auxiliary

references for clinical practice.
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Survival curve of the combined model.
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