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Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China, 3Precision Pharmacy & Drug
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Urinary tumors pose a significant health threat because of their high prevalence

and recurrence rates. Despite the availability of various treatment options, many

patients poorly respond to traditional therapies, highlighting the urgent need for

alternative approaches. Oncolytic viruses are promising therapeutic agents.

These viruses exploit the unique characteristics of cancer cells to specifically

target and destroy them, thereby triggering potent antitumor immune responses.

This review delves into recent advancements and future prospects of oncolytic

viruses, focusing on their application in renal, bladder, and prostate cancers. By

discussing practical implications and the potential of different viruses, including

the cowpox virus, adenovirus, measles virus, coxsackievirus, and reovirus, we

pave the way for further exploration and refinement of this exciting field.
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1 Introduction

As a serious threat to human health, urological tumors require diverse treatment

methods. Traditional treatment approaches, including surgery, chemotherapy, and

radiotherapy, control the disease to some extent (1). Onset may be associated with

smoking, obesity, insulin resistance, hypertension, and chronic kidney disease. However,

issues, such as high recurrence rates and significant side effects, continue to affect the

medical community and patients. For instance, renal cell carcinoma (RCC), a malignant

tumor originating in the kidneys, is generally treated by surgical removal (2). However, for

patients with metastatic RCC, surgery often has a limited efficacy, making adjuvant and

targeted therapy crucial supplements (3). Renal cell carcinoma encompasses a range of

histopathological entities, with the most common subtypes being clear cell renal cell

carcinoma (80%), peroid renal cell carcinoma (13-20%), and chromophilic renal cell

carcinoma (5%) (4). For localized renal cell carcinoma that has not metastasized, the
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standard treatment is surgical resection, and radiofrequency

ablation, cryoablation, and stereotactic ablative radiotherapy may

be used when the patient has a high surgical risk, is weak, has

isolated kidneys, has impaired baseline renal function, or has

multiple bilateral tumors (5). Bladder cancer is the 10th most

common malignancy worldwide (6). Onset is often related to

factors such as smoking, air or water pollution, dietary patterns

and medical conditions (7). Based on the depth of invasion, BC is

divided into non-muscle-invasive bladder cancer (NMIBC) and

invasive bladder cancer (MIBC). Transurethral resection of bladder

tumors (TURBT) is the standard of care for NMIBC. For non-

muscle-invasive bladder cancer (NMIBC), intravesical therapy

(primarily BCG) plus maintenance therapy is the mainstay of

treatment to prevent recurrence and progression after initial

TURBT; For those patients who do not respond to BCG,

additional treatment is required. For localized MIBC, optimizing

care and reducing morbidity after cystectomy are important goals

(8). Urothelial carcinoma (UC) is the major subtype of bladder

cancer, and the first-line treatment for patients with locally

advanced urothelial carcinoma is cisplatin-based chemotherapy

(9). Prostate cancer affects millions of men worldwide, mainly in

areas with high human development indices (10). The main

contributing factors for prostate cancer include genetics, obesity,

physical activity, and smoking (11). The treatment of prostate

cancer (PC) is complex. Localized PC can be managed with active

surveillance, radiotherapy, or prostatectomy. Androgen deprivation

therapy (ADT), salvage radiotherapy, and chemotherapy are the

primary treatment methods for recurrent or metastatic PC (12).

Although these traditional approaches increase the patient survival

and improve the quality of life, they have limitations. Surgical

trauma, the toxic side effects of chemotherapy, and damage to

normal tissues due to radiotherapy cannot be ignored. More

importantly, these methods have relatively high recurrence rates,

especially in the case of advanced or metastatic tumors, and

treatment outcomes are often unsatisfactory (13).

In recent years, the rapid development of biotechnology has

brought new hope to the treatment of urological tumors in the form

of oncolytic viruses (OVs), representing an emerging therapeutic

strategy (14, 15). OVs selectively infect and kill tumor cells by

stimulating the body’s own antitumor immune response to achieve

therapeutic goals (16). Compared with traditional treatment

methods, OVs offer a higher targeting specificity and fewer toxic

side effects. More importantly, OVs activate the patient’s immune

system, forming long-term immune memory, thereby effectively

preventing tumor recurrence and metastasis (16).

OV research can be traced back to the late 19th century when

doctors observed cases of tumor regression coinciding with viral

infections (17). However, because of scientific and technological

constraints, this discovery could not be promptly converted into an

efficacious treatment modality (17). With the rapid development of

modern biotechnology, our understanding of OVs has deepened

and their application in cancer treatment has gradually moved from

theory to practice. It has been shown that OVs have tremendous

potential for the treatment of urological tumors. Researchers have

developed various targeted OV strains for different types of

urological tumors including RCC (18), BC (19), and PC (20).
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These viral strains can replicate efficiently within tumor cells and

cause cell lysis as well as activate the body’s immune system by

releasing tumor-associated antigens, forming a powerful antitumor

immune response.

Overall, OVs provide new ideas and methods for the treatment

of urological tumors. Although research in this field is in its early

stages, excellent results of preclinical studies and preliminary

clinical trials bring hope to patients with urological tumors (13).

We believe that OVs will play an important role in the future

treatment of urological tumors.
2 Overview of oncolytic viruses

OVs, as a new type of biological therapy, selectively replicate and

lyse within tumor cells, causing immunogenic cell death and

subsequently inducing antitumor immune responses. It is generally

anti-tumor in four ways: including oncolysis, anti-tumor immunity,

transgene expression, and vascular collapse (21). First, the replication of

the virus in cancer cells can induce cell lysis, and the viral replication

leads to a continuous increase in the viral dose, which is more lethal to

the tumor, and at the same time, proteins are also produced during the

viral replication process, which are also toxic to tumor cells (22). The

third mechanism by which oncolytic viruses mediate tumor cell

destruction is through the induction of non-specific and specific

anti-tumor immunity (23). Finally, oncolytic viruses can greatly

increase the sensitivity of tumor cells to chemotherapy and radiation

therapy (24). Because of these advantages, we chose OVs for discussion.

