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An efficient deep learning
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breast tumors in ultrasound
image datasets
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Background: Breast cancer ranks as one of the leading malignant tumors among

women worldwide in terms of incidence and mortality. Ultrasound examination

is a critical method for breast cancer screening and diagnosis in China. However,

conventional breast ultrasound examinations are time-consuming and labor-

intensive, necessitating the development of automated and efficient

detection models.

Methods: We developed a novel approach based on an improved deep learning

model for the intelligent auxiliary diagnosis of breast tumors. Combining an

optimized U2NET-Lite model with the efficient DeepCardinal-50 model, this

method demonstrates superior accuracy and efficiency in the precise

segmentation and classification of breast ultrasound images compared to

traditional deep learning models such as ResNet and AlexNet.

Results: Our proposed model demonstrated exceptional performance in

experimental test sets. For segmentation, the U2NET-Lite model processed

breast cancer images with an accuracy of 0.9702, a recall of 0.7961, and an

IoU of 0.7063. In classification, the DeepCardinal-50 model excelled, achieving

higher accuracy and AUC values compared to other models. Specifically,

ResNet-50 achieved accuracies of 0.78 for benign, 0.67 for malignant, and

0.73 for normal cases, while DeepCardinal-50 achieved 0.76, 0.63, and 0.90

respectively. These results highlight our model’s superior capability in breast

tumor identification and classification.

Conclusion: The automatic detection of benign and malignant breast tumors

using deep learning can rapidly and accurately identify breast tumor types at an

early stage, which is crucial for the early diagnosis and treatment of malignant

breast tumors.
KEYWORDS

breast cancer detection, ultrasound imaging, deep learning, U2NET-Lite,
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1 Introduction

Breast cancer is regarded as the second common cancer

globally after lung cancer, the fifth common reason for cancer

death (1). It is critical to detect breast cancer at an early stage in

order to reduce the mortality rate (2). Many imaging tools are

available for prior identification and early treatment of breast

cancer. However, ultrasound is noninvasive, well tolerated by

women, and radiation free; therefore, it is commonly used in the

diagnosis of breast tumors (3).

Nevertheless, manual ultrasound breast cancer diagnosis takes a

long time and requires an experienced physician to make a

relatively accurate judgment, so the development of an effective

automated system for early detection of breast cancer is of great

clinical interest.

With the rise of artificial intelligence technology, deep

learning for breast ultrasound detection has been increasingly

studied. Yuan Xu et al. (4), have introduced their machine

learning based work of medical BUS images’ segmentation,

proposing a CNNs based fully automatic BUS images ’

segmentat ion method into four major t i ssues : sk in ,

fibroglandular tissue, mass, and fatty tissue, resulting in efficient

automated segmentation providing a helpful reference to

radiologists for better breast cancer characterization and breast

density assessments. Y. Lei et al. (5), have introduced their study

for breast tumor segmentation in three dimensional (3D) ABUS,

proposing a developed Mask scoring region-based CNN (Mask R-

CNN) consists of five subnetworks: a backbone, a regional

proposal network, a region CNN head, a mask head, and a mask
Frontiers in Oncology 02
score head. Their approach has been validated on 70 patients’

images with ground truth manual contour, resulting in an efficient

segmentation of breast cancer’s volume from ABUS images. Byra

(6) introduced a deep learning-based framework for the

classification of breast mass from ultrasound images. They used

transfer learning (TL) and added deep representation scaling

(DRS) layers between pre-trained CNN blocks to improve

information flow. Only the parameters of the DRS layers were

updated during network training to modify the pre-trained CNN

to analyze breast mass classification from the input images. The

results showed that the DRS method was significantly better

compared with the recent techniques. Kiran Jabeen et al. (7)

proposes a new framework for breast cancer classification from

ultrasound images that employs deep learning and the fusion of

the best selected features. The proposed framework is divided into

five major steps, the experiment was conducted on an augmented

Breast Ultrasound Images (BUSI) dataset, and the best accuracy

was 99.1%. When compared with recent techniques, the proposed

framework outperforms them.

