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Glioblastoma (GBM) is a highly malignant tumor of the central nervous system

that remains intractable despite advancements in current tumor treatment

modalities, including immunotherapy. In recent years, metabolic checkpoints

(aberrant metabolic pathways underlying the immunosuppressive tumor

microenvironment) have gained attention as promising therapeutic targets and

sensitive biomarkers across various cancers. Here, we briefly review the existing

understanding of tumor metabolic checkpoints and their implications in the

biology andmanagement of GBM. Additionally, we discuss techniques that could

evaluate metabolic checkpoints of GBM non-invasively, thereby potentially

facilitating neo-adjuvant treatment and dynamic surveillance.
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1 Introduction

Glioblastoma (GBM) is the most common malignant glial tumor, accounting for nearly

50% of new brain malignant parenchymal tumors (1). Even with a combination of surgical

resection, radiotherapy, temozolomide (TMZ) chemotherapy, and electric field therapy, the

current median overall survival for GBM patients remains limited to 16-20 months (2). In

recent years, immune checkpoint inhibitors (ICIs), including anti-CTLA-4 and anti-PD-1/

PD-L1, have made breakthroughs in the treatment of solid tumors such as melanoma, lung

cancer and kidney cancer (3–5). However, ICIs have failed to improve overall survival of

GBM patients in Phase III trials (6, 7). In addition to ICIs, other promising immunotherapy

strategies including tumor vaccines and adoptive cell therapies have shown limited progress

in the treatment of GBM (6–9).
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The resistance of GBMs to immunotherapies has been

associated with the aberrant metabolic patterns. In GBMs, the

glioma cells were observed to overexpress indoleamine 2, 3-

dioxygenase (IDO) and tryptophan 2, 3-dioxygenase (TDO),

which catabolize an excessive amount of tryptophan into

kynurenine. Tryptophan is essential for effector T cell activation

and maturat ion (10) . I t s dep le t ion from the tumor

microenvironment could result in cell cycle arrest and anergy of

these cells. Additionally, kynurenine binds to the aryl hydrocarbon

receptor (AHR) in the tumor-associated macrophages (TAMs) to

facilitate expression of multiple immunosuppressors, e.g.

ectonucleotidase CD39, which could reduce transcription of

proinflammatory factors in CD8+ T cells through adenosine

elevation in the GBM microenvironment (11). Similar to the

notion of ‘immune checkpoint’ that regulates the execution of

effector T cell cytotoxicity, Wang & Green defined ‘metabolic

checkpoint’ to describe the impact of microenvironmental

metabolites on immune cell function. With the growing

application of immunotherapies in recent years, this concept has

increasingly been adopted to describe the interconnection between

the metabolic adaptations of tumors and their immunosuppressive

microenvironment (10). Another metabolic checkpoint observed in

GBM was the high levels of lactate produced in both the tumor cells

and the TAMs due to their metabolic switch to aerobic glycolysis.

By histone lactylation, excessive lactate enhances interleukin-10 (IL-

10) expression, required for the suppression of T cell activity (12).

These additional findings suggest potential diversity and intricacy in

GBM metabolic checkpoints, compared to the relatively

straightforward mechanism of immune checkpoints.

Despite growing recognition of the role of metabolic

checkpoints in GBM, their complete landscape and clinical

implications remain incompletely described due to limited

current evidence. Here, we review current understanding of

metabolic checkpoints in tumors and their potential links with

metabolic adaptations in GBM. We also discuss recent evidence on

the diversity and plasticity of tumor metabolic checkpoints, as well

as their therapeutic implications for GBM. Finally, we highlight

technical advancements in detection and surveillance of tumor

metabolic checkpoints that may facilitate their future applications

in GBM management.
2 Metabolic checkpoints
in glioblastoma

2.1 Glucose metabolism and hypoxia

Under aerobic conditions, cells typically metabolize glucose

primarily through oxidative phosphorylation, generating

substantial adenosine triphosphate (ATP) to meet cellular energy

demands. However, even in the presence of oxygen, tumors utilize

glucose through both oxidative phosphorylation and glycolysis,

exhibiting a high rate of aerobic glycolysis. The phenomenon

whereby cancer cells rely on glycolysis even in the presence of

oxygen is termed the Warburg effect (13). In GBM, vigorous aerobic
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glycolysis generates substantial energy, resulting in the

accumulation of lactate, a byproduct of this metabolic process,

within the microenvironment. This accumulation modifies the

lactate concentration and pH of the microenvironment (14).