OV therapy has advantages, such as strong targeting, relatively few side

effects, and the ability to improve the efficacy through the genetic

engineering of viruses, providing new ideas for the treatment of

genitourinary tumors (25). A review of 97 published OV trials

reported that most OVs tested have used large deoxyribonucleic acid

(DNA) viruses such as adenovirus, HSV-1, reovirus, and poxviruses

(26) (Figure 1).
2.1 Vaccinia virus

VACV is an enveloped double-stranded DNA orthopoxvirus

that only replicates in the cytoplasm. VACV has a large genome

(~190 kb) that stably expresses at least 25 kb of exogenous

therapeutic genes in a single vector (Table 1). Since the late

1980s, recombinant DNA technology has been used to explore

the utility of recombinant VACV and other poxviruses as vectors

for active immunization in cancer and infectious disease settings

(27). VACV has natural tumor tropism and potential for systemic

administration. It has a rapid replication and lysis cycle. The virus is

released from infected cells within 8 h of infection and destroys

infected cells within 48–72 h post-infection (28). VACV has been

used as a smallpox vaccine for many years, and adverse effects have

occurred less frequently (29). In terms of being used as an oncolytic

virus, firstly, VACV has a certain safety, which is mainly manifested

in the fact that it only replicates in the cytoplasm and does not

participate in the host’s genes; Second, VACVs have a natural

tumor tropism, which means that they are able to localize naturally
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to tumor tissues and have the potential to do so through systemic

administration. At the same time, the replication cycle of VACVs is

fast and lytic, which allows them to proliferate rapidly and release

rapidly after infecting host cells; In addition, a notable feature is

their ability to replicate under hypoxic conditions, increasing their

adaptability in the tumor microenvironment; Finally, because

VACVs have no receptor restrictions on their entry into host

cells, they exhibit high infectivity not only in various host species,

but also in a wide range of tissue types, which facilitates their use in

a variety of preclinical studies (30). At present, VV has been

intensively studied in many preclinical and clinical studies, such

as the NOV virus applied in colorectal cancer, which increases

antitumor activity by replacing the vTk and VGF regions with

TRAIL and Ang1 (31).
2.2 Encephalomyocarditis virus

The encephalomyocarditis virus (EMCV) is a single-stranded

RNA picornavirus with a broad host range that infects various

mammals and birds (32) (Table 1). EMCV causes sudden death,

myocarditis, encephalitis, neurological disorders, and diabetes.
Frontiers in Oncology 03
However, when EMCV infects people, it causes only mild disease

(33). EMCV also can inhibit apoptosis and induce inflammatory

reactions, which may play a role in tumor suppression (33). Unlike

many viruses, which may not be able to overcome hypoxia-

mediated inhibition of protein synthesis for viral replication,

hypoxia or increased HIF activity common in solid tumors may

inadvertently exacerbate EMCV replication and virulence due to

various oncogenic mutations on general oxygen-sensitive pathways

or a growing list of genes such as PTEN, TSC, and VHL. Although

EMCV is currently primarily used in the treatment of kidney

cancer, its potential as an oncolytic virus may extend far beyond

kidney cancer, suggesting that it could have therapeutic potential

for a variety of tumor types (34).
2.3 Measles virus

MV is an enveloped single-stranded negative-sense RNA virus

belonging to the genus Morbillivirus of the family Paramyxoviridae

(13) (Table 1). The anticancer properties of MV were first

discovered in 1949 when wild-type MV infection led to the

regression of Hodgkin’s lymphoma. Oncolytic MV is an

attenuated vaccine strain derived from the Edmonston-B (MV-

Edm) vaccine lineage, which has been demonstrated to be safe and

efficacious for cancer treatment in preclinical in vitro and in vivo

studies (35). The MV receptor nectin-4 is abundantly expressed in

lung, colon, ovarian, and breast cancers, making it a potential tumor

marker (36). In addition to the tropism of MV to specific cell

receptors, other underlying mechanisms contribute to the tumor

selectivity of MV vaccine strains, such as defects in the IFN antiviral

response pathway, which is often dysregulated in tumor cells to

facilitate their escape from the host immune system (37). There are

currently many open and recruiting MV clinical trials: such as

Modified Measles Virus (NCT02962167) for Recurrent
FIGURE 1

Properties of oncolytic viruses.
TABLE 1 Properties of oncolytic viruses.

Virus Type Attribute

Smallpox virus Enveloped double-stranded DNA virus

Enterovirus Positive-sense single-stranded RNA virus

Measles virus Enveloped single-stranded negative-sense
RNA virus

Norovirus Non-enveloped double-stranded RNA virus

Adenovirus Non-enveloped double-stranded linear DNA virus
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Medulloblastoma or Recurrent ATRT, Measles Vaccine

(NCT00828022) for Non-Small Cell Lung Cancer, and

Progressive, Recurrent, or Refractory Ovarian Epithelial Cancer

or Primary Peritoneal Cancer’s Recombinant Measles Virus

Vaccine (NCT00408590) and many more. Despite some clinical

trials of oncolytic measles viruses, there is only one clinical trial

underway involving an oncolytic measles virus expressing pro-

inflammatory transgenes (38).
2.4 Reovirus

Reovirus is a non-enveloped double-stranded RNA virus that was

initially isolated from the respiratory or intestinal tract of humans and

animals (Table 1). However, it is not associatedwith any disease (except for

infection in rodents and birds, generally not causing notable disease,

especially in adult animals). The Reoviridae family consists of six genera

among which orthoreoviruses can infect both animals and humans

(14, 15).