In this study, we present an intelligent and precise auxiliary

diagnosis method for distinguishing between benign and malignant

breast tumors, based on machine learning and ultrasonography. This

research employs the DeepCardinal-50 and U2NET-Lite deep learning

models, combined with high-precision processing of breast ultrasound

images, to enhance the accuracy and efficiency of breast cancer

detection. The optimized U2NET-Lite model improves real-time

performance, while DeepCardinal-50 enhances the processing

capability for complex images. The detailed research methodology

and workflow are illustrated in Figure 1.
FIGURE 1

Workflow, including Stage I (Imaging), Stage II (Dataset Processing), and Stage III (Model Construction and Validation). Labels (A–G) correspond to
different processing steps, as indicated in the figure.
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2 Methods

2.1 Data acquisition

We utilized breast ultrasound images from women aged 25 to

75, collected in 2018 (AI-Dhabyani W, GomaaM, Khaled H, Fahmy

A. Dataset of breast ultrasound images. Data in Brief. 2020

Feb;28:104863. DOI: 10.1016/j.dib.2019.104863). The dataset

includes 600 female patients, comprising 780 images with an

average size of 500x500 pixels, in PNG format. Ground truth

images are presented alongside the original images. The images

are categorized into three classes: normal, benign, and malignant.

Figure 2 shows a portion of our dataset.
2.2 Data preprocessing

In this study, label overlay plays a pivotal role in data

preprocessing. By seamlessly integrating precise pathological

classification labels into the ultrasound images, this approach

aims to enhance the model’s capacity to recognize intricate

features and effectively distinguish between benign and malignant

breast tumors. Unlike conventional methods, this label overlay

technique embeds specific pathological information directly into
Frontiers in Oncology 03
the visual data, creating a richer and more informative dataset. A

more detailed explanation of its implementation would further

illustrate its uniqueness. Specifically, describing how the overlay

process is executed, including the technical workflow and

challenges addressed, would provide deeper insights. This

innovative preprocessing step not only ensures that the model

benefits from enriched training data but also directly contributes

to improved diagnostic accuracy by facilitating more precise tumor

identification and classification.

During the image cleaning and optimization phase, we applied a

series of processes to the breast ultrasound images, including noise

removal, filtering, and contrast adjustment. These steps are

intended to eliminate interference, enhance important features,

and improve overall image quality. Noise removal helps reduce

misleading information, while filtering and contrast adjustment

highlight critical pathological features in the images.

In this study, data augmentation is another key step to enhance

the model’s generalization capability and reduce the potential for

overfitting. The data augmentation techniques applied include

random horizontal flipping, vertical flipping, random rotation,

color jittering, and Gaussian blur. These methods introduce

diverse image transformations, simulating different shooting

conditions and background variations, thus ensuring that the

model maintains high accuracy and robustness in variable real-
FIGURE 2

Dataset visualization.
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world application scenarios. Additionally, these techniques help

balance the dataset, particularly when certain types of images are

less abundant, reducing the risk of the model being biased towards a

specific category.
2.3 Construction of focal
segmentation model

The lesion segmentation model in this study is built upon an

advanced deep learning architecture, specifically the custom-

designed U2NET-Lite model. The U2NET-Lite model is notable

for its lightweight design, characterized by reduced network depth

and fewer parameters, making it well-suited for the real-time

processing requirements of breast ultrasound images. This model

is highly efficient in extracting deep and high-resolution features,

particularly through the use of a double nested U-structure and

Residual U-blocks (RSU) to achieve multi-scale feature fusion,

enhancing the ability to identify and segment target objects. The

total model size of U2NET-Lite is 4.7 MB, significantly smaller

than the standard U2NET version’s 176.3 MB, making it more

suitable for resource-constrained environments.

Through its lightweight design and multi-scale feature fusion,

U2NET-Lite maintains high accuracy and efficiency in the task of

ultrasound segmentation of breast tumors. Figure 3 illustrates our

model’s network architecture.
Frontiers in Oncology 04
2.4 Construct diagnostic model

2.4.1 Proposed deep learning-based model
In the application of deep learning for breast tumor recognition,

researchers have proposed and validated numerous models, with

ResNet and AlexNet being among the most common. These models

have achieved certain successes in the automatic identification and

classification of breast tumors, demonstrating the immense

potential of deep learning in medical imaging. However,

traditional models face some limitations when processing specific

breast ultrasound images. For instance, while ResNet addresses the

vanishing gradient problem in deep network training through

residual connections, it is not highly efficient in handling high-

resolution and complex breast ultrasound images, often leading to

computational burdens (8). AlexNet, as a pioneer in convolutional

neural networks, has achieved significant results in some image

classification tasks, but its shallow structure is inadequate for

dealing with the complexity and high-resolution demands of

breast ultrasound imaging (9). Moreover, these models fall short

in real-time performance and lightweight design.

