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Since its introduction in the 1970s, endocrine therapy that targets the estrogen

receptor alpha (ERa) signaling pathway has had tremendous success in the clinic

in estrogen receptor positive (ER+) breast cancer. However, resistance to

endocrine therapy eventually develops in virtually all patients with metastatic

disease. Endocrine resistance is a primary unaddressed medical need for ER+

metastatic breast cancer patients. It has been shown that tumors become

resistant through various mechanisms, converging on the acquisition of

genetic alterations of ER, components of the MAP kinase pathway, or

transcription factors (TFs). For instance, mutations in the human epidermal

growth factor receptor-2 (HER2) lead to complete resistance to all current

endocrine therapies including aromatase inhibitors, selective estrogen receptor

modulators, and selective estrogen receptor degraders, as well as cross-

resistance to CDK4/6 inhibitors (CDK4/6is). Emerging evidence points to an

intriguing connection between endocrine-resistant tumors and the HER2-low

subtype. Specifically, recent studies and our analysis of a publicly available breast

cancer dataset both indicate that metastatic ER+ breast cancer with endocrine

resistance conferred through acquired genetic alterations can often be classified

as HER2-low rather than HER2-0/HER2-negative. Limited data suggest that

acquired endocrine resistance can also be accompanied by a subtype switch.

Therefore, we suggest that there is an underappreciated association between the

HER2-low subtype and endocrine resistance. In this perspective piece, we

explore the evidence linking the HER2-low subtype with the various pathways

to endocrine resistance and suggest that there are signaling networks in HER2-

low tumors that intersect endocrine resistance and can be effectively targeted.
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1 Introduction

Human epidermal growth factor receptor-2 (HER2)-low breast

cancer (BC) accounts for between 45% and 55% of all BC cases (1).

By definition, they belong to luminal-like [estrogen receptor-

positive (ER+)] and triple-negative BC (TNBC) subtypes with a

lack of HER2 (ERBB2) amplification (1, 2). At least 80%–90% of

HER2-low are ER+ [luminal A (LumA) or B (LumB)] tumors (3), as

opposed to ~70% of HER2-0.

LumA or B ER+ BC is classically treated using ER (ESR1)-

directed endocrine therapies—aromatase inhibitors (AIs) or the

selective ER modulator (SERM) tamoxifen in the first-line setting,

and the selective ER degrader (SERD) fulvestrant or the

combination of endocrine with CDK4/6 inhibitor (CDK4/6i)

palbociclib or ribociclib, which were tested in the PALOMA (4)

and MONALEESA (5) trials, or CDK4/6i abemaciclib monotherapy

(MONARCH (6) study), in the first-line and endocrine refractory

second-line settings (7, 8). Endocrine resistance to ER inhibitors

(ERis) is ubiquitous and a primary contributor to BC-

associated mortality.

Endocrine resistance has been studied for decades using cell line

models cultured to resistance—regardless of the specific cell line or

the endocrine treatment, nearly all such models upregulate HER2

and/or HER2 binding partners (9–11). LumB tumors, which are

characterized by increased HER2 expression and pathway activity

signature compared to LumA, have worse outcomes on endocrine

therapy (12). Thus, HER2 activity has a strong inverse correlation

with endocrine sensitivity.

In recent years, large-scale sequencing studies have begun to

shed light on the mechanisms of endocrine resistance that arise in

the clinical setting (13, 14). Overall, these appear to converge on

three major classes: 1) alterations in the target ER through

mutations or novel oncofusions (15, 16), 2) transcription factor

(TF) alterations, and 3) MAP kinase pathway-associated alterations,

including upstream receptor tyrosine kinases (RTKs) and

downstream components of the MAP kinase or PI3K/AKT/

mTOR signaling cascades (14). Up to 60% of endocrine-resistant

tumors do not harbor a genetic alteration in any of these classes, and

this remains an area of active study.