Ras-activated tumor cells are effectively killed by reovirus,

possibly due to double-stranded RNA-dependent kinase (PKR)

inactivation, and efficient translation of viral proteins occurs in

Ras-activated tumor cells, allowing for efficient production of

progeny viruses. Reovirus was originally thought to function

primarily through apoptosis (39). Apoptotic signals commonly

exhibited by infected cells include IFN production and NF-kB
activation, cytoplasmic dsRNA detection by PKR, retinoic acid-

inducible gene I (RIG-I), or melanoma differentiation-associated

protein 5 (MDA5), or inflammatory cytokines (e.g., TNF-associated

apoptosis-induced ligand) in response to NF-kB and/or IRF3

signaling after s1 and m1 receptor binding or membrane

penetration, TRAIL, which binds to surface death receptors and

triggers activation of caspase-3 and -7. Blocking apoptotic caspases

does not always eliminate reovirus-induced cell death, and

necroptosis depends on viral dsRNA recognition and induction of

type I IFN responses, as well as autophagy following acute

endoplasmic reticulum (ER) stress, which have been identified as

alternative modes of reovirus-induced cell death (40). Reovirus T3D

is the most widely used oncolytic virus therapy (OVT). It is

currently available for the treatment of glioma, ovarian,

pancreatic, peritoneal, and gastric cancers, with the initial trial

using reovirus as monotherapy, mostly given intravenously; There

were almost no serious adverse events, and safety was demonstrated

(41). Reovirus, as an OV therapeutic, has shown certain efficacy in

preclinical models, but has been effective in only a minority of

patients in clinical applications (40).
2.5 Adenovirus

Ad belongs to the non-enveloped virus class and contains a linear

double-stranded DNA genome with a diameter of ~950 Å within a

twenty-sided icosahedral capsid (19) (Table 1). Adenoviruses are

relatively easy to produce in high titer and high purity, making them

one of the most commonly used viral vectors for applications ranging

from gene and cancer therapy to vaccine development (20). The E1A
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gene is the first gene to be expressed at the time of viral infection and is

essential for the expression of all subsequent viral genes. Therefore,

E1A deletion is commonly used to generate replication-deficient

adenoviral vectors. In contrast, CRA is produced by mutating the

E1A gene or replacing the native E1A promoter with a cancer-specific

promoter to alter E1A expression. Because adenovirions can pack up to

105% of the length of the wild-type genome, it is common to remove

certain parts of the viral gene that are necessary for virion formation,

such as the E3 region, to insert the therapeutic gene into the

recombinant adenovirus genome (42). At present, there are many

kinds of adenoviruses that have entered clinical trials, including but not

limited to bladder cancer, prostate cancer, and kidney cancer, and

CG0070 has been administered intravesically to treat bladder cancer

with good therapeutic results (43).
3 Application of oncolytic viruses in
different genitourinary
tumor treatments

3.1 Application in renal cell
carcinoma treatment

RCC accounts for 3% to 5% of adult malignancies. The

incidence is increasing annually in most countries, but the

mortality rate is decreasing in developed countries (44). The

etiology of RCC remains unclear, but it is associated with

genetics, smoking, alcohol consumption, obesity, hypertension,

antihypertensive drugs, and diabetes (45). Currently, treatment

options for RCC mainly include targeted therapy drugs such as

sorafenib, sunitinib, and pazopanib; immunotherapy drugs in

combination therapy; and immune checkpoint inhibitors in

combination with targeted drugs; or immune checkpoint

inhibitors (46). Although drug therapy has shown good efficacy,

cases of patient intolerance, significant side effects, or moderate

treatment effects are known. Therefore, the development of new

antitumor drugs is necessary and OVs have a great development

potential as emerging treatment modality (Figure 2).

3.1.1 Vaccinia virus and renal cell carcinoma
VACV is considered to be an OV for RCC. It is generally used in

combination with tumor drugs to enhance the efficacy or is

modified to better target cancer cells. JX-594 is a thymidine

kinase (TK) gene-inactivated oncolytic vaccinia virus expressing

granulocyte-macrophage colony-stimulating factor (GM-CSF) and

lac-Z transgenes, and is the most widely used oncolytic vaccinia

virus in clinical trials (47),designed to destroy cancer cells by

replication-dependent cell lysis and stimulation of anti-tumor

immunity (48). For example, Park et al. combined the oncolytic

VACV JX-594 with programmed cell death protein-1 (PD-1)

inhibitors to reshape the cellular environment into a tumor-

suppressive environment, effectively reducing the primary tumor

and metastatic burden and reducing liver damage (49). Similarly,

they evaluated the efficacy of systemic JX-594 monotherapy versus

sunitinib monotherapy in a mouse model of metastatic orthotopic
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RCC as early as 2022. Compared with sunitinib monotherapy,

systemic JX-594 monotherapy yielded significantly better

treatment outcomes when cold tumors were converted to hot

tumors, demonstrating better therapeutic efficacy in early and late

mRCCs. Sunitinib monotherapy effectively inhibited early mRCC

primary tumor growth and lung metastasis (50).

To increase the toxicity of the VACV to renal tumor cells, Fend

et al. constructed a novel strain of VACV and verified its ability to

inhibit tumor growth in models (64). This virus was constructed by

deleting the thymidine kinase (TK) and ribonucleotide reductase (RR)

genes and expressing the fusion suicide gene FCU1, which is derived

from yeast cytosine deaminase and uracil phosphoribosyltransferase
Frontiers in Oncology 05
genes. In a xenograft mouse model, the percentage of tumor tissue

necrosis in mice injected with this virus was higher than that in the

control group. Currently, three oncolytic viruses derived from the

cowpox virus have entered clinical application: Pexa-VEC combined

with Cemiplimab is used in Phase I/II clinical trials, while JX-594 and

TBio-6517 are used individually in Phase I clinical trials (Table 2).

3.1.2 Encephalomyocarditis virus and renal
cell carcinoma

In recent years, a few studies were focused on the treatment of

RCC using the EMCV. In 2010, Roos et al. reported that EMCV

treatment rapidly reduces clear-cell RCC (CCRCC) growth (34).
FIGURE 2

Oncolytic viruses are common in kidney cancer. Created with Biorender.com.
TABLE 2 Clinical trials of oncolytic viruses.

Virus
species

Virus Name Type of cancer Conbination Mode of administration Phase NCT

VV Pexa-VEC RCC Cemiplimab Intravenous administration I/II NCT03294083

VV JX-594 solid tumors Null Intravenous administration I NCT00625456

VV TBio-6517 solid tumors pembrolizumab Subcutaneously injection I NCT02432963

VV TBio-6517 solid tumors Pembrolizumab Intratumoral injection 1/2a NCT04301011

VV VET3-TGI solid tumors pembrolizumab Intratumoral injection or
Intravenous administration

I NCT06444815

VV PF-07263689 solid tumors sasanlimab Intravenous administration I NCT05061537

Ad adenovirus-transfected DC RCC CIK Not applicable I/II NCT01924156

Ad GVAX RCC Null Subcutaneous injection or
intramuscular injection

IV NCT00258687

Ad ColoAd1 RCC Null Intravenous administration or
intratumoral injection

I NCT02053220

(Continued)
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They reported that hypoxia-inducible factor (HIF) increases the

NF-kB-mediated antiapoptotic response in CCRCC and the

inactivation of NF-kB weakens the toxicity of EMCV by

triggering rapid apoptosis of infected cells, limiting viral
Frontiers in Oncology 06
replication, and leading to apoptosis of tumor cel ls .