Karin et al. observed elevated lactate levels in the serum of 140

patients with various malignant tumors and found that prolonged

exposure of T cells to high lactate concentrations impaired their

proliferation (13). p38, JNK, and c-Jun are key molecules in the

functional pathways of cytotoxic T lymphocytes (CTLs). Anna et al.

found that lactate stimulation reduced the phosphorylation of these

downstream molecules in CTLs and CTLs’ function was inhibited

(15). In GBM, tumor cells seize glucose from the tumor

microenvironment by virtue of vigorous aerobic glycolysis, which

leads to depletion of CTL cells due to lack of energy, and the large

amount of lactate produced by tumor cells in the microenvironment

can further inhibit CTL antitumor immune function by obstructing

CTL lactate efflux and p38 and JNK/c-Jun-mediated CTL

activation, promoting M2-like polarization of microglia and other

ways (13, 15, 16) (Figure 1). When a tumor grows rapidly, the

supply of oxygen to the tumor cells from blood vessels becomes

insufficient, resulting in a hypoxic tumor microenvironment

(17). In glioblastoma, hypoxia is a critical feature of its

microenvironment, aiding in the stabilization of hypoxia-

inducible factors (HIFs), promoting tumor proliferation, and

inducing T-cell depletion. In the tumor microenvironment,

hypoxia can lead to the accumulation of adenosine, which exerts

an inhibitory effect on antitumor responses by acting on immune

cells (18). CD39 and CD73, which are involved in the conversion of

ATP to adenosine, can act on glioblastoma stem cells and immune

cells through adenosine receptors (AR), affecting the secretion of

inflammatory mediators, the differentiation and proliferation of

immune cells, and enhancing the stemness characteristics of cancer

cells, thereby intervening in immunosuppressive effects and pro-

tumor functions (18). (Figure 1) Lim et al. evaluated the therapeutic

effects of an adenosine A2A receptor antagonist, AZD4635, and an

immune checkpoint inhibitor, Durvalumab, in a phase I clinical

trial involving patients with solid tumors (19). The outcomes of this

trial indicate that AZD4635, either as a monotherapy or in

combination with immune checkpoint inhibitors, holds

therapeutic promise. However, further clinical trials are required

to assess its efficacy (Table 1).
2.2 Amino acid metabolism

IDO and TDO are two crucial enzymes involved in the

metabolism of tryptophan, serving as representative metabolic

checkpoints in amino acid metabolism (20, 21). In GBMs, glioma

cells are found to express elevated levels of IDO and TDO, which

catabolize excessive amounts of tryptophan into kynurenine.

Tryptophan is essential for the activation and maturation of

effector T cells (10). Hanihara et al. demonstrated that the

downregulation of IDO in glioma cells increased the survival time

of tumor-bearing animals in experimental models (21). They

observed that, following the downregulation of IDO in tumor

cells, the percentage of T cells in the spleens of mice increased
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compared to the non-downregulated control group. However, in

nude mice, downregulation of IDO did not result in improved

survival. Consequently, IDO may influence tumor dynamics by

modulating T cells. The downregulation of IDO resulted in the

accumulation of tryptophan and a concomitant decrease in

kynurenine levels. Tumor cells possess a robust capability to

metabolize tryptophan, leading to the accumulation of their

metabolic byproducts in the microenvironment (21). The

depletion of tryptophan induces T cells to downregulate their

anabolic pathways for tryptophan synthesis (21). TDO is highly

expressed in human glioma cells, which aids in understanding the

impact of tryptophan catabolism on immune cells (20). Opitz et al.

demonstrated that the downregulation of IDO and TDO indicated

that the tryptophan metabolite Kyn is primarily influenced by TDO

in glioma cells (20). They observed that knocking down TDO affects
Frontiers in Oncology 03
T cell proliferation, whereas the addition of kynurenine (Kyn)

restores this proliferation. Kyn serves as an agonist of the AHR.