Of the known mechanisms of clinical endocrine resistance, ER

(ESR1) mutations (ERmuts) are the most common, accounting for

18%–50% of resistant tumors depending on patient cohort

characteristics (higher prevalence in AI-treated populations)

(17–20). ERmuts have been extensively studied (21) and can be

clinically targeted with novel oral SERDs, the first of which

elacestrant (22) was Food and Drug Administration (FDA)

approved for ERmut tumors in 2023. At the same time, the

other specific alterations acquired in resistant tumors are

incredibly diverse and, with few exceptions, such as HER2muts

that our group and others previously identified (23–25), not

clinically targetable. As a result, the management of endocrine

resistance is still reliant on the ERi+CDK4/6i combination. A

major question remaining is whether the HER2-low subtype has

relevance in endocrine-resistant disease.
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2 Intersection of endocrine therapy
resistance and HER2-low

Resistance to endocrine therapies can be caused by a wide variety

of molecular alterations, as summarized in Table 1 and depicted in

Figure 1. They converge into three classes: 1) ER, 2) TF, and 3) MAPK

(14). These include alterations in ESR1, ERBB2, EGFR, KRAS, FGFR1/

2/4, and ER transcriptional regulators, for instance, MYC, CTCF,

FOXA1, and TBX3. Simultaneously, genomic and transcriptomic

analyses of HER2-low tumors indicate that they harbor several of

these same molecular alterations (mutations, amplification/deletion,

and fusions) in both the primary (2) and metastatic (26) settings.

While the exact frequency remains to be determined, the majority of

evidence suggests that a non-insignificant proportion of endocrine-

resistant tumors may indeed be HER2-low. We summarize here

recent evidence linking endocrine resistance-associated molecular

alterations with HER2-low status. To facilitate this, we retrieved

tumor-level HER2 immunohistochemistry (IHC) and fluorescence

in situ hybridization (FISH) data from a comprehensive 2018 study of

the genomic landscape of endocrine resistance by Razavi et al. (14)

from cBioPortal (27–29) (Supplementary Table 1) to identify HER2-

low tumors among those bearing validated endocrine resistance-

associated genetic alterations (Supplementary Table 2). As shown in

Table 1, a significant proportion of tumors bearing endocrine

resistance-associated alterations could be classified as HER2-low

(Supplementary Table 3), in most cases at a higher frequency

(~63%–70%) than the expected proportion of HER2-low tumors

(~45%–55%).
2.1 ER pathway hyperactivation

Acquired activating hotspot ERmuts are the most well-established

mechanism of clinical endocrine resistance—they are dramatically

enriched in this setting (~18%–50% of tumors) compared to primary

BC (~2%) and primarily confer resistance to AIs (14, 17–20). In vitro

studies found that ERmuts drive altered (often increased) HER2

downstream signaling (21, 30), thus hinting at potential crosstalk that

may be targetable. Some alleles are more active—in the PALOMA-3

study, the Y537S ERmut was associated with resistance to fulvestrant

alone and in combination with palbociclib (31, 32). A recent study

identified a novel ERmut at F404 in cis with activating ERmuts as an

acquired mechanism of resistance to fulvestrant in ~4% of tumors

(33). ERmuts have been shown to drive an altered ER cistrome

through stabilization of the agonist state (34), enabling ER binding to

coactivators in the absence of ligand and enhanced binding to

estrogen response elements (EREs) in target gene promoters (21),

which maintain ER downstream signaling. ERmuts also have a lower

affinity for the inhibitor tamoxifen (34). In addition to mutations,

ESR1 overexpression and novel oncofusions (15, 16) can also drive

resistance to endocrine therapies.

The recent genomic characterization study of HER2-low metastatic

breast cancer (MBC) noted that ERmuts were preferentially enriched in

ER+HER2-low tumors over ER+HER2-0 (16% of 370 vs. 11% of 336)
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(26). In addition, ESR1 amplification was one of only two copy number

variations (CNVs) that were significantly enriched in HER2-low tumors

regardless of ER status in this study. A related study in HER2-low

tumors found that ER expression levels were significantly higher in this

subset (3). Thus, endocrine resistance through ER hyperactivation

appears to intersect significantly with HER2-low. In the Razavi cohort,

61% (89/147) of ERmut tumors were HER2-low (14).
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2.2 Transcription factor alterations

Amplifications and/or hotspot mutations of key transcriptional

regulators ARID1A, MYC, CTCF, FOXA1, and TBX3 are candidate

mechanisms of resistance in 9% of endocrine-resistant tumors (14).

FOXA1 is a pioneer factor of ER function on chromatin and a

known driver of ER+ BC (35–37). FOXA1 and ER co-expressed
TABLE 1 Intersection of endocrine resistance mechanisms and HER2-low.