Immunohistochemical analysis of xenograft tumors showed that

the necrotic area of tumors treated with EMCV was much larger

and more prominent than that in the control group.
TABLE 2 Continued

Virus
species

Virus Name Type of cancer Conbination Mode of administration Phase NCT

Ad adenovirus p53 dendritic cell
vaccine SC

Progressive or recurrent
metastatic cancer

Null Subcutaneously injection II NCT00704938

Ad DNX-2440 RCC Null Intratumoral injection I NCT04714983

Ad Ad-p53 solid tumors ICIs Intratumoral injection II NCT03544723

Ad CG0070 BC Null Bladder administration I NCT00109655

Ad CG0070 NMIBC Null Bladder administration I/II NCT01438112

Ad CG0070 NMIBC Null Not applicable III NCT06111235

Ad CG0070 NMIBC Null Not applicable Not
applicable

NCT06443944

Ad Ad-p53 BC Null Bladder injections I NCT00003167

VV PANVAC NMIBC BCG Not applicable II NCT02015104

Coxsackievirus CVA21 NMIBC mitomycin C Bladder drip I NCT02316171

Reovirus REOLYSIN® MIBC Gemcitabine
and Cisplatin

Intratumoral administration 1b NCT02723838

Ad ETBX-071/ETBX-061/
ETBX-051

mCRPC Null Subcutaneously injection I NCT03481816

Ad Adenovirus/PSA Vaccine PC ADT Subcutaneously injection II NCT00583752

Ad Adenovirus/PSA Vaccine PC Null Subcutaneously injection II NCT00583024

Ad ETBX-011, ETBX-061 and
ETBX-051

solid tumors Null Subcutaneously injection I NCT03384316

Ad AdNRGM PC CB1954 Intravenous administration I NCT04374240

Ad Ad.hIL-12 PC Null Prostate injection I NCT00110526

Ad ADV/RSV-tk PC Brachytherapy Prostate injection I/II NCT01913106

Ad AD5-SGE-REIC/Dkk-3 PC Null Prostate injection 1/2a NCT01931046

Ad M-VM3 PC Null Prostate injection I NCT02654938

Ad Ad5-yCD/
mutTKSR39rep-hIL12

PC Null Prostate injection I NCT02555397

Ad Adenoviral vector delivery of
the IL-12 gene

PC Null Prostate injection I NCT00406939

Ad M-VM3 PC Null Prostate injection Ib2 NCT02844699

Ad CV787/CG7870 PC Null Intravenous administration I/II NCT00116155

Ad ChAdOx1.5T4-MVA.5T4 PC Null Bladder instillation I NCT02390063

Ad Ad5-yCD/
mutTKSR39rep-ADP

PC IRMT Not applicable II NCT00583492

Ad Ad-sig-hMUC-1/ecdCD40L PC Null Subcutaneously injection I NCT02140996

Ad VTP850 PC ADT Not applicable I/II NCT05617040

Ad Ad-REIC/DKK-3 PC Null Prostate injection I NCT01197209

Ad ORCA-010 PC Null Intratumoral administration I/IIa NCT04097002
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3.1.3 Reovirus and renal cell carcinoma
Reoviruses target tumor cells and generally do not cause notable

symptoms in humans after infection; therefore, they have been

widely used in tumor research. In most tumor cells, RAS is

abnormally overexpressed, which promotes tumor growth and

creates conditions for the oncolytic effects of the reovirus.

Abnormally activated RAS signaling pathways inhibit the normal

function of double-stranded RNA-dependent protein kinase (PKR),

preventing its ability to inhibit virus replication by phosphorylating

eukaryotic translation initiation factor 2a. This allows the viral

genome to be freely transcribed and translated into tumor cells

without being hindered by host defense mechanisms (51). In

contrast, in non-cancerous cells, PKR can effectively recognize

reoviral double-stranded RNA, dimerize rapidly, and initiate a

defense response, effectively inhibiting viral replication. In

addition, activation of the RAS pathway indirectly affects immune

responses by promoting the activity of signaling molecules, such as

phosphoinositide 3-kinase, mitogen-activated protein kinase, and

extracellular signal-regulated kinase, ultimately inhibiting mRNA

translation of the pattern recognition receptor RIG-1 and reducing

the ability of cells to perceive and resist viral invasion. Reovirus also

uses its s3 protein as a “cloaking device” to hide its double-stranded

RNA structure, further evading detection and activation by PKR,

enhancing its survival in tumor cells. Lawson et al. reported that the

combined treatment with VCN-01 (a proprietary genetically

modified oncolytic reovirus) and cyclophosphamide improves the

antitumor immune response in patients with mRCC (52). Reovirus

has been shown to initiate an innate immune response

characterized by the production of pro-inflammatory chemokines,

including RANTES, MIP-1-a, MCP-1, KC, IP-10, and MIG, and

can produce pro-inflammatory chemokines in a variety of

melanoma and prostate cancer cell lines, in addition to their

direct oncolytic effects (48, 53, 54). Cyclophosphamide

pretreatment effectively depletes immunosuppressive regulatory T

cells (Tregs) and myeloid-derived suppressor cells (MDSCs),

alleviates the immune inhibition of effector T cells, and enhances

the antitumor immune response. Immunohistochemical analysis of

xenograft tumors showed that the necrotic area of tumors treated

with EMCV was much larger and more prominent than that in the

control group.

3.1.4 Adenovirus and renal cell carcinoma
Research on Ads was primarily focused on their oncogenic

properties, with limited applications in the treatment of kidney

cancer. In 1983, Bernards et al. first constructed a recombinant Ad

type 5 (Ad5) in which the E1b region of Ad5 was replaced with that

of Ad12. Based on cell infection and analysis, they demonstrated

that the recombinant virus effectively replicates in human

embryonic kidney and HeLa cells (55).

