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The prognosis of primary central nervous system lymphoma (PCNSL) patients is

relatively poor, and there is currently no standard treatment plan. Most patients

choose high-dose chemotherapy based on methotrexate. While traditional

chemotherapy combined with biological therapy has achieved limited results,

some patients still do not respond to treatment or cannot tolerate its toxicity and

side effects. Bruton’s tyrosine kinase (BTK) is a key enzyme in B-cell receptor

signaling, and its activation is critical for B-cell survival and proliferation. In recent

years, BTK inhibitors have shown great potential in treating lymphomas derived

from various B cells because of their strong targeting ability and relatively few

side effects. They may also be a reasonable treatment choice for PCNSL. This

article reviews the mechanism of action, clinical research, adverse reactions, and

other issues of BTK inhibitors in treating PCNSL to provide a reference for

individualized treatment of patients with PCNSL.
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1 Introduction

Primary central nervous system lymphoma (PCNSL) accounts for 4% of primary

central nervous system (CNS) tumors and 4% to 6% of extranodal lymphomas (1) and has a

relatively worse prognosis than other extranodal diffuse large B-cell lymphomas. High-dose

methotrexate (HD-MTX) has improved blood−brain barrier permeability, and

immunochemotherapy regimens based on HD-MTX are currently the first-line

treatment for PCNSL patients. However, recurrence still occurs in more than 50% of

patients. The prognosis of relapsed/refractory (R/R) PCNSL remains extremely poor, and

there is currently no unified salvage treatment plan. Diffuse large B-cell lymphoma can be

divided into two subtypes: the germinal center B-cell-like (GCB) subtype and the activated

B-cell-like (ABC) subtype. Most PCNSLs are activated B-cell-like (ABC) cells. This subtype
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selectively acquires mutations that target the B-cell receptor (BCR)

and promote BCR signaling, which supports the development of

BTK inhibitors in PCNSL (2).

The pathophysiological process of PCNSL involves numerous

distinct genetic mutations, the most important of which are

functional mutations in the genes encoding the CD79b molecule

(CD79B), a subunit of the B-cell receptor (BCR), and the MYD88

innate immune signal transduction adaptor (MYD88), which is

involved in Toll-like receptor (TLR) and interleukin receptor

signaling (3). In normal B cells, the TLR and BCR signaling

pathways cooperate to activate the nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-kB). Mutated MYD88

and CD79B activate the NF-kB signaling pathway, promoting B-

cell survival and proliferation (4). The frequency of MYD88

mutations in PCNSL patients is 76% (5). This high frequency

underscores the pivotal role of MYD88 in the pathogenesis and

progression of PCNSL, influencing therapeutic strategies targeting

the B-cell receptor signaling pathway. In contrast, mutations

leading to the activation of the NF-kB signaling pathway are

present in more than 90% of patients with PCNSL (6). These

findings show that the activation of the NF-kB signaling pathway

is the key driver of the occurrence of PCNSL, providing an

important theoretical reference for the use of Bruton’s tyrosine

kinase (BTK) inhibitors to treat PCNSL.

PCNSL also have the same immune evasion mechanism: gene

inactivation of major histocompatibility complex (MHC) classes I

and II and b2-microglobulin (B2M), leading to the loss of their

synthesized proteins (7). By systematically reviewing the preclinical

and clinical data reported for BTK inhibitors, this review focuses on
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the mechanism of action of BTK inhibitors in PCNSL and the

results of existing clinical trials and discusses their therapeutic

efficacy, challenges, and future development directions, aiming to

provide new perspectives and broader possibilities for

treating PCNSL.
2 BTK and BTK inhibitors

2.1 BTK

The BCR pathway is essential for the proliferation and survival

of cancer cells in various B-cell malignancies, with BTK being a key

component. BTK is a nonreceptor protein kinase belonging to the

Tec family (Figure 1) (8). Originally identified as the faulty protein

in X-linked agammaglobulinemia by Vetrie et al. in 1993, BTK is

also referred to as agammaglobulinemia tyrosine kinase (9, 10). This

kinase is expressed predominantly in cells of the hematopoietic

lineage, including B cells, mast cells, and macrophages, but not in T

cells, natural killer cells, or plasma cells (11). BTK is instrumental in

multiple processes, such as B-cell lymphangiogenesis, as well as the

development, maturation, and differentiation of immature B cells

and their subsequent proliferation and survival (12, 13).

BTK is a key element within various B-cell receptors (BCRs),

serving as a regulator of multiple intracellular signaling pathways

mediated by cell surface molecules such as phosphoinositide 3-

kinase (PI3K), mitogen-activated protein kinase (MAPK), and NF-

kB. This regulation is crucial for the activation, proliferation, and

differentiation of antibody-producing plasma cells (14, 15). As a
FIGURE 1

Role of BTK in the BCR, TLR, chemokine receptor, and Fc receptor (FcR) signaling pathways (8).
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result, the abnormal activation of BTK can lead to several B-cell

malignancies, including various types of leukemias and lymphomas

(16), as well as autoimmune disorders such as rheumatoid arthritis

(RA) and multiple sclerosis (MS) (17).