Alteration % altered
(of n)

%HLBC Resistance Relevant clinical trials and/or inhibitors Refs

AKT1Amp/mut 7% (of 1501),
12% (of 41)

63% (66/105) ER, CDK4/6 CAPItello-291 (AKTi capivasertib), DESTINY Breast-
08 (capivasertib)

(14, 52,
53, 111)

AKT2Amp 0.1% (of 1501) 67% (10/15) N/A CAPItello-291 (AKTi capivasertib), DESTINY Breast-
08 (capivasertib)

(14, 44, 111)

ARID1Amut 6% (of 1501) 63% (63/100) ER ATRi berzosertib (NCT03718091) (14, 44,
114, 121)

AURKAAmp 27.0% (of 41) 67% (43/64) ER, CDK4/6 TBCRC041 (AURKAi alisertib) (53, 122)

BRAFmut 0.6% (of 692) 45% (5/11) ER EVESOR (BRAFi sorafenib+mTORi everolimus), TAPUR (MEKi
cobimetinib+BRAFi vemurafenib), alpelisib (PI3Ki)
+binimetinib (MEKi)

(14, 123, 124)

CCND1Amp 27.0% (of 41) 70% (240/345) ER, CDK4/6 N/A (52, 53)

CCNE2Amp 17.0% (of 41) ND ER, CDK4/6 CDK2i (53, 79, 136)

CTCFmut 1% (of 692) 58% (18/31) ER N/A (14)

EGFRAmp 2.0% (of 692) 64% (14/22) ER Duligotuzumab (EGFR+HER3i), POTENTIATE (CHK1i
BBI-355)

(14, 125)

ERBB2mut 4%–10% 57% (44/77) ER, CDK4/6 SUMMIT (HER2i neratinib+HER2i trastuzumab+fulvestrant),
DESTINY-Breast04 (HER2i T-DXd)

(14, 23, 24, 56,
96, 100)

ESR1mut 18% (of 692),
36% (of 44)

61% (89/147) ER EMERALD (ERi elacestrant), SERENA-1 (ERi camizestrant),
AMEERA-5 (ERi amcenestrant+palbociclib), ELAINE-1
(ERi lasofoxifene)

(14, 17–20, 33,
104, 105,
126, 127)

FGFR1Amp 15% (of 60)
17% (12/72)

65% (140/215) ER, CDK4/6 FOENIX-MBC2 (FGFRi futibatinib), BOLERO-2 (mTORi
everolimus), FINESSE (FGFRi lucitanib)

(52, 61–63,
115–117, 120,
128, 129)

FGFR2Amp/mut 8.3% (of 60) 57% (24/42) ER, CDK4/6 FOENIX-MBC2 (FGFR1i futibatinib), BOLERO-2
(mTORi everolimus)

(52, 116,
120, 128)

FOXA1mut/Amp 2% (of 692) 67% (51/76) ER N/A (14, 39–41)

IGFRAmp 10% (of 41) 56% (22/39) ER, CDK4/6 IGF1Ri dalotuzumab (53, 65, 130)

KRASmut 1% (of 692) 67% (8/12) ER KRYSTAL 1 (KRASmuti adagrasib), KRASi sorafenib
+mTORi everolimus

(14, 53,
131, 132)

MAP2K1mut 0.3% (of 692) 56% (5/9) ER MEKi mirdametinib (14, 133)

MYCAmp 9% (of 692) 64% (100/157) ER ATRi berzosertib (NCT03718091), CDK9i (14, 47, 121)

NF1mut/del 5% (of 692),
8.1% (17/246)

56% (52/93) ER EAY191-N2 ComboMATCH (fulvestrant+binimetinib
MEKi NCT05554354)

(14, 50)

PIK3CAmut 41% (of 1501) 65% (445/686) ER SOLAR-I (PI3Ki alpelisib), CAPItello-291 (AKTi capivasertib,
DESTINY Breast-08, NCI-MATCH (PI3Ki copanlisib, alpelisib),
mTORi sirolimus

(14, 108–111,
119, 134, 135)

PTENmut/del 9% (of 1501) 68% (110/163) N/A CAPItello-291 (AKTi capivasertib+fulvestrant), DESTINY Breast-
08 (HER2i T-DXd+AKTi capivasertib), copanlisib

(14, 77, 111,
119, 134)

TBX3mut 1% (of 692) 63% (54/86) ER N/A (14)
For each endocrine resistance-associated genetic alteration, columns from left to right are the % of endocrine-resistant (or advanced) ER+MBC with the alteration, % of altered tumors in the Razavi
et al. (2018) cohort that were HER2-low BC, clinical resistance associated with alteration, relevant clinical trials and/or clinical/pre-clinical inhibitors in ER+MBC bearing alteration, and references.
HER2, human epidermal growth factor receptor-2; ER+, estrogen receptor positive; MBC, metastatic breast cancer.
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at high levels in endocrine therapy-resistant MBC (38), and

FOXA1Amp contributes to endocrine resistance in preclinical

models by reprogramming the ER and FOXA1 cistrome and

transcriptome (39) and inducing a pro-metastatic secretome

(40). FOXA1muts were also enriched in MBC and associated

with worse responses to AIs (41). Increased FOXA1 expression

levels through promoter mutation create stronger binding for

E2F family TFs and promote cellular tolerance to fulvestrant

treatment (42).