Subsequently, Guse et al. modified the Ad and constructed Ad5/3-

9HIF-Delta24-VEGFR-1-Ig, an oncolytic Ad with a 5/3 chimeric fiber,

HRE (9HIF) driving E1 and E1A, and 24 bp deletion in VEGFR-1-Ig in

the E3 region. Ad5/3-9HIF-D24-VEGFR-1-Ig exhibited good specificity

and oncolytic activity against kidney cancer cells in vitro and

demonstrated antitumor efficacy in subcutaneous in vivo models (56).
Frontiers in Oncology 07
Dendritic cells (DCs) are the most powerful full-time antigen

presenting cells (APCs) in the body, which can efficiently uptake,

process, process and present antigens, immature DCs have strong

migration ability, mature DCs can effectively activate naïve T cells,

and are at the center of initiating, regulating and maintaining

immune responses. Ad-assembled DC vaccines (DCs-CD137L/

CAIX) have shown limited therapeutic efficacy in targeting

antigens for kidney cancer treatment. Ding et al. combined

dendritic cells with an oncolytic Ad to facilitate the entry of

dendritic cells into kidney cancer cells, inducing a persistent

protective effect against tumors through the generation of

memory cell-mediated immune responses (57). OVs enhance the

effectiveness of immunotherapy and interleukin-12 (IL12) increases

the antitumor activity. Based on combination, the oncolytic Ad

OAV-IL-12 was developed to enhance the immunocytotoxic effects

of non-replicating Ad-based DC vaccines. Similarly, Fang et al.

combined chimeric antigen receptor T (CAR-T) cells with an

oncolytic Ad carrying chemokine (C-C motif) ligand 5 (CCL5)

and IL12 to create Ad5-ZD55-hCCL5-hIL12 (58). It has been

shown that this combination infects and replicates in renal cancer

cell lines, demonstrating its ability to suppress tumor proliferation

(58). The combination did not reduce but promote the therapeutic

effects, prolonging the survival time of mice and increasing survival

rates. A variety of adenovirus vectors, including adenovirus-

transfected DCs, GVAX, ColoAd1, DNX-2440, and Ad-p53, have

been applied in clinical trials for renal cell carcinoma (RCC).

Among these trials, some are in Phase I, while the clinical trial

for GVAX has progressed to Phase IV (Table 2).

OV therapies for kidney cancer have undergone significant

developments. Early studies were focused on the genetic

modification of viruses, such as VACV and Ad, to enhance their

tumor targeting and apoptotic induction capabilities. In recent

years, researchers have begun to explore the combined use of

OVs with existing drugs such as PD-1 inhibitors and sunitinib,

leveraging the synergistic effects between drugs to enhance the

treatment efficacy and improve patient survival rates. For example,

the combination of VACV JX-594 and PD-1 inhibitors effectively

reduced the tumor burden, whereas the combination of Ad with

CAR-T cells, chemokines, and cytokines promoted the therapeutic

effects. These results provide new strategies for the treatment of

kidney cancer. In addition to PD-1 inhibitors, the following

modifications and combinations have been explored: CRISPR-

Cas9 genome editing: Recent advances in genome editing

technologies, such as CRISPR-Cas9, have enabled the precise

modification of OV genomes to enhance their safety, targeting,

and oncolytic potency (59). This approach has the potential to

overcome viral resistance and improve therapeutic outcomes.

Combination with chemotherapy: OVs have been combined with

chemotherapeutic agents to improve treatment outcomes. For

instance, CG8840 adenovirus demonstrated a synergistic

antitumor effect when combined with docetaxel in bladder cancer

models (22). Similar studies have shown enhanced efficacy when

OVs are combined with cisplatin, gemcitabine, or paclitaxel.

Nanoparticle-mediated delivery: OVs can be encapsulated within

nanoparticles for targeted delivery and protection from immune
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neutralization. This approach has been used to improve the

stability, biodistribution, and efficacy of OVs (49) (Tables 2–4).
3.2 Application in bladder cancer treatment

Worldwide, BC ranks 10th in the incidence of malignancy. Its

main causes are smoking and long-term exposure to industrial

chemicals (75). The main treatment methods for non-muscle-

invasive BC are surgical treatment and intravesical perfusion,

which can be divided into intravesical chemotherapy and
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intravesical immunotherapy (76). Neoadjuvant chemotherapy

combined with radical cystectomy and pelvic lymph node

dissection is the mainstay (67). Although various treatment

options are available for BC, there is a lack of effective treatments

for incurable resectable and metastatic BC. The emergence of OVs

provides new ideas for the treatment of BC (Figure 3).

3.2.1 Adenovirus and bladder cancer
The treatment efficacy of BC has been improved by partially

modifying the genes of Ads or combining them with other

treatment modalities. A replication-competent attenuated Ad
TABLE 3 Combination of oncolytic viruses with antitumor drugs.

Type
of cancer

Virus Virus name Targeted drug Reference Mode of
administration

Novel
Payload

Renal cell carcinoma VV JX-594 ICIs Park et al. (49) Intraperitoneal injection None

Renal cell carcinoma VV JX-595 Sunitinib Park et al. (50) Intraperitoneal injection None

Renal cell carcinoma REO None Sunitinib Lawson et al. (52) Intraperitoneal injection None

Renal cell carcinoma Ad DCs-CD137L/CAIX DC Ding et al. (57) Peritumorally injected OAV-IL-12

Renal cell carcinoma Ad Ad5-ZD55-
hCCL5-hIL12

CAR-T Fang et al., (58) Intratumorally administered CCL5 and IL12

Bladder cancer CVB CVA21 Mitomycin C Annels et al. (60) Intravesical administration None

Bladder cancer CVB CVA21 Pembrolizumab Rudin et al. (61) Intravenous administration None

Bladder cancer MRV T3D-C Protein 1 (PD-
1) inhibitor

Smelser et al. (62) Intraperitoneal injection None

Bladder cancer MRV RC402 and RP116 NK cell Lim et al. (63) Intravesical administration None
TABLE 4 Oncolytic virus monotherapy.