BTK is composed of five distinct regions: the pleckstrin

homology (PH) domain, the Tec homology (TH) domain, the

SRC homology 2 (SH2) and 3 (SH3) domains, and a C-terminal

catalytic domain (18, 19) (Figure 2) (8). The PH domain is crucial

for mediating interactions with phospholipids and proteins. The

TH domain, which contains two proline-rich regions (PRRs), plays

a role in the autoregulation of BTK. The SH2 and SH3 domains are

involved in binding to phosphorylated tyrosine residues and PRRs,

respectively, with the SH3 domain also hosting a vital

autophosphorylation site at tyrosine 223. The catalytic domain at

the C-terminus, featuring the kinase activity center at tyrosine 551,

is key for the initial activation of BTK (20). Additionally, within this

catalytic domain, the residue Cys481 is a critical covalent binding

site targeted by BTK inhibitors.

BTK activation occurs through the spleen tyrosine kinase

(SYK), which itself is activated by the B-cell receptor (BCR) (20).

Once activated, BTK phosphorylates residues Y753 and Y759 on

phospholipase C beta 2 (PLCb2), leading to the formation of

inositol trisphosphate (IP3) and diacylglycerol (DAG). These

secondary messengers then activate protein kinase C beta

(PRKCB/PKCb) rather than producing it. This results in elevated

calcium levels, which then activate the MAPK/extracellular signal-

regulated kinase (ERK) pathway, influencing the expression of

genes related to cell proliferation, survival, and cytokine secretion.

Concurrently, BTK can also activate the protein kinase B (AKT)/

NF-kB signaling pathway (21, 22). Additionally, active BTK plays a

role in mediating proinflammatory signals, including the

production of inflammatory cytokines such as tumor necrosis

factor (TNF)-a and interleukin 1b (IL1B), linking it to

inflammatory responses (23).
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2.2 Mechanisms of action of BTK inhibitors

As previously discussed, Cys481 within BTK is a nucleophilic

site that forms a covalent bond with electrophilic inhibitors.

Sequence analysis revealed that this cysteine is analogous to

Cys773 in the epidermal growth factor receptor (EGFR) family,

which has been targeted by several irreversible kinase inhibitors in

clinical trials. This similarity inspired the development of a selective

BTK inhibitor aimed at irreversibly deactivating this particular site.

Through extensive research, scientists synthesized a compound that

significantly reduced the phosphorylation of phospholipase C

gamma 1 (PLCG1) associated with BTK and inhibited the LYN

proto-oncogene Src family tyrosine kinase (LYN)- and spleen

tyrosine kinase (SYK)-dependent phosphorylation at Tyr551 on

BTK. This compound demonstrated high selectivity for BTK, with a

marked preference over LYN or SYK, effectively and irreversibly

inhibiting BTK-dependent pathways in the BCR signaling cascade.

Consequently, these BTK inhibitors have attracted considerable

attention (20).

BTK inhibitors are categorized into two types on the basis of

their binding modes and mechanisms of action: irreversible and

reversible. Irreversible inhibitors function through a Michael

acceptor component that forms a covalent bond with the

conserved Cys481 residue within the ATP-binding site, thereby

permanently disabling the kinase. Conversely, some reversible

inhibitors interact with specific pockets in the SH3 structural

domain through noncovalent interactions such as hydrogen

bonds or hydrophobic interactions, leading to an inactive kinase

conformation (24). Some drugs such as pirtobrutinib blocks the

ATP-binding site of BTK through non-covalent, non-C481-

dependent binding, thereby overcoming acquired resistance to

covalent BTK inhibitors (25). Most of the BTK inhibitors

currently approved for use are irreversible (18). However, the

clinical efficacy of these irreversible inhibitors, such as ibrutinib—
FIGURE 2

The structure and interactions of BTK (8).
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the first of its kind to be marketed—has been compromised by the

emergence of drug-resistant mutations. Notably, a mutation in

which Cys481 is replaced by serine (C481S) diminishes the

reactivity of BTK to ibrutinib and other covalent inhibitors,

substantially reducing its effectiveness. For example, the

inhibitory potency of ibrutinib is reduced sixfold against the

C481S mutant (half-maximal inhibitory concentration = 4.6 nM).

Other mutations at Cys481, including C481R, C481F, and C481Y,

as well as mutations at the gatekeeper residue Thr474 (T474I,

T474S, T474M), have been identified and pose similar challenges

(26, 27). While ibrutinib can still bind noncovalently to the C481S

mutant, this reversible interaction does not ensure sustained

efficacy in patients harboring this mutation (28, 29).

In this context, noncovalent inhibitors that do not rely on

interactions with Cys481 have been shown to effectively inhibit BTK

mutants such as C481R, T474I, and T474M, representing promising

therapeutic alternatives (26). Additionally, reversible inhibitors

have demonstrated increased efficacy in the treatment of

autoimmune diseases, including rheumatoid arthritis (RA),

various forms of multiple sclerosis (MS), chronic graft-versus-

host disease, and systemic lupus erythematosus (30, 31).