ARID1A is the most frequently mutated subunit of the SWI/

SNF chromatin remodeling complex in ER+ BC (43) and an

essential luminal lineage driver gene. Loss-of-function

ARID1Amuts were enriched in the post-endocrine metastatic

setting and were shown to mediate endocrine resistance in vitro

by changing the chromatin accessibility of TFs playing a role in

luminal differentiation as well as binding of the chromatin

remodeling complex SWI/SNF at ER-FOXA1-GATA3 sites (14, 44).
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MYC is an ER-regulated gene, whose overexpression confers

endocrine resistance by promoting cell cycle progression and

altered metabolism/unfolded protein response modulation (45),

while knockdown of MYC impairs hormone-independent growth

of BC cell lines in vitro (46–49).

In HER2-low primary BC, ARID1A, MYC, CTCF, FOXA1, and

TBX3 were altered in 15% of tumors, while the frequency in HER2-low

MBC remains to be determined (2). FOXA1 expression was

significantly higher in HER2-low primary tumors (3). ARID1A-

altered tumors accounted for 4% of HER2-low primary BC

(all LumB tumors with a HER2 IHC score of 2+) and 8% of ER

+HER2-low MBC (2, 26). MYC copy number gain has been identified

inHER2-low tumors (2, 26). Analysis of advanced tumors in cBioPortal

(Table 1) revealed that of tumors bearing FOXA1muts, MYCAmp, or

ARID1Amuts, 67% (51/76), 64% (100/157), and 63% (63/100),

respectively, can be classified as HER2-low. Among CTCFmut and

TBX3mut tumors, 58% (18/31) and 63% (54/86) were HER2-low.
FIGURE 1

Signaling pathways in endocrine-resistant HER2-low breast cancer. Targetable genetic alterations and pathways in endocrine-resistant HER2-low
breast cancer include RTK/MAPK pathway, PI3K/AKT/mTOR pathway, and TFs, along with the ER pathway and transcriptional targets, and alterations
related to CDK4/6i resistance. Created with BioRender.com. HER2, human epidermal growth factor receptor-2; TFs, transcription factors; ER,
estrogen receptor.
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2.3 MAPK/PI3K-AKT
pathway hyperactivation

2.3.1 RAS/RAF/MEK/ERK pathway
Components of the MAPK signaling cascade KRAS, BRAF, and

MEK1; the negative regular NF1; and upstream RTKs (EGFR,

HER2, FGFR1/2/4) are altered in ~13% of endocrine-resistant

MBC (14, 50). Several of these are far more prevalent in heavily

pre-treated populations by virtue of their ability to confer cross-

resistance to not only second-line endocrine therapies but also

CDK4/6is.

KRASmuts were found in 15.4% of AI-resistant tumors by

circulating tumor DNA (ctDNA) analysis, were acquired in

endocrine-resistant MBC (14), and conferred resistance to

fulvestrant in vitro (51, 52). In vitro, the KRAS G12D activating

mutation confers resistance to fulvestrant (53). Of KRASmut

endocrine-resistant tumors in the Razavi et al. cohort, 67% (8/12)

were HER2-low (Table 1) (14).

HER2 (ERBB2) and NF1 were most significantly increased in

mutational frequency between pre- and post-hormonal therapy in

ER+HER2− MBC (14). NF1 loss-of-function (LOF) mutations

(NF1muts) account for 4.6% of endocrine-resistant tumors and

drive endocrine resistance in vitro through both ER-dependent

MAPK pathway-driven expression of Cyclin D1 and ER-

independent S-phase entry (50, 54). Although NF1-altered tumors

in Razavi et al. included several with the HER2-low subtype

(Table 1, 52/93, 67%), NF1 loss was strongly associated with

HER2-0 status in the HER2-low genomic characterization study

(26); thus, this association is of uncertain relevance.