Type of cancer Virus name Virus Effect Reference

Renal cell carcinoma VV-FCU1 VV Inhibits orthotopic tumor growth Fend et al. (64)

Renal cell carcinoma EMCV EMCV Causes inactivation of NF-kB Roos et al. (34)

Renal cell carcinoma MV-GFP MV Antitumor effect Miest et al. (65)

Renal cell carcinoma Ad5 Ad Replicate in tumors Bernards et al. (55)

Renal cell carcinoma Ad5/3-9HIF-Delta24-VEGFR-1-Ig Ad Antitumor effect Guse et al. (56)

Renal cell carcinoma OAV-IL-12 Ad Enables dendritic cells to enter cancer cells Ding et al. (57)

Renal cell carcinoma Ad5-ZD55-hCCL5-hIL12 Ad Inhibits tumor expansion Fang et al., (66)

Bladder cancer CG8840 Ad Inhibits tumor expansion Zhang et al. (67)

Bladder cancer CG0070 Ad Inhibits tumor expansion Ramesh et al., (68)

Bladder cancer Ad.shDCIR Ad Improves T cell activity Hu et al., (69)

Bladder cancer vAd-VEGFR-3 Ad Antitumor effect Hao et al., (70)

Bladder cancer VACV OC Antitumor effect Potts et al. (71)

Bladder cancer rVV-TK-53 OC Induce P53 expression Fodor et al. (72)

Bladder cancer CVA21 CVB Inhibits tumor expansion Annels et al. (60)

Prostate cancer Ad5-IL-12 Ad Inhibits tumor expansion Nyati et al. (73)

Prostate cancer AdKi67-C3 Ad Inhibits tumor expansion Fang et al., (74)
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variant, CG8840, was created by linking a DNA segment upstream

of genes expressing urinary tract proteins to a promoterless firefly

luciferase reporter gene. The replication capacity of the Ad variant

in bladder transitional cell carcinoma (TCC) cells was assessed

using the virus yield and 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay (68). Compared with

non-bladder cells, CG8840 efficiently replicated and eliminated

bladder TCC cells with high specificity. In xenograft models of

human BC, both the intratumoral and intravenous administration

of CG8840 significantly suppressed the tumor growth. When

CG8840 was used in combination with docetaxel, a synergistic

antitumor effect was observed (68). A marketed oncolytic Ad,

CG0070, is used to treat BC (77). CG0070 is based on a modified

Ad5 backbone and incorporates a tumor-specific promoter and

granulocyte-macrophage colony-stimulating factor (GM-CSF)

transgene. It operates through two main mechanisms: 1) it

replicates within tumor cells, leading to tumor cell lysis and

immunogenic cell death; and 2) the rupture of cancer cells

releases tumor-derived antigens and GM-CSF, stimulating

systemic antitumor immune responses involving host leukocytes.

For the treatment of non-muscle-invasive bladder cancer (NMIBC)

that does not respond to interleukin therapy, a Phase II clinical trial

of CG0070 in combination with pembrolizumab has been

completed. The results of the trial showed that no patients

developed muscle-invasive bladder cancer (MIBC) or metastatic

bladder cancer, and there were no unintended immune-related

adverse effects (78). Both in vitro and in vivo studies

demonstrated that CG0070 possesses selective replication,

cytotoxicity, GM-CSF production, and antitumor efficacy in

various BC models (77).

In addition to modifications, Ads can be combined with

traditional treatment modalities, such as chemotherapy,
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radiotherapy, and platinum-based drugs, to enhance their

effectiveness. CG0070 has been used in clinical trials for BC and

NMIBC, including Phase I, Phase I/II, and Phase III (Table 2).

3.2.2 Vaccinia virus and bladder cancer
In recent years, there has been limited research on the

application of VACV in the treatment of BC. In 2001, Gomella

et al. delivered live virus directly to the human bladder for the first

time, demonstrating that VACV can be safely administered to the

bladder by recruiting lymphocytes and inducing a rapid local

inflammatory response (71). To enhance the tumor-specific

recognition and cell killing ability of VACV, Potts et al. mutated

the F4L and J2R sites, which encodes a viral homolog of the

ribonucleotide reductase small subunit (RRM2) involved in cell

cycle regulation, to produce a novel oncolytic VACV (72). The

tumor selectivity and cell-killing ability of VACV were validated by

in situ inoculation of human BC cells into rat bladders. Similarly, in

2005, Fodor et al. used a recombinant VACV expressing human p53

to detect the virus’s oncolytic effects its ability to induce p53

transgene-mediated death by assessing the tumor incidence,

survival rate, and transgene expression in cultured mouse BC

MB-49 cells and cells grown in situ in genetically modified

mice (79).

3.2.3 Coxsackievirus and bladder cancer
The application of coxsackieviruses in BC treatment typically

involves assisting Ads in effectively infecting BC cells (80).

Coxsackievirus and Ad receptors (CAR) are considered to be the

primary receptors for Ads and are commonly used as gene delivery

vectors. The most common coxsackievirus subtype in BC is A21.

Coxsackievirus A21 (CVA21) is a novel intercellular adhesion

molecule-1 (ICAM-1)-targeted immunotherapeutic virus. Annels
FIGURE 3

Oncolytic viruses are common in bladder cancer. Created with Biorender.com
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et al. investigated the cytotoxicity induced by CVA21 in a series of

human BC cell lines, revealing a sensitivity closely associated with

the expression of the viral receptor ICAM-1, and studied the ability

of CVA21 to induce immunogenic cell death (60). The following

year, they completed a phase I trial of CVA21 oncolytic therapy for

non-muscle-invasive BC (61). The results showed that, when used

alone or in combination with mitomycin C, coxsackievirus led to

interferon(IFN) induction, including immune checkpoint

inhibitory genes (PD-L1 and LAG3) and Th1-related chemokines,

as well as induced the innate activator RIG-I, genes associated with

the Th1-mediated immune response, and caused significant

inflammatory changes in Non-muscle-invasive bladder cancer

(NMIBC) tissue biopsies (61). In 2023, Charles et al. published a

study on the safety of the intravenous injection of coxsackievirus

A21 (V937) alone or in combination with pembrolizumab in

patients with late-stage cancer. They showed that intravenous

injection of V937+pembrolizumab is safe; however, in non-small

cell lung cancer and BC, its efficacy was not superior to that of

previous monotherapy with pembrolizumab, although V937 could

be detected in tumor tissue (81). Currently, CVA21 in combination

with Mitomycin C has been used in a Phase I clinical trial for

NMIBC (Table 2).