Moreover, recent advancements have led to the development of

protein hydrolysis-targeted chimeric molecules, introducing a novel

strategy for reducing BTK activity (32).
2.3 Approved BTK inhibitors

Six BTK inhibitors are currently approved and marketed

worldwide: first-generation ibrutinib; second-generation

acalabrutinib, zanubrutinib, tirabrutinib, and orelabrutinib; and

third-generation molecules, including the newly marketed

pirtobrutinib and the not-yet-marketed nemtabrutinib and

fenebrutinib (Figure 3; Table 1). First- and second-generation

BTK inhibitors irreversibly inhibit BTK activity by covalently

binding to the Cys481 site in BTK. The third-generation BTK

inhibitors are noncovalent inhibitors that do not depend on

binding to Cys481 and still have a better inhibitory effect on BTK

mutated at this site, with better efficacy and safety.

Ibrutinib, a pioneering and selective BTK inhibitor, was

recognized as a breakthrough therapy by the U.S. Food and Drug

Administration (FDA) in 2013, marking a significant milestone in
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medical treatment. It effectively inhibits tumor cell proliferation and

impacts the adhesion and migration of malignant cells and the

tumor microenvironment, which includes T and mesenchymal cells

(33–37). In November 2013, the FDA initially approved ibrutinib

for the treatment of mantle cell lymphoma (MCL). It was later

approved to address various B-cell lymphomas, including chronic

lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL),

Waldenström macroglobulinemia (WM), and marginal zone

lymphoma (MZL). Despite its efficacy, resistance has developed in

some patients who have relapsed following treatment

with ibrutinib.

Research has indicated that certain baseline molecular and

cytogenetic characteristics, such as del(17p)/tumor protein p53

(TP53) mutations and complex karyotypes (23 chromosomal

abnormalities), increase the risk of disease progression in patients

with primary chronic lymphocytic leukemia/small lymphocytic

lymphoma (CLL/SLL) undergoing treatment with ibrutinib.

Patients carrying the del(17p)/TP53 mutation are particularly

prone to recurrence, which is often linked to BTK mutations (38,

39). Specifically, in relapsed/refractory (R/R) patients, the C481

residue of BTK is most commonly mutated to serine (C481S), which

impedes the covalent attachment of ibrutinib to the structural

domain of BTK (29, 40–42). Additionally, cells with the BTK

T316A mutation exhibit resistance to ibrutinib, both at the

cellular and molecular levels, comparable to the resistance

observed with the C481S mutation (43). Moreover, missense

mutations in PLCG2, a target of BTK, have emerged as another

resistance mechanism. The activation of PLCG2 enables CLL cells

to proliferate independently of BTK control, often cooccurring with

BTK mutations to foster ibrutinib resistance (43). Another

contributing factor to CLL resistance is del(8p), which results in

the loss of TRAIL-R and significant epigenetic alterations (44). In

response to these resistance issues and to mitigate side effects

associated with ibrutinib, such as skin and dermatologic issues

(45), bleeding, infections (46), headaches, and atrial fibrillation,

newer generation BTK inhibitors, such as acalabrutinib and

zanubrutinib, were developed and received FDA approval in 2017

and 2019, respectively (47). These advancements aim to offer more

effective and tolerable treatment options for patients with CLL and

related conditions.

The three approved BTK inhibitors—ibrutinib, zanubrutinib,

and acalabrutinib—share similarities and differences in their action
FIGURE 3

Chemical structures of the BTK inhibitors.
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and usage. All three bind irreversibly and covalently to the Cys481

residue in the ATP-binding pocket of BTK. In terms of biochemical

binding kinetics, ibrutinib is recognized as the most potent,

followed by zanubrutinib and then acalabrutinib. Acalabrutinib

stands out for having the highest selectivity and the lowest rate of

off-target effects, followed by zanubrutinib, with ibrutinib having

the least selectivity (48). Pharmacodynamic and pharmacokinetic

variations among these inhibitors influence dosing, efficacy, and the

profile of adverse effects observed in clinical practice. For example,

acalabrutinib, with its shorter half-life and higher rate of BTK

occupancy, is administered twice daily compared with ibrutinib’s

once-daily regimen (95.3% vs. 87.6% BTK occupancy) (49). For

zanubrutinib, studies have shown that a dosage of 160 mg twice

daily achieves sustained complete suppression and more than 95%

BTK occupancy in lymph nodes, making it more effective than a

single daily dose of 320 mg. Thus, 160 mg twice daily has been

recommended for further clinical studies (50). The interplay

between rapid absorption and elimination in drug kinetics can

lead to swift target inhibition while minimizing the risk of off-target

effects and drug interactions. The selective properties and short

half-life of acalabrutinib ensure thorough and continuous BTK

inhibition, avoiding the toxicity associated with the inhibition of

other kinases. Achieving full target engagement helps mitigate drug

resistance arising from BTK mutations and lowers the incidence of

Richter transformation (51).