Among the RTK family proteins found altered in endocrine-

resistant BC, HER2muts represent a mechanism with unique

features. We and others previously identified acquired activating

somatic hotspot HER2muts that conferred strong endocrine

resistance to all clinically approved ER inhibitors and cross-

resistance to the CDK4/6i palbociclib by activating MAPK/PI3K

downstream pathways and altering the ER transcriptome (23,

55, 56). Transcriptomic analysis of HER2mut tumors revealed

they have higher average HER2 expression than non-HER2mut

tumors (57). Similarly, the recent HER2-low study determined that

HER2mut tumors were slightly increased in ER+HER2-low tumors

(26). We found that 57% (44/77) of HER2mut tumors in the Razavi

cohort were HER2-low (Table 1). HER2mut tumors were also

preferentially enriched in lobular vs. ductal subtypes (58, 59).

Lastly, PAM50 analysis of HER2mut tumors appeared to indicate

a switch to HER2-E or LumB (23, 60). Thus, ER+HER2mut tumors

represent a unique subset of endocrine-resistant tumors that

intersect with HER2-low. Mutational landscape analysis of

primary HER2-low BC validated HER2muts (8%) (2), while they

were also enriched in ER+HER2-low over ER+HER2-0 MBC (26).

2.3.1.1 Other RTKs

FGFR1/2Amp and FGFR2muts have been identified as a clinical

mechanism of resistance to endocrine therapy through ER

reprogramming and activation of the MAPK pathway in up to
Frontiers in Oncology 05
40% of some smaller cohorts and validated in vitro (52, 61–63).

FGFR2Amp was much more prevalent in HER2-low MBC

compared to HER2-0 (26). As MAPK upstream regulators,

EGFRAmp has been reported in 1.7% of endocrine-resistant MBC

and demonstrated preclinically to confer endocrine (14) and CDK4/

6i resistance (64) via activation of ERK and AKT. Additionally, the

IGF1R pathway has been shown as a mechanism of escape from

hormone dependence in BC in vitro (65) via crosstalk with the

EGFR (66). Significantly, IGF1RAmp was one of only two CNVs

that were found to be significantly enriched in HER2-low tumors

regardless of the ER level (26). cBioPortal analysis revealed that 64%

of MBC with FGFR1/2 gene alterations (164/257) and EGFRAmp

(14/22) were HER2-low (Table 1), along with 56% (22/39)

of IGF1RAmp.

2.3.2 PI3K/AKT pathway
The PI3K pathway components PIK3CA, AKT1/2, and PTEN

are highly mutated in ER+ BC (67, 68). The role of PIK3CAmuts in

endocrine resistance is unclear. Clinically, based on the PALOMA-3

study, there was no significant difference in progression-free

survival (PFS) between PIK3CAmut and PIK3CAwt tumors (4),

and there was no significant enrichment of PIK3CAmuts in

endocrine-resistant MBC (14). However, PIK3CAmuts can confer

endocrine resistance in vitro (69). Genomic characterization of

HER2-low tumors indicated that the frequency of PIK3CAmuts

was similar in ER+ tumors regardless of HER2-low or HER2-0

status (26). Of ER+ MBC tumors with PIK3CAmuts, 65% are

HER2-low (14) (Table 1), but HER2-low MBC has a lower

frequency of PIK3CAmuts overall (26).

AKT is a downstream effector of PI3K, whose overexpression

confers endocrine and CDK4/6i resistance in vitro (52, 53).

Clinically, AKT1 alterations account for 7% of ER+HER2− MBC

(14) and were enriched compared with primary disease (50). Some

studies suggested that activated AKT (increased pAKT) levels

negatively correlated with the efficacy of endocrine therapy (70)

and were associated with worse outcomes among endocrine-treated

BC patients (71, 72). AKT1muts were highly enriched in HER2-low

MBC when compared with HER2-0 (26).

mTOR activation is highly correlated with a lack of response to

ER+CDK4/6i in clinical studies (73) and increased migration and

stemness (74). While mTORmuts have not been validated as a

mechanism of endocrine resistance in vitro, they have been found to

be acquired in ER+CDK4/6i-resistant tumors (60). In a genomic

study, MTOR was the top significant gene that was mutated

preferentially in HER2-low vs. HER2-0 MBC (26).

PTEN is a negative regulator of the PI3K pathway, and its loss is

suggested to contribute to clinical endocrine resistance by activating

PI3K signaling (75, 76). In vitro, reduced PTEN levels resulted in

endocrine resistance (77), while PTEN loss was enriched in HER2-

low vs. HER2-0 MBC (26).