To overcome these limitations, our study proposes the

DeepCardinal-50 model, which employs an improved residual

network architecture, particularly emphasizing cardinality and the

application of grouped convolutions. This model uses more

convolutional kernels in the first two layers of each block, with 32

groups and 4 channels per group, significantly increasing the network’s
FIGURE 3

U2NET-Lite Network Architecture Diagram.
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width and capacity. The detailed network structure is shown in

Figure 4. This design not only enhances the model’s learning ability

but also maintains low latency and computational cost. Additionally,

while achieving high performance, the size of the DeepCardinal-50

model is comparable to ResNet-50, yet its performance is equivalent to

that of the much deeper ResNet-101 model.

Our model , through the innovative design of the

aforementioned architecture, demonstrates several significant

advantages. The DeepCardinal-50, with its optimized residual

network structure, exhibits outstanding performance in

classification tasks. This design not only enhances the model’s

accuracy and efficiency but also makes it suitable for clinical

application scenarios, meeting the requirements for real-time

performance and lightweight deployment.
2.4.2 Comparative models
ResNet (Residual Network) is a popular deep learning

architecture commonly used for image recognition and

classification tasks (8). In the field of breast tumor identification,

ResNet addresses the training challenges of deep networks by

introducing residual connections, allowing the network to be

deeper and more effectively trained, thereby improving

classification accuracy. AlexNet is a milestone model in deep

learning, having a profound impact on image classification tasks

(10). Despite its relatively simple network structure, AlexNet

demonstrated the potential of deep convolutional networks for

processing medical images, laying the groundwork for subsequent

research. The U2NET model, particularly its lightweight version
Frontiers in Oncology 05
U2NET-Lite, excels in breast tumor detection due to its efficient

deep and high-resolution feature extraction capabilities (11). Its

double nested U-structure and Residual U-block (RSU) design

optimize image semantic segmentation, making it especially

suitable for handling detail-rich medical images (12–15).
2.5 Experimental setup

For the DeepCardinal-50 model, the architecture employed 32

groups with 4 channels per group in the grouped convolutions,

significantly enhancing the feature extraction capability. The

model was trained using the Adam optimizer with an initial

learning rate of 0.0001, accompanied by a learning rate

scheduler that reduced the rate by a factor of 0.1 after 10 epochs

of no improvement in validation loss. A batch size of 16 was

utilized, and training was conducted over 100 epochs. To optimize

the binary classification task, the cross-entropy loss function was

employed, ensuring stable and efficient learning throughout the

training process.

For the U2NET-Lite model, a lightweight network

architecture with a double nested U-structure and Residual U-

blocks (RSU) enabled multi-scale feature fusion, which was

critical for precise segmentation. This model was trained with a

batch size of 8 using the SGD optimizer, configured with a

momentum of 0.9 and a learning rate of 0.001. To mitigate

overfitting, a weight decay of 0.0005 was applied, and the

segmentation task was optimized using the Dice loss function.

The experimental setup included datasets divided into a 12:3 ratio
FIGURE 4

DeepCardinal-50 Model.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1461542
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2024.1461542
for segmentation and an 11:1:3 ratio for classification (training,

validation, and testing). These divisions ensured a balanced

dataset allocation for robust model evaluation. Experiments

were executed in a Python 3.8 environment on an Ubuntu

20.04 system, with PyTorch 1.10.0 and CUDA 11.3 for

computational acceleration. The server infrastructure included

RTX 4090 GPUs and 15 vCPUs of an Intel Xeon Platinum 8358P

CPU @ 2.60GHz, providing the computational resources

necessary for high-performance experimentation.
2.6 Model evaluation

When evaluating deep learning models, we commonly use

several key metrics to measure performance, including accuracy

(ACC), F1 score, and Area Under the Curve (AUC). These
Frontiers in Oncology 06
evaluation metrics collectively describe the model’s performance

in various aspects, such as prediction accuracy, comprehensiveness,

and the consistency between predicted and actual results. First,

accuracy (ACC) is the most straightforward evaluation metric. It is

the ratio of correctly classified samples to the total number of

samples. The mathematical formula is:

ACC =
(TP + TN)

(TP + TN + FP + FN)
(1)

where TP represents the number of true positive samples, TN

represents the number of true negative samples, FP represents the

number of false positive samples, and FN represents the number of

false negative samples. Higher accuracy indicates a more effective

classifier with more precise predictions.