In experimental models, the absence of AHR diminished the tumor-

promoting effects of TDO. This mechanism facilitates CTL

immunosuppression by tumor-associated macrophages (TAM)

and regulatory T cells (Tregs) via the binding of Kyn to the AHR

(20, 22). IDO inhibitors can also be combined with other

pharmacological agents to enhance their effects; for instance, IDO

inhibitors have been shown to enhance the anti-tumor effects of

TMZ in a mouse glioma model (21) (Figure 1).

Analogous to tryptophan, arginine also functions as a metabolic

checkpoint. TAMs constitute a significant component of the glioma

microenvironment, and their polarization state is linked to either

tumor promotion or anti-tumor activity. Based on the distinct

patterns of arginine metabolism exhibited by TAMs, they can be
FIGURE 1

Metabolic checkpoints in the glioblastoma microenvironment.
TABLE 1 Clinical trials related to tumor metabolism checkpoint inhibitors.

Trial Phase Drug Target Patient Population Reference

NCT02048709 I
Navoximod
(GDC-0919)

IDO recurrent/advanced solid tumors
(Asha Nayak-Kapoor
et al.2018) (120)

NA I AZD4635
Adenosine
A2A Receptor

relapsed/refractory solid tumors
(Emerson A Lim
et al.2022) (19)

NCT01386632 II
Dichloroacetate
(DCA)

pyruvate
dehydrogenase

unresected, locally advanced head and neck squamous
cell carcinoma

(Steven F Powell
et al.2022) (32)

NA I Telaglenastat glutaminase advanced or metastatic solid tumors
(James J Harding
et al.2021) (33)

NA II Indoximod IDO advanced melanoma
(Yousef Zakharia
et al.2021) (121)

NCT02559492 I Epacadostat IDO advanced solid tumors (Aung Naing et al.2022) (122)
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classified into Arginase 1 (ARG1)-dependent TAMs and cytokine-

inducible nitric oxide synthase (iNOS) TAMs. The former exerts

pro-tumor effects by promoting tumor invasion, migration, and

immunosuppression through factors such as vascular endothelial

growth factor (VEGF), signal transducer and activator of

transcription 3 (STAT3), transforming growth factor-b (TGF-b),
and interleukin-10 (IL-10). The latter exerts anti-tumor effects by

secreting chemokines, tumor necrosis factor-a (TNF-a),
interleukin 1 beta (IL-1b), nitric oxide (NO), and reactive oxygen

species (ROS) (17) (Figure 1). Comprehensive research aimed at

identifying metabolic checkpoint targets related to arginine

metabolism may enhance the anti-tumor effects of immune cells.
2.3 Lipid metabolism

Lipid metabolism represents another critical energy

metabolic pathway in the human body, generating substantial

energy through b-oxidation to support various physiological

functions. In tumor cells, fatty acid metabolism not only

provides energy, promoting cell growth and proliferation, but

also influences the tumor’s invasive potential (23). CD36 is a

membrane glycoprotein located in the cell membrane that binds

to extracellular fatty acids, participating in their transport and

metabolic regulation (24, 25). A study on oral cancer revealed

that tumors are characterized by elevated expression of lipid

metabolism genes and the fatty acid receptor CD36. A high-fat

diet has been shown to promote metastasis, whereas blocking

CD36 can inhibit this process (26). In glioblastoma, lipid

droplets accumulate in the pathological tissues of patients, and

lipid metabolism enhances glucose metabolism and tumor

proliferation. Inhibition of lipid metabolism results in a

decrease in the tumor’s proliferative capacity (27). Tregs are

immunosuppressive cells, and the upregulation of CD36 on

intratumoral Tregs contributes to their function. Genetic

ablation of CD36 reduces the presence of Tregs within the

tumor and enhances the anti-tumor activity of other immune

cells (28). Analogous to Tregs, myeloid-derived suppressor cells

(MDSCs) can suppress immune cell function and promote

tumor growth. As a heterogeneous population of cells, MDSCs

are associated with cancer-related expansion. MDSCs can

suppress T cell function, promote the expansion of Tregs, and

facilitate tumor proliferation and migration (29, 30) In mouse

tumor models, lipid metabolism is enhanced in tumor-

infiltrating MDSCs. Inhibiting fatty acid oxidation can

diminish the immunosuppressive functions of MDSCs and

slow down tumor growth (30).