Tirabrutinib is a highly selective and highly active BTK

inhibitor developed in Japan for the treatment of recurrent or

refractory primary central nervous system lymphoma (52). A

phase 1/2 clinical study confirmed an overall response rate of

63.6% in patients with relapsed/refractory PCNSL treated with

tirabrutinib. Common adverse reactions are rash, neutropenia,

leukopenia, and lymphocytopenia (53). Orelabrutinib is a highly

selective BTK inhibitor that is currently approved only for MCL and

CLL in China (54). A phase I/II clinical study reported an overall

response rate of 81.1% in patients with relapsed or refractory (r/r)

mantle cell lymphoma (MCL). PMID: 37078706 Another phase 2

clinical study evaluating orelabrutinib (150 mg once daily) in

patients with refractory or recurrent chronic lymphocytic

leukemia (CLL)/small lymphocytic lymphoma (SLL). The total

effective rate was 92.5% (74/80). Orelabrutinib is well tolerated,
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and the most common adverse reactions are decreases in

leukocytes, hemoglobin and platelets and infection (55).

Recently, researchers have introduced pirtobrutinib, a

reversible, noncovalent BTK inhibitor that is highly selective and

effectively inhibits BTK phosphorylation, cellular proliferation, and

tumor growth (56, 57). Unlike previous inhibitors, pirtobrutinib

binds to BTK without Cys481, offering a potential solution to

overcome the resistance observed with ibrutinib, acalabrutinib,

and zanubrutinib. Nemtabrutinib is a multitarget inhibitor that

can strongly inhibit the transmission of BCR signals. It can

competitively occupy the ATP-binding pocket of BTK without

interacting with C481, overcoming the resistance caused by this

mutation. A phase I study demonstrated the initial efficacy of

nemtabrutinib in patients with relapsed/refractory B-cell

malignancies (58). The most common side effect of the drug is

neutropenia. These new developments may represent significant

advancements in the treatment of B-cell malignancies. Fenebrutinib

is also a reversible BTK inhibitor that can both inhibit B-cell

activation and reduce MS-induced inflammation. At present,

related research in the field of multiple sclerosis is being carried out.
3 Clinical applications of BTK
inhibitors for treating PCNSL

In the context of PCNSL, numerous studies have documented

significant genomic alterations. Common genetic anomalies in

PCNSL include single nucleotide and copy number variations, with

the most frequently mutated genes being MYD88, CD79B, caspase

recruitment domain family member 11 (CARD11), and TNF-a-
induced protein 3 (TNFAIP3) (59). MYD88 serves as a critical

adaptor molecule in the Toll-like receptor (TLR) and interleukin 1

receptor type 1 (IL1R1) signaling pathways (60). Research by Ngo

et al. indicated that activated B-cell-like diffuse large B-cell lymphoma

(ABC-DLBCL) relies on MYD88, with the MYD88 L265P mutation

being particularly prevalent in systemic DLBCL (61). This mutation is

also commonly observed in PCNSL, making it the predominant

subtype (62). CD79B, the second most frequently mutated gene in

PCNSL, enhances B-cell receptor (BCR) signaling and NF-kB
activation, thus providing survival signals to tumor cells (5, 63–65).
TABLE 1 Summary of approved BTK inhibitors.

Generation BTK Inhibitor Synonyms Year of Approval Type of Inhibitor Indication

1st Ibrutinib PCI-32765 2013 Irreversible MCL, CLL, SLL, WM,
MZL, GVHD

2nd Acalabrutinib ACP-196 2017 Irreversible CLL, SLL, MCL

Zanubrutinib BGB-3111 2019 Irreversible NHL, CLL, MCL

Tirabrutinib ONO/GS-4059 2020 Irreversible CNS lymphoma, WM, CLL

Orelabrutinib ICP-022 2020 Irreversible MCL, CLL, SLL

3rd Pirtobrutinib LOXO-305 2023 Reversible CLL/SLL, MCL
CLL, chronic lymphocytic leukemia; CNS, central nervous system; GVHD, graft-versus-host disease; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; SLL, small lymphocytic
lymphoma; WM, Waldenström macroglobulinemia.
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Mutations in MYD88 L265P and CD79B are also utilized to classify

ABC-DLBCL into distinct categories (66). Additionally, CARD11,

which is a downstream component of the BCR pathway, has

mutations that potentially activate NF-kB, contributing to the

pathogenesis of PCNSL (67). Notably, mutations in CARD11 have

been linked to resistance against the BTK inhibitor ibrutinib in

several human B-cell malignancies (2, 29).