3.2.4 Reovirus and bladder cancer
The earliest discovery of the ability of bluetongue virus in

Reoviridae to produce large amounts of interferon was made by

stimulating animals and cell cultures (including human leukocytes)

and continuous cell lines (82). In 2003, Kilani et al. first reported

preclinical studies of coxsackievirus-mediated oncolysis in BC (83).

Hanel et al. were the first to use coxsackievirus in situ in a bladder

tumor model for the treatment of superficial BC, studying the ability

of the virus to kill BC cells in vitro and inhibit tumor growth in vivo

(62). Compared with the complications of the Bacillus Calmette-

Guerin Vaccine (BCG vaccine), coxsackieviruses have fewer side

effects; the tumor-free survival rate of animals treated with

coxsackievirus is significantly higher than that of animals

receiving immunotherapy or saline treatment (62). Smelser et al.

concluded that the single intravesical administration of

coxsackievirus, PD-1 inhibitor, or a combination injection

resulted in a higher survival rate in mice with in situ bladder

tumors compared with the control group (63). Similarly, Lim et al.

evaluated the effect of combined treatment with natural killer (NK)

cells and coxsackievirus on BC cells using an in vitro assay and

reported the effective cytotoxicity in metastatic tumor cells (84).

Coxsackievirus research started with its ability to produce

interferons similar to BC. Subsequently, it was used for the killing

of BC. Currently, research leans towards combining it with

immunotherapy and testing the effectiveness of this combination.

Ads, VACVs, coxsackieviruses, and reoviruses have been

extensively studied and used in BC treatment because of their

unique biological properties. These viruses can be engineered to

enhance their selectivity for recognizing and killing BC cells,

thereby improving the efficacy of BC treatments. OVs yield better

treatment outcomes and quality of life for patients with BC.

Currently, the clinical application of oncolytic viruses for the
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treatment of bladder cancer remains limited, thus further research

and development are needed to expand their scope of application

(Tables 2–4).
3.3 Application in prostate
cancer treatment

PC is the most common malignant tumor of the genitourinary

system in men. The incidence of PC in China has significantly

increased in recent years (75). Currently, the most recent view is

that PC is mainly caused by genetic (85) and sex hormone disorders

(86). The primary treatments for organ-limited and locally

advanced PC include radical prostatectomy and radiotherapy.

Radical resection and radiotherapy are the main treatment

methods for PC recurrence after curative therapy (87). Metastatic

PC is mainly mediated by androgen deprivation (88). The

development of OVs has provided new solutions for the

treatment of PC (Figure 4).

3.3.1 Adenovirus and prostate cancer
The use of Ads for oncolytic therapy of PC has led to some

success. Ads used in the clinical treatment of PC include CV706

(89), CG7870 (90), Ad5-CD/TKrep (FGR (91), and Ad5-yCD/

mutTKSR39rep-ADP (73). In addition, many drugs that use

oncolytic Ads as a vector for treating PC are still in clinical

research. For example, Nyati et al. used an Ad as a vector to

deliver suicide and IL12 genes to tumor tissues (92). This trial

entered phase I clinical trials and demonstrated a good tolerability

when the replication-competent Ad5-IL-12 (Ad5-yCD/

mutTKSR39rep-hIL-12) was locally administered to prostate

tumors (92). Autio et al. utilized AdC68 vectors to express three

selected PC-specific antigens: prostate-specific antigen (PSA),

prostate-specific membrane antigen (PSMA), and prostate stem

cell antigen (PSCA), along with plasmid DNA (PF-06755990),

monoclonal antibodies targeting cytotoxic T-lymphocyte-

associated antigen 4 (CTLA-4), pembrolizumab (PF-06753388).

This drug has entered phase I trials (NCT02616185). Overall, PF-

06753512 a vaccine-based immunotherapy regimen (VBIR) has

been declared safe similar to other immune checkpoint inhibitor

combination trials; it stimulates antigen-specific immune responses

in all cohorts and produces moderate antitumor activity in patients

with B-cell receptor (BCR), without the use of ADT (74).

Although many clinical trials have been initiated, the use of Ad

as a vector for the treatment of PC is still being investigated. Fang

et al. aimed to enhance the efficacy of CAR-T cells against solid

tumors. They constructed a novel recombinant oncolytic Ad

controlled by the Ki67 promoter, carrying CCL5, IL12, and IFN-g
genes (named AdKi67-C3), which significantly promoted the

proliferation and persistence of CAR-T cells in vitro and in vivo

and established long-term antitumor immune responses (93).

Gavrikova et al. overcame the shortcomings of control elements

and poor infectivity using fiber modification and an androgen-

independent promoter (cyclooxygenase-2, COX-2). The results of

both in vitro and in vivo studies showed potent antitumor effects
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(94). Currently, many Ads are being used in preclinical research.

Various adenovirus vectors such as Adenovirus/PSA Vaccine,

ETBX-011, ETBX-061, ETBX-051, AdNRGM, Ad-REIC/DKK-3,

and ORCA-010 etc. have entered clinical trials for prostate cancer

(PC), with trial phases ranging from Phase I to Phase II. Some trials

have combined other treatment methods such as ADT, CB1954,

and IRMT (Table 2). It is evident that there is a relatively large

number of adenoviruses currently applied to prostate cancer.

3.3.2 Measles virus and prostate cancer
MV is less commonly used in PC. Recent research was primarily

focused on the use of green synthesis-encapsulated attenuated MV

to create a novel controllable targeted viral delivery system with

ligand-coated surfaces (95). This synthetic virus actively targets

cancer cells, protects the virus from antibody clearance, releases

OVs via receptor-mediated endocytosis, achieves efficient oncolytic

immunotherapy, and enhances targeting (95). Opyrchal et al.

studied the effect of actin cytoskeleton regulatory factor inhibition

on the oncolytic effect of the MV (96). Msaouel et al. created a MV

capable of expressing a human sodium iodide symporter, enabling

the virus to induce oncolysis and its use for imaging through iodine-

125 (125I) uptake measurements (97).