Analysis of advanced tumors in the Razavi cohort (Table 1)

revealed that 63% of AKT1-altered (66/105), 67% of AKT2Amp (10/

15), 65% of PIK3CAmut (445/686), and 67% of PTEN-altered

tumors can be classified as HER2-low.
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2.4 Endocrine and CDK4/6i combination
therapy resistance

CDK4/6is block the cell cycle transition from the G1 phase to

the S phase, leading to cell cycle arrest in ER+ BC (78). However,

resistance to CDK4/6is occurs in virtually all patients, leading to

high mortality. In ER+ BC, CDK4/6is are usually utilized in

combination with ERis—studies of acquired clinical resistance to

the combination found that acquired alterations in RB1, CCND1,

CDK4/6, CCNE1/2, and AURKA were enriched in resistant tumors

(53, 79). Additionally, some established mechanisms of endocrine

resistance, specifically those in the “MAPK” class such as

ERBB2muts and IGF1RAmp (80), AKT1Amp, and AKT1muts,

confer cross-resistance to CDK4/6is. Key recent findings indicate

that the HER2-low subtype is independently associated with worse

response to ERi+CDK4/6i, while the specific molecular alterations

enriched have not been determined. The recent genomic

characterization of HER2-low MBC indicated that CCND1 and

CDK4 were more frequently amplified in HER2-low over HER2-0

as a potential mechanism of CDK4/6 resistance (26). Thus, ER

+HER2-low tumors represent a sizeable fraction of ER+ tumors that

are particularly intractable to ER+CDK4/6is in the clinic and for

which therapeutic options are desperately needed.
2.5 Subtype switching in endocrine-
resistant tumors

The PAM50 intrinsic subtype (IS) was the strongest prognostic

factor predicting PFS and OS (LumA > LumB > HER2-E/basal) in a

retrospective analysis of ER+ MBC (81), while another analysis of

clinical trials in ER+MBC showed that the HER2-E subtype correlated

with response to HER2i and ribociclib, and the basal subtype correlated

with response to chemotherapy (82). Endocrine resistance is also linked

with enhanced phenotypic plasticity (83), which enables IS switching

through downregulation of luminal markers and upregulation of basal

markers (84), and transition to a non-luminal subtype (basal or HER2-

E). Switching between HER2+ and HER2− is relatively common

(~36%) in studies of primary vs. metastatic tumors from the same

patient (85), along with IS switching—there is enrichment of HER2-E

and decrease of LumA in MBC (86). Gene expression changes and

subsequent IS switches were more frequent in LumAMBC than in the

other molecular subtypes (87). For example, 40.4% of LumA switched

to LumB, and 10%–15% of LumA/B tumors switched to HER2-E in a

retrospective study (82), while 90% of LumA tumors switched to LumB

or HER2-E in the AURORA study of MBC (88). Another study of

paired primary and relapse (endocrine-refractory) tumors found that

19/70 (27.1%) underwent the PAM50 switch, with the HER2-E subtype

enriched in the resistant setting (89).

Additionally, there is a switching of HER2-low status in

progressive disease—a retrospective study of LumB BC patients

showed that there was extensive switching between HER2-low and

HER2-0 status at a rate of 34% or 25% in either direction (90).

Endocrine-resistant ER+ MBC often undergoes switches between

HER2-0 and HER2-low status (90).
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While the exact percentage remains to be determined due to a

lack of systematic large-scale clinical transcriptomic studies, there is

limited evidence that tumors with acquired endocrine resistance-

associated genetic alterations undergo subtype switches. For example,

a prior study from our group showed that an ER+ MBC tumor that

acquired a HER2mut switched from ER+HER2-0 to ER+HER2-low

(23), while HER2mut tumors are clinically associated with HER2-E

(88). Although transcriptomic characterization of primary tumors

linked the HER2-low subtype most closely with a LumA signature

(3), these may differ in the endocrine resistance context. Along these

lines, a recent small study in ER+ MBC showed that most ERmut,

FGFR1Amp, NF1loss, AKT1mut, and CCND1Amp tumors were

predominantly LumB, while the HER2mut and BRAFmut tumors

in this cohort were HER2-E, rather than LumA (60). FGFRAmp,

EGFRAmp, and CCND1Amp were also enriched in HER2-E primary

tumors (91). Additionally, all the ERmut tumors in another study of

primary HER2-low tumors were classified as the LumB subtype and

were characterized by a HER2 IHC score of 2+ (2). While

PIK3CAmuts were not associated with endocrine resistance, they

were preferentially enriched in MBC undergoing a subtype switch to

HER2-E in AURORA (88).