In the context of gliomas, metabolic checkpoints associated with

lipid metabolism merit further investigation. The aberrantly active

fatty acid oxidation (FAO) reaction in GBM can generate

substantial quantities of acetyl Co-A to increase CD47 expression,

which facilitates immune evasion through CD47 resistance to

endocytosis and interference with FAO by etomoxir restores the

endocytosis response of macrophages to tumors and also inhibits

FAO-dependent MDSC and Tregs (31) (Figure 1).
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3 Heterogeneity and plasticity of
metabolic checkpoints

The protective effect of metabolic checkpoints on tumors

suggests that their inhibitors have significant potential to enhance

the efficacy of immunotherapy. Therefore, researchers are tirelessly

exploring therapeutic targets related to metabolic checkpoints.

There are also clinical trials of investigational drugs targeting of

pyruvate dehydrogenase and glutaminase (32, 33) (Table 1).

However, preliminary results from some clinical trials currently

indicate variability in patient responses to metabolic checkpoint

inhibitors. In two trials in uroepithelial carcinoma, the IDO1

inhibitor Epacadostat combined with pablizumab demonstrated a

higher objective remission rate (ORR) compared to the pablizumab

group, but no benefit was observed from combining Epacadostat in

trials in other tumors (34). Notably, IDO1 expression exhibits

considerable variability across different tumors, with some

immunohistochemical studies suggesting IDO1 positivity rates of

94% in uroepithelial carcinoma, 57-66% in ovarian cancer, 37-46%

in breast cancer, 44-81% in renal cancer and 8% in GBM (34).

Therefore, it has been suggested that the failure of Epacadostat to

perform as expected in clinical studies may stem from the variability

in IDO1 expression among patients, and that these studies often fail

to screen for potentially sensitive patients based on IDO1

expression levels at enrollment (34) (Figure 2).

Glutamine-related metabolic reprogramming in tumor cells

enhances the survival of cancer cells (35). Glutaminase is a key

enzyme in glutamine metabolism, and it serves as a target for anti-

tumor therapy (36–39). IDH mutations in gliomas influence the

glutamate synthesis pathway in tumor cells, resulting in an

increased conversion of glutamine to glutamate in IDH mutant

gliomas (40). Moreover, the levels of glutamine metabolism in liver

tumors vary according to the induced gene, while notable

differences exist between liver and lung cancers induced by the

same gene (41). Thus, variations in the efficacy of the same

metabolic checkpoint therapy may occur across different

molecular subtypes of gliomas. Even when identical genes are

involved, the impact of tissue heterogeneity on metabolic

checkpoint therapy may be significant.

Due to the diversity of tumor metabolic checkpoints, studying the

expression profiles of tumor metabolites and related pathway genes at

the histological level is more conducive to identifying the key

metabolic checkpoints involved. We can observe the heterogeneity

of the tumor’s metabolic profile and the phenomenon of subgrouping

in breast cancer (42). Shao et al. have identified three Metabolic-

Pathway-Based Subtypes (MPS) in triple-negative breast cancer

(TNBC). The MPS1 subtype is notably active in the lipid

metabolism pathway, while the MPS2 subtype is significantly active

in the glycolytic pathway. Drug trials targeting both metabolic

profiles demonstrated that the fatty acid synthase (FASN) inhibitor

C75 significantly inhibited the growth of MPS1 TNBC cell lines and

patient-derived organoids compared to MPS2 and MPS3, whereas

the glycolysis inhibitor was more effective against MPS2 TNBC. In a

tumor-bearing mouse model, the combination of the glycolysis

inhibitor FX-11 and PD-1 monoclonal antibody significantly
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increased the infiltration of CD8+ T cells and NK cells in MPS2

tumors, effectively slowing their growth, whereas no significant effects

were observed in MPS1 and MPS3 tumors (43) (Figure 2).