Recent research has highlighted that innovations targeting the

BCR and TLR signaling pathways have been pivotal in advancing

the treatment of PCNSL. These pathways offer various therapeutic

targets. Upstream of the BCR signaling pathway, PI3K can be

downregulated to suppress signaling. Some previously studied

PI3K inhibitors have limited clinical use due to gastrointestinal

toxicity. Amdizalisib, a novel highly selective PI3Kd inhibitor, is

currently undergoing clinical exploration for the treatment of

hematologic malignancies (68). The drug has shown good safety

and efficacy in patients with R/R lymphoma. Amdizalisib is not

currently used in PCNSL, but owing to its good therapeutic effect

and safety in other lymphomas, it may provide a new treatment

option for patients with PCNSL. Another PI3K inhibitor,

Linperlisib, a small-molecule inhibitor with high blood−brain

barrier permeability, can effectively treat PCNSL and improve

patient survival (69–71). Downstream, immunomodulatory drugs

such as lenalidomide can inhibit interferon regulatory factor 4

(IRF4), thereby impacting NF-kB functionality. Proteasome

inhibitors can also be used to prevent NF-kB from entering the

nucleus, altering gene expression. However, a significant limitation

of proteasome inhibitors is their inability to cross the blood−brain

barrier, complicating their use in treating PCNSL (59). At the core

of this pathway lies BTK, which is targeted effectively by

BTK inhibitors.
3.1 First-generation BTK inhibitors

Ibrutinib is a first-generation BTK inhibitor. A phase I clinical

trial by Gromes et al. (3) used ibrutinib monotherapy to treat 20

patients with R/R PCNSL, with an objective response rate (ORR) of

77%, including five patients with a complete response (CR), a PFS of

4.6 months, and an mOS of 15 months. In a further phase II clinical

trial of single-agent ibrutinib in the treatment of R/R PCNSL and

secondary CNS lymphoma (SCNSL), the ORR was 81%, the median

PFS (mPFS) was four months, and the mOS was 19.5 months (72).

In a phase II clinical trial (73) in which ibrutinib monotherapy was

used in patients with R/R PCNSL or primary vitreoretinal

lymphoma (PVSL), the ORR was 52%, the mPFS was 4.8 months,

and the mOS was 19.2 months. These three studies demonstrated

that ibrutinib monotherapy had a good clinical response in

treating PCNSL.

Interestingly, the efficacy of BTK inhibitors in PCNSL is distinct

from their performance in systemic lymphoma, where the single

agent ibrutinib achieves only a 10% CR rate and a 15% PR rate (2).

These findings underscore the limited impact of ibrutinib outside

the CNS, in contrast with its more favorable outcomes in PCNSL,
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where despite a modest median PFS, the ORR is higher. This

disparity may be attributed to the increased prevalence of BCR/

TLR pathway alterations, such as mutations in MYD88, in PCNSL

(73). Notably, even PCNSL patients without significant genomic

alterations in the BCR signaling pathway respond to ibrutinib (73).

However, the co-occurrence of CD79B and MYD88 mutations,

while enhancing the sensitivity of systemic lymphomas to ibrutinib

(2), does not seem to confer the same level of responsiveness in

CNS disorders, potentially owing to a lesser reliance on the BCR

signaling pathway in these conditions (3). These mutations are

present in approximately 37% of PCNSL patients (64). Additionally,

mutations in CARD11 and TNFAIP3, which operate downstream

of BTK, have been identified as potential sources of resistance

to ibrutinib in both systemic lymphoma (74) and PCNSL treated

with ibrutinib monotherapy (3). This resistance is particularly

relevant when considering the mechanisms of resistance that may

arise when ibrutinib is used in combination with cytotoxic

chemotherapy (65).

Since the efficacy of ibrutinib alone is often transient or

incomplete, exploring its efficacy in combination with other

antineoplastic drugs is meaningful. Gromes et al. (3) conducted

three clinical trials. The first trial treated patients with PCNSL or

SCNSL with ibrutinib, HD-MTX, and rituximab and reported an

ORR of 89% (65). The second trial combined ibrutinib with

copanisib to treat patients with R/R PCNSL and reported an ORR

of 67% (75). The third trial combined 560–840 mg of ibrutinib with

rituximab and lenalidomide to treat patients with R/R PCNSL or

SCNSL and reported an mPFS of 3.03 months (76).

In 2017, Lionakis et al. (64) treated patients with R/R PCNSL via

a regimen of ibrutinib with rituximab, liposomal adriamycin,

temozolomide, etoposide, and dexamethasone (DA-TEDDi-R),

with 86% achieving a CR and an overall efficacy rate of 94% and

a PFS of 15.3 months. In 2020, Mark et al. (77) conducted a similar

trial using ibrutinib in combination with temozolomide, etoposide,

liposomal adriamycin, dexamethasone, and rituximab (TEDDi-R)

to treat patients with R/R PCNSL, with one-year PFS and OS rates

of 60.0% and 100%, respectively. In the same year, another study

retrospectively analyzed 22 patients with R/R PCNSL treated with

ibrutinib in combination with temozolomide and reported an ORR

of 55% and a PFS of 11.7 months (78).