Second, the F1 score is the harmonic mean of precision and

recall. Precision represents the number of samples correctly
FIGURE 5

Segmentation results visualization.
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identified as positive; recall represents the proportion of actual

positive samples correctly predicted. The F1 score is calculated as:

PRE =
TP

(TP + FP)
(2)

REC =
TP

(TP + FN)
(3)

F =
(a2 + 1)P ∗R
a2(P + R)

(4)

When a=1\beta = 1a=1, it is the common F1 score.

F1 =
2P ∗R
P + R

(5)

Lastly, the Area Under the Curve (AUC) is a critical metric for

evaluating model prediction performance. The larger the area under

the ROC curve, the better the model’s predictive performance.

These metrics provide a comprehensive evaluation of the

model’s effectiveness in different aspects, ensuring a robust

assessment of its performance.
3 Results

3.1 Segmentation model results

In this study, we evaluated the performance of the U2NET-Lite

model in the task of breast tumor segmentation. The results demonstrate
Frontiers in Oncology 07
that the model exhibits excellent performance in processing breast

ultrasound images. In the experimental test set, U2NET-Lite achieved

an accuracy of 97%, indicating its high precision in distinguishing tumors

from normal tissue. The model’s recall rate reached 0.7961, showing its

effectiveness in capturing abnormal regions in breast ultrasound images.

Notably, the model’s Intersection over Union (IoU) was 0.7063, further

proving U2NET-Lite’s strong capability in image segmentation tasks,

accurately identifying and segmenting breast tumor areas.

To visually demonstrate the model’s segmentation effectiveness,

Figures 5 and 6 include visualizations of segmented breast ultrasound

images. These visual results clearly show the model’s accuracy and

efficiency in identifying breast tumors and normal tissue.

Additionally, Table 1 presents the performance results of both

U2NET-Lite and U2NET, highlighting their respective capabilities.
3.2 Diagnostic model results

3.2.1 Proposed model
In this study, our proposed DeepCardinal-50 model exhibited

outstanding performance in the automatic classification of breast
FIGURE 6

Segmentation Results Visualization. (A) U2NET-Lite Accuracy (B) U2NET-Lite Intersection over Union (IOU) (C) U2NET-Lite TP, FP, TN, FN (D) U2NET
Accuracy (E) U2NET Intersection over Union (IOU) (F) U2NET TP, FP, TN, FN.
TABLE 1 Results of U2NET-Lite and U2NET.

Model Accuracy Recall Precision F1
Score

IoU

U2NET-
Lite

0.9702 0.7961 0.7512 0.773 0.7063

U2NET 0.9686 0.7821 0.7379 0.7594 0.6938
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tumors. During model training, we employed a pre-trained

ResNet34 architecture, modifying the fully connected layer to

accommodate binary classification output. We utilized the cross-

entropy loss function and Adam optimizer with a learning rate of

0.0001 to ensure stable and efficient optimization over 100 epochs.

Figure 7 illustrates the training iterations of the DeepCardinal-

50 model.

The DeepCardinal-50 model demonstrated excellent

performance in the experimental test set. In the validation set, the

model achieved a validation loss of 0.3052, a validation accuracy of

0.9747, a precision of 0.9548, a recall of 0.9173, and an F1 score of

0.9357. These results, shown in Figure 8 and Table 2, reflect the

model’s high accuracy, stability, and efficiency in the tasks of breast

tumor identification and classification.
Frontiers in Oncology 08
3.2.2 Comparative model results
In this study, we compared the DeepCardinal-50 model

with other deep learning models and found that DeepCardinal-

50 outperformed the others in the task of breast tumor

classification. When compared with models such as ResNet-34,

ResNet-50, and AlexNet, the DeepCardinal-50 exhibited superior

performance across multiple metrics. The comparison results of

the confusion experiments are shown in Table 3, the confusion

matrix results of the ablation experiments are presented in

Figure 9, and the detailed ROC results of the ablation

experiments are illustrated in Figure 10.