Heterogeneity and clustering of tumor metabolic characteristics

are not only evident in TNBC but also in various tumors, including

lung cancer, gastric cancer, and glioma (44–48). One study

categorized gastric cancer into four subtypes with distinct

metabolic profiles, with each subtype’s prognosis varying across

treatments (49). Diffuse low-grade gliomas were classified into three

distinct metabolic subtypes (M1, M2, and M3) through consensus

clustering, differing in immune infi ltration, molecular

characteristics, and prognosis (50). Metabolomic assays of GBM

cell lines demonstrated that these lines could be categorized into

multiple groups with significantly different metabolic profiles (51).

Chinnaiyan et al. found significant metabolomic heterogeneity in

GBM (52). Furthermore, GBM can be differentiated into AD-H and

AD-L types through hierarchical clustering of relative levels of

adenosine-related metabolites; additionally, immunocell infiltration

analysis indicated that M2 macrophage infiltration was significantly

higher in AD-H than in AD-L (53). This body of evidence suggests

that the expression levels of metabolic checkpoints vary

significantly among GBMs, indicating that a holistic approach to

determining the metabolic profile classification through histological

testing may be essential for effective intervention (Figure 2).

In addition to variations in metabolic checkpoint expression

among patients, the compensatory and adaptive evolution of

metabolic pathways may also contribute to the eventual tolerance

of tumors to metabolic checkpoint inhibitors. Kunle et al. found

that ovarian cancer patients treated with the IDO1 inhibitor
Frontiers in Oncology 05
Epacadostat experienced a shift in internal tumor tryptophan

metabolism toward the NAD+ synthesis pathway, which also

affected T cell infiltration and anti-tumor immune function. In

contrast, the addition of A2a and A2b purinoceptor antagonists to

block their binding to NAD+ alleviated immunosuppression (54).

In GBM, although no studies have examined changes in tumor

dynamics following treatment with metabolic checkpoint

inhibitors, evidence suggests that neoantigen-containing tumor

clones in GBM (Responders) that are sensitive to immune

checkpoint inhibitor treatment may undergo branched

evolutionary elimination, leading to eventual progression (55).

Therefore, this form of tumor adaptive evolution may also

account for the eventual failure of treatments targeting

immunosuppression (Figure 2).
4 Non-invasive tests for predicting
metabolic checkpoints

4.1 Multimodal MRI

Given that GBM is located intracranially, it is essential to

capture the key metabolic checkpoints of GBM in a non-invasive

and dynamic manner to more accurately match patients with more

effective or sensitive drugs, considering the heterogeneity and

plasticity of tumor metabolic checkpoints.

Multimodal magnetic resonance imaging(MMRI) is a combination

of various MRI imaging modalities (56). The individual imaging
FIGURE 2

(A) Tumor cells of different subtypes exhibit distinct metabolic patterns and respond variably to treatment. (B) The primary tumor treated with
systemic therapy resulted in branching evolution, ultimately leading to disease progression.
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modalities can complement each other (57). MMRI has been utilized in

various diseases, including osteosarcoma, Parkinson’s disease,

concussion, and glioma (58–61). MMRI is increasingly employed in

the management of gliomas (62). Proton magnetic resonance

spectroscopy (1H-MRS) is part of MMRI, and the application of

magnetic resonance spectroscopy (MRS) to measure brain

metabolites dates back 40 years (63, 64). 1H-MRS can be directly

utilized to estimate the relative levels of various metabolites, such as

glutamine, lactate, and lipids, in the human GBM region, providing

metabolic characteristics of tumors at different spatial and temporal

points (65–67). This technique can be adapted to fulfill the need for

non-invasive assessment of metabolic checkpoints. In addition to

human GBM, there is concordance between 1H-MRS of living

tumors and isolated tissues in a rat glioma model (68). In studies of

anti-angiogenic drug response, the sensitive population (long-term

survivors) demonstrated a consistently lower lactate/N-acetylaspartate

ratio (Lac/NAA) compared to baseline during continuous 1H-MRS

follow-up, whereas the non-sensitive population exhibited a gradual

increase in Lac/NAA (69). Additionally, phosphorus magnetic

resonance spectroscopy (31P-MRS) aids in detecting cellular

metabolites, and metabolite concentration ratios have been utilized in

glioblastoma studies (70, 71). In one study, 31P-MRS combined with
1H-MRS was employed to detect changes in the biology of glioblastoma

following treatment with bevacizumab (72). 31P-MRS can also identify

various brain tumors due to differences in metabolite concentration
Frontiers in Oncology 06
ratios among different tumors (73, 74). Alongside 1H-MRS and 31P-