Despite high response rates to treatment, PFS with ibrutinib

monotherapy is less than five months, suggesting the early

emergence of resistance (79–81). Ibrutinib combination therapy

extended PFS in pretreated patients to approximately nine months

(65). Currently, a number of prospective studies are being

conducted to combine ibrutinib with drugs such as lenalidomide,

copanlisib, checkpoint inhibitors, and traditional chemotherapy.

These results have not yet been published, but they provide new

ideas and expectations for the application of BTK inhibitors in

PCNSL. In conclusion, ibrutinib alone or in combination with

chemotherapy has clear efficacy for the treatment of PCNSL.

Combination chemotherapy is more efficacious than ibrutinib

alone but also increases the risk of adverse effects, and the

optimal combination approach still warrants further exploration.
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3.2 Second-generation BTK inhibitors

Acalabrutinib, zanubrutinib, tirabrutinib, and orelabrutinib are

second-generation BTK inhibitors, all of which are covalent.

Zanubrutinib has greater target selectivity and fewer off-target

effects than does ibrutinib. Zhang et al. (82) administered a

zanubrutinib-containing regimen to four patients with newly

diagnosed PCNSL and four patients with R/R PCNSL, and all

patients with primary PCNSL and 75% of patients with R/R

PCNSL achieved CR. Song et al. (83) combined rituximab,

zanubrutinib, lenalidomide, and temozolomide with or without

MTX (RLZT ± MTX) to treat PCNSL, achieving an ORR of 79.2%,

making it a promising regimen for elderly patients who are intolerant

of high-dose radiotherapy. A clinical study enrolled two groups of

patients. One group included young patients in the RLZT+MTX

group who received rituximab, lenalidomide, zanubrutinib,

temozolomide, or high-dose methotrexate. The ORR of this group

was 86.7% (CR rate 40%), and the other group of elderly patients was

the RLZT group. The ORR of the RLZT group was 76.5% (CR rate

35.3%). This suggests that RLZT (without methotrexate) may be an

option for older patients who cannot be treated with methotrexate

(84). Another prospective study combined zanubrutinib with high-

dose cytarabine to treat patients with R/R PCNSL, achieving an ORR

of 75%, a median follow-up of 12 months, a PFS of 5.6 months, and

an unmet mOS (85). All four studies used regimens combining

zanubrutinib with other agents with favorable clinical responses.

However, the results of zanubrutinib monotherapy have not been

clarified, and an ongoing trial (NCT05117814) aimed to evaluate the

efficacy and safety of zanubrutinib monotherapy in treating R/R

PCNSL and SCNSL.

Four ongoing studies are examining the efficacy of acalabrutinib

in treating PCNSL. One (NCT04688151) is a dose-escalation trial

combining acalabrutinib with durvalumab to treat R/R PCNSL or

SCNSL. The second is a trial combining acalabrutinib with

rituximab and durvalumab to treat R/R PCNSL. The remaining

two trials (NCT04906902 and NCT04548648) are designed to

evaluate the safety and efficacy of acalabrutinib monotherapy for

treating R/R PCNSL.

Tirabrutinib was the first BTK approved globally to treat R/R

PCNSL. One study reported that elderly patients with PCNSL were

switched to maintenance therapy with tirabrutinib after being

unable to continue HD-MTX treatment, with their tumors almost

disappearing and their cognitive function improving after two

months (86). A phase I/II clinical trial in which single-agent

tirabrutinib was used to treat patients with R/R PCNSL achieved

an ORR of 64% and an mPFS of 2.9 months (53). Kawasaki et al.

(87) conducted a prospective study evaluating tirabrutinib for R/R

PCNSL, achieving an ORR of 63.0%. While the above studies

suggest that tirabrutinib has a favorable clinical response in

treating R/R PCNSL alone, the efficacy of combining it with other

chemotherapeutic agents remains unknown. An ongoing trial

(NCT04947319) is combining tirabrutinib with two different HD-

MTX regimens (MTX, temozolomide, and rituximab or MTX,

rituximab, procarbazine, and vincristine) to treat PCNSL and

evaluate the safety and efficacy of tirabrutinib in combination

with other chemotherapeutic agents.
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Orelabrutinib has higher cerebrospinal fluid concentrations

than ibrutinib does. A retrospective study evaluated the efficacy of

orelabrutinib monotherapy in treating PCNSL, achieving a six-

month OS rate of 100% (88). A clinical study enrolled patients with

PCNSL who were treated with rituximab plus high-dose

methotrexate and orelabrutinib. On day 15 of orelibrutinib

treatment, the patients underwent a lumbar puncture, and the

concentration of orelabrutinib in the cerebrospinal fluid was

measured. One study confirmed that the cerebrospinal fluid

concentration of orelabrutinib was much greater than that of

drugs such as ibrutinib (89). Several recent clinical studies have

examined the combination of orelabrutinib with other

chemotherapy drugs to treat PCNSL. Yang et al. (90) treated 15

R/R PCNSL patients with orelabrutinib combined with rituximab,

HD-MTX, temozolomide, and lenalidomide, achieving an ORR of

86.7% and a CR rate of 73.3%. Another phase II clinical trial

achieved an ORR of 100% when orelabrutinib was combined with

HD-MTX and rituximab to treat patients with newly diagnosed

PCNSL (91). A retrospective study by Zeng et al. (92) evaluated the

efficacy and safety of a regimen of tiotropium, orelabrutinib, and

MTX with or without rituximab (TOM ± R) in treating patients

with PCNSL, achieving an ORR of 92.3%, a CR rate of 53.9%, and a

six-month PFS of 63.6%. Zhao et al. (93) administered

orelabrutinib, rituximab, and HD-MTX to 34 patients newly

diagnosed with PCNSL, achieving an ORR of 94.4% and a CR

rate of 88.9%. A phase I/II clinical trial by Zhang et al. (94)