3.3.3 Enterobacteria and prostate cancer
Enterobacteria can effectively replicate in cells with activated

RAS signaling pathways. More importantly, untransformed cells are

not sensitive to enterobacteria, indicating the selective infectivity of

the virus. Coffey et al. made an exciting discovery: a single

intratumoral injection of enterobacteria led to the regression of

65%–80% of tumors in mice (98).

The use of Ads has led to significant progress in the treatment of

PC and good potential has been demonstrated in clinical trials.
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Currently, various Ads are used for the oncolytic therapy of PC

including CV706, CG7870, Ad5-CD/TKrep (FGR), and Ad5-yCD/

mutTKSR39rep-ADP. These viruses treat PC through different

mechanisms such as direct destruction of cancer cells, activation of

the immune system, or delivery of anticancer genes. Further research

and development of these viruses will lead to more secure, effective,

and personalized treatment options for patients with PC (Tables 2–4).
4 Conclusion and challenges

The use of OVs as a potential treatment modality for urological

tumors has witnessed a surge in advancement and research. Widely

studied OVs include VACV (99), EMCV (100), Ad (101), MV

(102), coxsackievirus (103), and reovirus (104), all of which have

unique properties and mechanisms of action. The core of research

in this area revolves around the genetic modification of these

viruses, with the aim of minimizing their adverse effects on

healthy cells while maximizing their ability to specifically target

and eradicate tumor cells. As a result of these efforts, several OVs

have transitioned from laboratory to clinical settings, providing

cancer patients novel immunotherapeutic options. For example, the

oncolytic Ad CG0070, which is currently in phase II clinical trials,

targets bladder tumor cells via a defective retinoblastoma pathway,

providing a new solution for patients with BCG-unresponsive non-

muscle-invasive BC (105). Recent clinical trials yielded promising

results, highlighting the efficacy of OVs in treating urological

malignancies (61, 81). This emerging modality represents a ray of

hope for cancer patients, providing a potential alternative to

traditional treatment methods.

With the advancements in technology and further research, the

design of OVs has become increasingly refined. Oncolytic viruses
FIGURE 4

Oncolytic viruses are common in prostate cancer. Created with Biorender.com
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(OVs) are able to trigger cell lysis when they replicate within cancer

cells, and as the virus replicates, the number of viruses increases,

thus enhancing the destructive power to tumors. At the same time,

proteins produced during viral replication also have toxic effects on

tumor cells. In addition to directly killing tumor cells, oncolytic

viruses can also function through two immune mechanisms: one is

to induce a non-specific immune response, and the other is to

activate a specific anti-tumor immune response. In addition,

oncolytic viruses can significantly increase the sensitivity of tumor

cells to chemotherapy and radiotherapy, thereby enhancing the

efficacy of these traditional treatments. Precision engineering

enables the targeted delivery of viruses to tumor cells, minimizing

collateral damage to healthy tissues. The mode of administration of

oncolytic viruses is a crucial factor influencing their efficacy and

safety in treating genitourinary tumors. Oncolytic viruses can be

administered via various routes, including systemic delivery (such

as intravenous injection) and loco-regional delivery (such as

intratumoral or intravesical injection). Systemic administration

enables widespread distribution of the virus throughout the body,

which can be beneficial for metastatic tumors. However, it also

increases the risk of systemic toxicity. In contrast, loco-regional

administration allows for targeted delivery to specific tumor sites,

minimizing off-target effects and potentially enhancing the local

immune response. For instance, intravesical administration of

oncolytic viruses for bladder cancer has shown promising results

while minimizing systemic side effects. Therefore, the choice of

administration route is guided by the type and stage of the tumor, as

well as the patient’s overall health condition. As clinical trials

progress, a deeper understanding of the underlying mechanisms

and optimal treatment protocols for oncolytic viral therapies will

emerge. This knowledge provides a solid foundation for the clinical

application of these viruses and their integration into existing

treatment paradigms. However, despite the remarkable progress

achieved in OV therapy, several challenges remain: 1) Ensuring the

safety of the viruses and minimizing potential adverse events

remain crucial; 2) Reducing the treatment cost is essential to

provide access to a wider patient population; 3) Exploring the

synergistic potential of combining OVs with other therapies, such as

chemotherapy or immunotherapy, holds promise for enhancing

treatment outcomes. In the future, with the continuous

advancement of technology and the deepening of clinical trials,

the design of oncolytic viruses will be more precise, able to target

tumor cells more effectively, and reduce the damage to normal cells.

In addition, a better understanding of the mechanism of action of

oncolytic virus therapy will help to develop personalized treatment

plans to provide the most suitable treatment option for each patient.

Although oncolytic virus therapy has shown great potential in the

field of urological cancer treatment, it still needs interdisciplinary

cooperation, continuous funding and policy support to achieve its

wide clinical application. Through these efforts, oncolytic virus

therapy is expected to become one of the important means of

urinary cancer treatment, bringing new hope and options to

patients. Ongoing research, development, and clinical applications
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are imperative to address these challenges and further advance the

field (Table 2).

In conclusion, OV therapy is a promising new cancer treatment

modality. Although several challenges remain, its prospects are

promising considering continuous technological advancements and

more detailed clinical investigations.
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Ad adenovirus
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ADT androgen deprivation therapy
BC bladder cancer
BCR B-cell receptor
CAR-T chimeric antigen receptor T
CCRCC clear cell renal carcinoma
COX-2 cyclooxygenase-2
CTLA-4 cytotoxic T-lymphocyte-associated antigen 4
DCs dendritic cells
EMCV encephalomyocarditis virus
GM-CSF granulocyte-macrophage colony-stimulating factor
IL12 interleukin-12
MDSCs myeloid-derived suppressor cells
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
MV measles virus
NK natural killer
16
NMIBC non-muscle-invasive bladder cancer
OVs oncolytic viruses
PC prostate cancer
PD-1 programmed cell death protein 1
PKR double-stranded RNA-dependent protein kinase
PSA prostate-specific antigen
PSCA prostate stem cell antigen
PSMA prostate-specific membrane antigen
RCC renal cell carcinoma
RR ribonucleotide reductase
TCC transitional cell carcinoma
TK thymidine kinase
TURBT transurethral resection of bladder tumor
VACV vaccinia virus
VBIR vaccine-based immunotherapy regimen
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