MRS, deuteriumMRS and carbon-13MRS are also employed in tumor

metabolism detection (75, 76) (Figure 3).

In addition to the aforementioned MRI spectroscopy, T1/T1

enhancement, T2, fluid-attenuated inversion recovery (FLAIR), and

diffusion-weighted imaging (DWI) included in multimodal MRI

enable the extraction of over 1,600 statistics that describe the signal

morphology and texture of tumor images, collectively referred to as

radiomics features. Radiomics is a sophisticated imaging analysis

technique that can be integrated with other histological data for

clinical applications (77). Radiomics has demonstrated significant

potential in tumor research (78). Its value has been demonstrated in

breast, ovarian, liposarcoma and glioblastomas (79–82). Gene

functions influence the imaging characteristics of tumors. Zhang

et al. found that contrast enhancement (CE) in T1-weighted

sequences is associated with genes related to blood-brain barrier

(BBB) function (83). Angiogenesis is a critical feature of GBM, and

vascular endothelial growth factor (VEGF) plays a key role in

regulating this process. VEGF is a significant target in glioblastoma,

and its evaluation holds clinical importance (84, 85). MRI can predict

VEGF expression in GBM through a non-invasive modality based on

radiomics (85–87) (Figure 3).

The application of artificial intelligence in processing medical data

is increasingly being adopted by researchers. Machine learning (ML)

enables the utilization of known data to make predictions about
FIGURE 3

(A) Nuclear magnetic spectroscopy imaging of glioblastoma. (B) The role of vascular endothelial growth factor for glioblastoma can be visualized
using Magnetic Resonance Imaging, and MRI analysis can be employed to predict vascular endothelial growth factor expression.
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unknown data (88). Deep learning, a branch of machine learning, is

based on the study of neural networks and is classified into supervised,

unsupervised, and semi-supervised learning (89). The integration of

machine learning with imaging information can assist in the diagnosis,

treatment, prognosis, and staging of diseases (90, 91).

In a previous study, we identified numerous imaging histological

features in multimodal MRI of GBM that were highly correlated with

gene expression in tumor tissues using automated machine learning

process (92). This finding aligns with the results of numerous prior

studies (93). For instance, by comparing GBM imaging and

transcriptomic features, Beig et al. found that a set of imaging

features with prognostic value were significantly associated with cell

differentiation, adhesion, and angiogenesis (81). Li et al. identified 13

prognostic imaging features in GBM that were classified by WGCNA

analysis into four categories of imaging phenotypes significantly

associated with gene expression in pathways related to immunity (T

cell activation, etc.), tumor proliferation (cell adhesion, etc.),

therapeutic response (UV response, etc.), and cellular function

(mitotic spindle, etc.) (94). These findings robustly demonstrate the

feasibility of non-invasive analysis of gene expression through the

correlation of imaging and transcriptomics.

Considering the aforementioned advantages, it can be

concluded that multimodal MRI holds significant potential for

predicting the expression of key metabolic checkpoints in GBM.
4.2 Liquid biopsy

Liquid biopsy has recently emerged as a non-invasive technique for

detecting tumor biomarkers (95, 96). The temporal and spatial

heterogeneity of tumors is an intrinsic property that limits the

efficacy of traditional tissue biopsies (97). Traditional tissue biopsy
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remains the gold standard for pathological diagnosis; however, it is