evaluated the safety and efficacy of combining orelabrutinib, an

anti-programmed cell death 1 (PDCD1/PD-1) antibody, and

formostatin to treat patients with newly diagnosed PCNSL,

achieving an ORR of 88.9% in a phase I study, with a phase II

study still ongoing.

The five BTK inhibitors currently on the market are all covalent

inhibitors that are prone to drug-resistant mutations and adverse

reactions caused by off-target effects. The most commonly reported

adverse reactions to ibrutinib include diarrhea, bleeding, atrial

fibrillation, and infection, which may lead to treatment

discontinuation in severe cases (Table 2). One study reported that

56% of patients treated with the single agent ibrutinib and 52% of

patients treated with combination therapy developed infections

(46). Among more than 500 patients who received ibrutinib for

malignancy between 2009 and mid-2016, more than 75% developed

new or worsening hypertension within a median of 30 months (46).

Second-generation covalent BTK inhibitors mostly have higher

target selectivity and less off-target toxicity, but they can still

cause adverse reactions, such as headache, diarrhea, and infection.

The risk of adverse reactions increases when some chemotherapy

drugs are used together.

There are a number of other BTK inhibitors that have been

reported. TL-895 is a very potent and highly selective BTK inhibitor

(95). Another BTK inhibitor, M7583, has been shown to be effective

in treating human B-cell malignancies (96). In addition, a Phase I

clinical study demonstrated that the BTK inhibitor DTRMWXHS-

12 in combination with everolimus and pomadomide was tolerated

and clinically active (97). These drugs are expected to be further

studied in the future. The compound RSH-7 strongly inhibits BTK

and FLT3 signaling pathways by up-regulating proapoptotic protein
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TABLE 2 Summary of efficacy and common adverse reactions of 5 BTK inhibitors.

Type Treatment Patient
(n)

Efficacy Adverse reactions Reference

ORR
(%)

mPFS
(m)

mOS (m)

PCNSL

Ibrutinib 13 77.0 4.6 15.0 Lymphopenia, neutropenia,
hyperglycemia,

thrombocytopenia

(8)

Ibrutinib + HD-MTX
+ Rituximab

9 89.0 9.2 not reached Lymphopenia, lung infection,
thrombocytopenia,
hyperglycemia

(5)

RLZT±MTX 24 79.2 not
reached

not reached Thrombocytopenia, leukopenia (82)

Orelabrutinib 23 100 9.80 not reached Thrombocytopenia,
leukopenia, rash

(53)

Orelabrutinib + HD-MTX
+ Rituximab

10 100 not
reached

not reached Neutropenia, lymphopenia (88)

TOM±R 13 92.3 not
reached

not reached Leukopenia, thrombocytopenia,
fever, pneumonia

(89)

Orelabrutinib +Rituximab +
HD-MTX

34 94.4 not
reached

not reached Leukopenia (90)

Orelabrutinib + anti-PD-1
antibody + Formustine

8 88.9 not
reached

not reached interstitial pneumonia (91)

R/R PCNSL

Ibrutinib 29 81.0 4.0 19.5 Lymphopenia, neutropenia,
elevated ALT,
hyperglycemia,

thrombocytopenia

(70)

DA-TEDDi-R 18 86.0 15.3 not reached Neutropenia,
thrombocytopenia, pulmonary

infection, aspergillosis

(65)

TEDDi-R 13 75.0 not
reached

not reached Neutropenia,
thrombocytopenia

(75)

Ibrutinib + Temozolomide 22 55.0 11.7 8.9 infection (76)

Zanubrutinib + Cytarabine 12 75.0 5.6 not reached Thrombocytopenia (83)

Tirabrutinib 44 64.0 2.90 not reached Neutropenia, lymphopenia,
hyperglycemia, elevated ALT

(85)

Orelabrutinib + Rituximab +
HD-MTX + Temozolomide

+ Lenalidomide

15 86.7 not
reached

not reached Elevated transaminase,
decreased leukocytes

(87)
F
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PCNSL, primary central nervous system lymphoma; R/R, relapsed/refractory; HD-MTX, high-dose methotrexate; TOM±R, tiotropium, orelabrutinib, and MTX with or without rituximab; DA-
TEDDi-R, dose-adjusted temozolomide, etoposide, liposomal adriamycin, dexamethasone, ibrutinib and rituximab; ALT, alanine aminotransferase.
TABLE 3 Summary of ongoing clinical trials of BTK inhibitors.