In terms of validation loss, DeepCardinal-50 had a validation

loss of 0.3052, whereas ResNet-50 and ResNet-34 had validation

losses of 0.2673 and 0.301, respectively. Although ResNet-50
FIGURE 7

DeepCardinal-50 Model Training Iteration Diagram (A) Accuracy (B) Loss.
FIGURE 8

DeepCardinal-50 Model Training Results (A) ROC Curve (B) Confusion Matrix.
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slightly outperformed DeepCardinal-50 in this metric,

DeepCardinal-50 excelled in other critical metrics. For example,

in validation accuracy, DeepCardinal-50 achieved 0.9747, while

ResNet-50 also achieved 0.9747, and ResNet-34 achieved 0.962.

Other models, such as ResNet-34 without pre-training and AlexNet,

had validation accuracies of 0.962 and 0.5823, respectively,

significantly lower than DeepCardinal-50.
Frontiers in Oncology 09
DeepCardinal-50 also surpassed the comparative models in key

metrics such as precision, recall, and F1 score. The DeepCardinal-

50 achieved a precision of 0.9548, recall of 0.9173, and F1 score of

0.9357, while ResNet-50 achieved a precision of 0.9673, recall of

0.9577, and F1 score of 0.9622. AlexNet performed relatively poorly,

with a precision of only 0.3638, recall of 0.371, and F1 score

of 0.3346.
TABLE 2 Results of DeepCardinal-50 (best).

Model Validation Loss Validation Accuracy Precision Recall F1 Score

DeepCardinal-50(best) 0.3052 0.9747 0.9548 0.9173 0.9357
TABLE 3 Comparison of ablation study results.

Model Validation Loss Validation Accuracy Precision Recall F1 Score

DeepCardinal-50(best) 0.3052 0.9747 0.9548 0.9173 0.9357

ResNet50 0.2673 0.9747 0.9673 0.9577 0.9622

ResNet34 0.301 0.962 0.9701 0.9419 0.9548

ResNet34 with pre-training 0.2093 0.962 0.8765 0.8108 0.8379

AlexNet 0.7222 0.5823 0.3638 0.371 0.3346
FIGURE 9

Ablation Study Confusion Matrices (A) ResNet34 with pre-training (B) ResNet34 (C) ResNet50 (D) AlexNet.
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These comparative results indicate that DeepCardinal-50

exhibits outstanding performance in the task of breast tumor

classification, with higher accuracy, precision, recall, and F1 score.

These advantages make it an ideal choice for the automatic

diagnosis of breast tumors, enabling clinicians to classify and

diagnose breast tumors more effectively.

3.2.3 Independent test results
In the independent testing phase of this study, we evaluated the

performance of the DeepCardinal-50 model in breast tumor

diagnosis and compared it with other models. The details are

shown in Table 4, and the confusion matrix results for the

independent testing are presented in Figures 11 and 12. The results

showed that DeepCardinal-50 exhibited good performance across
Frontiers in Oncology 10
several key metrics, with a test loss of 2.1382 and a test accuracy of

0.5641. Although ResNet-50 had a lower test loss (1.3218) and a

slightly higher test accuracy (0.609), DeepCardinal-50 excelled in

other metrics. ResNet-34 and AlexNet had test accuracies of 0.4936

and 0.5385, and test losses of 2.3055 and 1.4921, respectively, which

were notably inferior to DeepCardinal-50.

To provide a clearer presentation of the test results, we included

visualizations such as ROC curves and confusion matrices. The

ROC curve for DeepCardinal-50 had a larger area, reflecting higher

sensitivity and specificity in breast tumor diagnosis. The confusion

matrix displayed the model’s prediction accuracy. These results

indicate that DeepCardinal-50 demonstrates stability and reliability

in the automatic diagnosis of breast tumors, showcasing significant

clinical application value and broad prospects.
FIGURE 10

Ablation Study ROC Results (A) ResNet34 with pre-training (B) ResNet34 (C) ResNet50 (D) AlexNet.
TABLE 4 Independent test comparison results.