associated with the disadvantages of invasiveness and inconsistent

sampling (98). Liquid biopsies offer the advantages of being non-

invasive and providing a more convenient method for the continuous

monitoring of tumor outcomes (99–101). Circulating tumor cells

(CTCs) and circulating tumor DNA (ctDNA) are significant

biomarkers in liquid biopsies (102). Circulating tumor DNA

primarily derives from the death of tumor cells (102). In lung cancer,

biomarkers obtained from liquid biopsies have been utilized to assess

the therapeutic efficacy of immunotherapy (103). In the context of

immunotherapy, results from clinical trials such as B-FAST and

CheckMate 848 indicate that the tumor mutational load of

circulating tumor DNA in plasma may suggest potential therapeutic

benefits from immune checkpoint inhibitors (104, 105). In

glioblastoma, cerebrospinal fluid (CSF) is considered more valuable

than other body fluids; however, additional body fluids can also serve as

fluid biopsy specimens for monitoring glioblastoma, with cell-free

nucleic acids, extracellular vesicles (EVs), and CTCs being notable

biomarkers (106, 107). Nevertheless, there are currently no studies

demonstrating the presence of metabolic checkpoint-associated liquid

biopsy markers.

Epigenetic alterations may serve as promising liquid biopsy

markers that could assist in the diagnosis and treatment of cancer

(108, 109). DNA methylation is extensively studied in the context of

epigenetic modifications (108). DNA methylation in circulating

tumor cells is closely linked to cancer occurrence, and the

frequency of methylation in gene promoter regions influences gene

expression, thereby affecting cancer development (110). DNA

methylation can be detected in the body fluids of patients with

various solid tumors (95, 111–114) (Figure 4).

We achieved high-throughput detection of cytosine 5-

hydroxymethylation (5hmc) in circulating free DNA (cfDNA) from
FIGURE 4

Noninvasive liquid biopsy techniques can be employed to predict metabolic checkpoints and progression surveillance in glioblastoma.
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glioma patients using a UDP-N3-glucose-based click chemistry

combined with immunoprecipitation method (115). In contrast to

the mutation or methylation of cytosine (5mc) in free DNA detected

by most liquid biopsy methods,5hmc serves as a stable intermediate

in the demethylation of methylated cytosines, thereby reflecting an

open chromatin state (116). Specific enzymes mediate the conversion

of 5mc to 5hmc (117). 5hmc in genes exhibits a positive correlation

with gene expression, enabling this class of epimodification signals to

more directly reflect the transcriptomic profile of tumors (116, 118).

In esophageal cancer, 5hmc in cfDNA can serve as a biomarker for

tumor detection (119) (Figure 4).

Utilizing the aforementioned 5hmc assay, we established a

preliminary cfDNA hydroxymethylome dataset for a cohort of

glioma patients and compared it with the glioma transcriptome,

confirming that the level of gene 5hmc modification in plasma

cfDNA of glioma patients closely correlates with its expression level

in tumor tissue (115).
5 Future perspectives

Glioblastoma is a malignant tumor of the central nervous system,

with surgery remaining the primary treatment modality. Due to its

inherent heterogeneity, the obstruction of the blood-brain barrier, and

the immunosuppressive characteristics of the tumor microenvironment,

immunotherapy is less effective. Therefore, there is a pressing need to

develop new therapeutic modalities for glioblastoma. Metabolic

checkpoints offer a novel direction for the diagnosis and treatment of

glioma, serving not only for diagnostic staging of glioblastoma but also

for the identification of new therapeutic targets. Non-invasive analytical

methods can aid in analyzing the metabolic checkpoints of glioblastoma,

with radiomics and liquid biopsy offering unique advantages for

diagnosis and treatment. However, further research on metabolic

checkpoints in glioblastoma faces several limitations and challenges.

Research on metabolic checkpoint targets in glioblastoma remains

insufficient, and drugs targeting these specific sites are underdeveloped,

necessitating further exploration. Given the high heterogeneity of

glioblastoma, studies on metabolic checkpoints require more detailed

classification. The integration of artificial intelligence and radiomics

requires additional data support and advancements in AI technology.

Non-invasive techniques for predicting metabolic checkpoints require

further refinement.

In conclusion, glioblastoma metabolic checkpoints represent a

promising area of research, necessitating further in-depth studies.

The combination of liquid biopsy techniques and radiomics

warrants further exploration.
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