Alterations that lead to subtype switch to basal may be less likely

to have relevance to HER2-low signaling, although several of these are

significantly associated with HER2-low in the MBC setting (26). For

example, ERmut (92) and ARID1Amut (44) tumors demonstrate

upregulation of basal genes. GATA3, while not enriched in endocrine

resistance, is an important marker of ER dependence and luminal

identity (93)—GATA3muts were preferentially enriched in ER

+HER2-low tumors over ER+HER2-0 (16% of 370 vs. 9% of 336)

(26) while also present in ~18% (18/99) of HER2-low primary BC (2).

Importantly, HER2i was shown to be able to convert HER2-E

tumors to less aggressive LumA in HER2+ MBC (94), which may

enable re-sensitization to endocrine therapy. Thus, subtype

switching in endocrine-resistant HER2-low tumors, particularly to

HER2-E, may be able to inform treatment.
3 Potential therapeutic strategies for
endocrine-resistant HER2-low tumors

Historical evidence confirmed that HER2 expression or

amplification level correlates strongly with response to and

benefit from trastuzumab (95), lending credence to HER2 as a

biomarker. In contrast, the DESTINY-Breast04 (96) and DAISY

(97) trials demonstrated the surprising benefits of treating HER2-

low MBC with the HER2 antibody–drug conjugate (ADC)

trastuzumab deruxtecan (T-DXd). Deruxtecan is unique in its

ability to kill tumor cells nearby, demonstrating a potent

bystander effect due to its membrane-permeable payload (98).

Patients with refractory ER+ BC who received T-DXd had

significantly longer progression-free and overall survival than

those who received chemotherapy (96). Surprisingly, this efficacy

was independent of HER2 status. Based on this trial, T-DXd was

approved in August 2022, demonstrating an improvement in the

clinic for those diagnosed with ER+HER2-low MBC.
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Endocrine resistance-associated genetic alterations differ widely

in their profiles of response to targeted therapies (Table 1).

HER2mut tumors were cross-resistant to the CDK4/6i palbociclib

(23) and variably sensitive to HER2 tyrosine kinase inhibitors

(TKIs) (55), while the irreversible TKI neratinib resensitized

HER2muts to fulvestrant in vitro. The combination of neratinib

with trastuzumab and fulvestrant was efficacious against HER2mut

ER+ BC in the SUMMIT basket trial (23, 25, 99), after progression

on CDK4/6is (100), and the fulvestrant+neratinib combination in

ER+HER2mut was further supported by the mutHER trial (101).

Finally, the DESTINY-Lung02 trial also indicated that T-DXd had

surprising activity in HER2mut tumors (102), potentially due to

increased mutant receptor internalization (103).

The standard of care treatment for ER+HER2− BC remains the

combination of ERi+CDK4/6i in the advanced setting. Patients who

developed resistance to therapy by acquiring ERmuts can now

benefit from novel oral SERDS, such as elacestrant and

camizestrant (104)—the former was FDA-approved specifically

for ER+HER2− ERmut MBC in 2023. Newer ER-targeting agents

also have been found to have activity against ERmuts—the phase II

ELAINE 1 trial demonstrated encouraging antitumor activity of

lasofoxifene, a novel SERM/SERD hybrid, in patients with ERmut

endocrine-resistant MBC following progression on AI+CDK4/6i

(105). Newer ER proteolysis-targeting chimeras (PROTACs) like

vepdegestrant also appear promising (106). Aside from newer

SERDs, some TF-driven endocrine resistance may continue to

respond to other ER-targeting agents. For example, FOXA1muts

showed sensitivity to tamoxifen or fulvestrant in vitro (41).

Although ERmuts are associated with poor response to CDK4/6is,

abemaciclib, which is unique compared to other CDK4/6is, may be

of use, particularly with the deployment of a recently developed

multigene panel that could predict resistance to abemaciclib in

ERmut tumors (107).

Clinically, PIK3CAmuts are targetable through the PI3K

inhibitor, alpelisib (108). In ER+HER2− MBC, patients with

PIK3CAmut tumors had significantly longer PFS with alpelisib

+fulvestrant than fulvestrant alone. The FDA approved alpelisib+

fulvestrant for PIK3CAmut ER+HER2- MBC patients based on

overall survival results from the SOLAR-1 trial (109). In the case of

endocrine therapy resistance associated with reduced PTEN levels,

adding mTOR (110), AKT, or MEK inhibitors to endocrine therapy

has been suggested as a promising strategy in vitro (77). PI3K

pathway alterations are additionally targetable through the newest

approved pan-AKT inhibitor capivasertib (111, 112), which is

currently being evaluated in combination with T-DXd for HER2-

low BC in the phase III DESTINY-Breast08 trial (113).