Model DeepCardinal-50 ResNet50 ResNet34 with pre-training ResNet34 AlexNet

Test Loss 2.1382 1.3218 2.2287 2.3055 1.4921

Test Accuracy 0.5641 0.609 0.4936 0.4936 0.5385
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FIGURE 11

Independent Test Confusion Matrices (A) DeepCardinal-50 (best) (B) ResNet34 with pre-training (C) ResNet34 (D) ResNet50 (E) AlexNet.
FIGURE 12

Independent Test ROC Curves (A) DeepCardinal-50 (best) (B) ResNet34 with pre-training (C) ResNet34 (D) ResNet50 (E) AlexNet.
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3.3 Clinical interpretability

The machine learning models in this study, particularly

U2NET-Lite and DeepCardinal-50, offer significant clinical

interpretability for the ultrasound diagnosis of breast tumors. By

analyzing ultrasound images, these models can accurately identify

and classify breast tumors (16). More importantly, they can

generate activation heatmaps that visually display the precise

location and potential size of the tumors (17, 18) as shown in

Figure 13. This visualization is crucial for physicians during the

diagnostic process as it provides additional information about

tumor characteristics, such as shape, edges, and the relationship

with surrounding tissues (19, 20). This approach not only enhances

the physician’s ability to determine the benign or malignant nature

of breast tumors but also offers an intuitive way to understand the

model’s decision-making process (21). Consequently, our method

not only improves diagnostic accuracy and efficiency but also

enhances the clinical applicability of ultrasound detection in

breast tumor diagnosis (22, 23). This advancement is

instrumental in promoting early detection and treatment of breast

cancer, thereby contributing to better patient outcomes (24).
4 Discussion

This study leverages machine learning and ultrasonography to

achieve intelligent and precise auxiliary diagnosis of breast tumors.

We utilized the deep learning models DeepCardinal-50 and U2NET-

Lite, which were specifically optimized for breast ultrasound imaging.
Frontiers in Oncology 12
Experimental results demonstrate that the optimized U2NET-Lite

model exhibited high accuracy and recall rates on the test set, while

the DeepCardinal-50 model achieved superior performance in

classification tasks. The successful application of these models

significantly improved diagnostic efficiency.

The optimal performance of our models is primarily attributed

to their specialized architectural design and strong alignment with

the task of breast tumor identification. From an architectural

perspective, DeepCardinal-50 employs an enhanced 32x4d

residual network structure, providing greater learning capacity

and feature extraction precision, which is crucial for handling

complex breast tumor images. U2NET-Lite, with its lightweight

design, maintains core performance while adapting to the demands

of real-time processing, which is particularly important for clinical

applications. In terms of prediction tasks, these models effectively

process high-resolution images and accurately identify tumor

regions, which is critical for the early diagnosis of breast cancer.

Therefore, the strong alignment between model architecture and

the specific task of breast tumor identification is the key factor

behind our outstanding results (25).

Compared with previous similar studies, Losurdo et al. regarded the

automatic segmentation of breast DCE-MRI images aimed at

overcoming the issue of background parenchymal enhancement (26),

while Fanizzi et al. presented a CAD system capable of automatic

detection of microcalcifications in digital mammographic images (27),

exploiting the circular Hough transform. Lastly, Bove et al. provided an

instance of a machine learning application to breast ultrasound images,

combining clinical and radiomic features, that yielded promising results

for the prediction of the sentinel lymph-node status through a non-
FIGURE 13

Heatmap results.
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invasive procedure (28). Similarly, the review by highlights the critical

role of segmentation in CAD systems for breast tumor localization and

detection, categorizingmethods into supervised, unsupervised, and deep

learning-based approaches. This comprehensive overview provides

valuable insights for selecting suitable segmentation techniques based

on specific clinical use cases, further emphasizing the importance of

robust CAD methodologies for early cancer detection (29).

We have developed a new model that maintains high

performance while reducing computational requirements,

facilitating future dissemination. This work has the potential to

extend beyond the identification of benign and malignant breast

tumors and could be applied to other ultrasonography fields such as

thyroid or liver cancer through dataset transformation (30).

However, this study has limitations. Firstly, the model currently

only identifies benign and malignant types of breast tumors and can

be further refined to include subtyping in the future. Additionally,

our current research data is limited, and we need to use more

multicenter data to further mature the model. Finally, this research

has not yet been developed and deployed as a system, and further

development is needed to achieve clinical translation.
5 Conclusion

In this research, we have successfully developed an intelligent

assisted diagnosis system for breast tumors based on machine learning

and deep learning, including a deep learning architecture based on

segmentation and prediction of breast nodules as a whole. The system

demonstrated high efficiency and accuracy in both classification and

recognition of breast ultrasound images. These models provide a new

technological pathway for early diagnosis and treatment of breast cancer.

Wewill discuss our proposedmodels with ultrasound imaging specialists

and physicians with a view to practical implementation in hospitals.
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