Experimental drug Development stage Condition Status NCT number

Copanlisib + Ibrutinib Phase IB/II R/R PCNSL Active, not recruiting NCT03581942

Orelabrutinib + PD-1+ fotemustine Phase I/II PCNSL Unknown status NCT04831658

Ibrutinib+R-VMP Phase I/II PCNSL, SCNSL Recruiting NCT02315326

Ibrutinib + Rituximab
+ Lenalidomide

Phase I
R/R PCNSL,
R/R SCNSL

Active, not recruiting NCT03703167

Tirabrutinib Phase II PCNSL Recruiting NCT04947319

Ibrutinib+ CA-4948 Phase I/II R/R PCNSL Recruiting NCT03328078
PD-1, programmed death receptor 1; R-VMP rituximab, methotrexate, vincristine, and procarbazine; R/R, relapsed/refractory; PCNSL, primary central nervous system lymphoma; SCNSL,
secondary Central Nervous System Lymphoma.
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and down-regulating Bcl-2 levels, and effectively inhibits the

proliferation of various hematologic malignant tumor cells. RSH-

7 may be a promising compound for the treatment of hematological

malignancies (98). Preclinical studies have confirmed that BGB-

8035 is highly selective and a promising preclinical candidate

compound for the treatment of autoimmune diseases and B-cell

lymphoma (99). JNJ-64264681 is a covalent, irreversible BTK

inhibitor that has shown good oral efficacy in both cancer and

autoimmune models and has entered human clinical studies (100).

Studies have confirmed that AS-1763 has a significant effect on the

in vivo xenogenic tumor model, and has entered the phase I clinical

study (101). BTK inhibitors such as NX-2127, HPCL-760, and CG-

806 can destroy B-cell receptors and inhibit B-cell pathways, which

is expected to be further explored in the future (102, 103). Currently

ongoing clinical trails of BTK inhibitors are shown in Table 3.

Another concern is the issue of resistance. First- and second-

generation BTK inhibitors inhibit BTK kinase activity by binding to

its ATP-binding site and then covalently modifying Cys481. Most

often, mutations convert this active cysteine to serine (C481S) and,

less frequently, to phenylalanine (C481F), tyrosine (C481Y), or

arginine (C481R), and the L528W mutation inactivates BTK. The

growth and survival of DLBCL cells with kinase-naïve BTK are

dependent on Toll-like receptor 9 (TLR9), leading to resistance to

BTK inhibitors (104). While second-generation BTK inhibitors

have shown better BTK selectivity and less off-target toxicity, they

cannot reverse the resistance of tumor cells to ibrutinib. In

conclusion, the role of BTK inhibitors in PCNSL is still in the

clinical trial stage. While some clinical data are promising, they

remain limited due to small sample sizes and a lack of blinding,

randomized control, and comparison. Most phase III clinical trials

on BTK inhibitors in PCNSL are ongoing, and we expect that more

evidence will be available to confirm the efficacy, safety, and

resistance of BTK inhibitors in PCNSL, with the goal of providing

a basis for individualized treatment of patients with PCNSL in the

real world.
4 Conclusion

Since PCNSL have similar biological properties and therapeutic

responses, BTK inhibitors provide a new option for their treatment.

Compared with first-generation BTK inhibitors, second-generation

BTK inhibitors have significantly fewer off-target effects and fewer

adverse effects, further improving patient prognosis. However,

drug-resistant mutations in tumor cells remain a challenge.

Pirtobrutinib, the only approved third-generation noncovalent

BTK inhibitor, is used to treat R/R lymphomas after at least two

lines of prior systemic therapy, and the effectiveness and efficacy of

noncovalent BTK inhibitors in treating PCNSL remain unknown.

Further clinical studies examining the efficacy of BTK inhibitors in

treating PCNSL are needed. The therapeutic efficacy of BTK

inhibitors as monotherapies is usually short-lived and incomplete,

and the combination of BTK inhibitors with other treatments may
Frontiers in Oncology 09
increase their adverse effects while further improving patient

prognosis. However, combining BTK inhibitors may solve the

problem of drug resistance, and exploring the development of

BTK inhibitor-based combination therapy to further improve the

efficacy and safety of treating PCNSL is worthwhile.
5 Future directions

Novel BTK inhibitors, immunomodulators, anti-PD-1 drugs,

CAR-T cells, etc., have provided new options for the treatment of

PCNSL patients. However, more clinical studies on long-term

efficacy and survival are needed. Promising therapeutic strategies

should be actively developed, and more drug combinations should

be explored to provide further reference for clinical practice.

Increased expression or activity of BTK has been associated with

increased blood-brain barrier permeability in several studies, and

orelabrutinib has shown potential in the treatment of central system

lymphoma. In the development of a new generation of BTK

inhibitors, improving the blood-brain barrier permeability of BTK

inhibitors is an important direction.
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