Other mechanisms lack clinically approved or defined targeted

therapeutic strategies at the moment. These include ARID1A loss,

which sensitized ER+ cells to BET inhibition in vitro (114).

Targeting FGFR with an irreversible pan-FGFR inhibitor, FIIN-3

reversed the activation of FGFR and resensitized cells expressing

FGFR2 to fulvestrant (52). FGFR1 overexpressing ER+ BC cells

were highly sensitive to the mTOR inhibitor everolimus (115). The

combination of fulvestrant with either everolimus or with the FGFR

TKi lucitanib overcame endocrine resistance in vitro (115).

Futibatinib, an irreversible FGFR inhibitor, significantly inhibited
Frontiers in Oncology 07
the growth of PDX models bearing FGFR2 alterations (116). The

FOENIX-MBC2 ongoing clinical trial demonstrated the efficacy of

futibatinib in patients with locally advanced/metastatic BC

harboring FGFR1/2 amplifications who have experienced disease

progression after prior therapy for advanced/metastatic disease

(117). Other pan-FGFR inhibitors are in clinical trials for FGFR-

altered tumors (118).

In most of the abovementioned endocrine resistance-associated

altered tumors, classification as HER2-low opens up additional

therapeutic strategies that could be advantageous, particularly in

cases where dependence on HER2 is borne out by PAM50 subtyping

and/or subtype enrichment. Several key clinical trials with relevance to

specific genetic alterations are included in Table 1. These include the

DESTINY-Breast04 (96) and DESTINY-Breast08 (119) trials, which

are in HER2-low MBC and are likely to include endocrine-resistant

tumors, as well as others in which specified genetic alterations were

inclusion criteria, or in which retrospective subgroup analysis has

indicated the significant benefit of the intervention for the altered

tumors (22, 100, 105, 109, 111, 117, 120–137).
4 Discussion (perspective)

Overall, the available clinical data indicate that a significant

subset of endocrine-resistant tumors may be characterized as

HER2-low in opposition to HER2-negative. With the advent of

newer HER2-targeting therapies such as T-DXd, the time is ripe to

consider whether combination regimens that include HER2-

targeting ADCs should be explored in combination with

endocrine agents, especially novel oral SERDs, as next-line

therapies for patients failing ER and CDK4/6 inhibition. There

are two reasons that this approach should be considered: 1) the

vast diversity in mechanisms of acquired endocrine and CDK4/6

clinical resistance mechanisms makes it challenging to target

tumors effectively, and 2) as the two major molecularly targeted

pathways in breast cancer, there is a continuous pipeline of newer

ER and HER2 inhibitors that may be potentially viable for

endocrine-resistant HER2-low tumors. The major questions that

remain to be addressed include 1) what proportion of endocrine-

resistant tumors may be classified as HER2-low, 2) which specific

genetic alterations are enriched in this context that may be

targetable in addition, and 3) whether endocrine-resistant

HER2-low tumors tend to be preferentially lobular vs. ductal.

The landscape of lobular carcinoma is beginning to be understood

as a distinct entity (138), and certain alterations such as

HER2muts are enriched in lobular as well as among HER2-low.

Thus, our ability to exploit HER2-low status in endocrine

resistance will depend on a more comprehensive understanding

of the disease context for ER+HER2-low tumors.
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90. Schettini F, Nucera S, Brasó-Maristany F, Santo ID, Pascual T, Bergamino M,
et al. Unraveling the clinicopathological and molecular changes induced by
neoadjuvant chemotherapy and endocrine therapy in hormone receptor-positive/
HER2-low and HER2-0 breast cancer. ESMO Open. (2024) 9:103619–. doi: 10.1016/
j.esmoop.2024.103619

91. The Cancer Genome Atlas Network. Comprehensive molecular portraits of
human breast tumours. Nature. (2012) 490:61–70. doi: 10.1038/nature11412

92. Li Z, McGinn O, Wu Y, Bahreini A, Priedigkeit NM, Ding K, et al. ESR1 mutant
breast cancers show elevated basal cytokeratins and immune activation. Nat Commun.
(2022) 13:2011. doi: 10.1038/s41467-022-29498-9

93. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, et al. Whole-genome
analysis informs breast cancer response to aromatase inhibition. Nature. (2012)
486:353–60. doi: 10.1038/nature11143
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