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of Health Management, Henan University People’s Hospital, Henan Provincial People’s Hospital,
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Objective: The objective of this study is to build and verify the performance of

machine learning-based ultrasomics in predicting the objective response to

combination therapy involving a tyrosine kinase inhibitor (TKI) and anti-PD-1

antibody for individuals with unresectable hepatocellular carcinoma (HCC).

Radiomic features can reflect the internal heterogeneity of the tumor and

changes in its microenvironment. These features are closely related to

pathological changes observed in histology, such as cellular necrosis and

fibrosis, providing crucial non-invasive biomarkers to predict patient treatment

response and prognosis.

Methods: Clinical, pathological, and pre-treatment ultrasound image data of 134

patients with recurrent unresectable or advanced HCC who treated with a

combination of TKI and anti-PD-1 antibody therapy at Henan Provincial

People’s Hospital and the First Affiliated Hospital of Zhengzhou University

between December 2019 and November 2023 were collected and

retrospectively analyzed. Using stratified random sampling, patients from the

two hospitals were assigned to training cohort (n = 93) and validation cohort (n =

41) at a 7:3 ratio. After preprocessing the ultrasound images, regions of interest

(ROIs) were delineated. Ultrasomic features were extracted from the images for

dimensionality reduction and feature selection. By utilizing the extreme gradient

boosting (XGBoost) algorithm, threemodels were developed: a clinical model, an

ultrasomic model, and a combined model. By analyzing the area under the
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receiver operating characteristic (ROC) curve (AUC), specificity, sensitivity, and

accuracy, the predicted performance of the models was evaluated. In addition,

we identified the optimal cutoff for the radiomic score using the Youden index

and applied it to stratify patients. The Kaplan-Meier (KM) survival curves were

used to examine differences in progression-free survival (PFS) between the

two groups.

Results: Twenty ultrasomic features were selected for the construction of the

ultrasomic model. The AUC of the ultrasomic model for the training cohort and

validation cohort were 0.999 (95%CI: 0.997-1.000) and 0.828 (95%CI: 0.690-

0.966), which compared significant favorably to those of the clinical model [AUC

= 0.876 (95%CI: 0.815-0.936) for the training cohort, 0.766 (95%CI: 0.597-0.935)

for the validation cohort]. Compared to the ultrasomic model, the combined

model demonstrated comparable performance within the training cohort (AUC =

0.977, 95%CI: 0.957-0.998) but higher performance in the validation cohort

(AUC = 0.881, 95%CI: 0.758-1.000). However, there was no statistically

significant difference (p > 0.05). Furthermore, ultrasomic features were

associated with PFS, which was significantly different between patients with

radiomic scores (Rad-score) greater than 0.057 and those with Rad-score less

than 0.057 in both the training (HR = 0.488, 95% CI: 0.299-0.796, p = 0.003) and

validation cohorts (HR = 0.451, 95% CI: 0.229-0.887, p = 0.02).

Conclusion: The ultrasomic features demonstrates excellent performance in

accurately predicting the objective response to TKI in combination with anti-PD-

1 antibody immunotherapy among patients with unresectable or advanced HCC.
KEYWORDS

immunotherapy, hepatocellular carcinoma, anti-PD-1 antibody, radiomics, prediction,
machine learning, ultrasound
1 Introduction

As the sixth most frequently occurring cancer worldwide, liver

cancer is the third most leading cause of cancer-related death (1, 2).

The global healthcare burden posed by liver cancer is still on the rise

(3). By 2040, the global annual death toll from liver cancer is
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expected to exceed 1.3 million people (4). Hepatocellular carcinoma

(HCC) constitutes more than 80% of liver cancer cases, making it

the predominant type (5). Life expectancy after HCC diagnosis is

lower than that of many other cancers. Delayed diagnosis, restricted

treatment choices, and absence of predictors for response to

antineoplastic agents are the major reasons for poor HCC

outcomes (6, 7). Most patients with HCC receive their diagnosis

when their illness is either intermediate or advanced. For

individuals diagnosed with unresectable or advanced HCC,

palliative treatment is the only option available (8), such as

molecular targeted therapy, immunotherapy or chemotherapy. As

an innovative and successful therapeutic approach, tumor

immunotherapy has a promising future for the management of

advanced or unresectable HCC (9). HCC is regarded as an

immunogenic tumor. The liver expresses immunological

checkpoint molecules, including programmed cell death ligand 1

(PD-L1), programmed cell death 1 (PD-1), and cytotoxic T

lymphocyte-associated protein 4 (CTLA4). Immune checkpoint

inhibitors (ICIs) can lift immune system suppression by blocking

these immune checkpoints (10) and thereby enhance antitumor
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functions (11, 12).In terms of ICI-based immunotherapy, anti-PD-1

antibodies have markedly enhanced the prognosis for patients with

advanced HCC, the objective response rate (ORR) reached 17%-

20% with certain patients achieving complete response (13, 14).

However, studies have demonstrated that ICI monotherapy shows

limited effectiveness, benefiting just a tiny subset of patients. Recent

research has demonstrated that combination therapy with an ICI

plus a targeted agent results in a higher ORR and holds more

promising application prospects (15). In fact, the Food and Drug

Administration has approved this combination therapy for use as

the first-line therapy for metastatic or unresectable HCC, marking

the beginning of the immunotherapy era in liver cancer (16).

Tyrosine kinase inhibitor (TKI) is a class of anti-angiogenic

targeted agents that effectively block tyrosine kinase activity and

inhibit cell signal transduction, thereby inhibiting tumor cell growth

and proliferation. TKI, including sorafenib, lenvatinib, and

regorafenib, approved as first-line therapy for advanced HCC

(17). It is also one of the most successful partners in combination

with anti-PD-1 antibodies to date (18). In addition to the known

antiangiogenic effects of TKI on tumor cells, these agents also

exhibit synergistic antitumor effects through multiple

mechanisms, the theoretical foundation for their combination

with ICI is their activity in immune regulation (19), and their

high efficiency can be utilized to enhance the anticancer effect of

ICI. ICI plus TKI combination therapy has been shown to result in

higher ORR in liver cancer patients compared with TKI alone (≥

30%) (20). This combination therapy, such as lenvatinib plus anti-

PD-1 antibody, achieved an ORR of up to 46% in early-phase

clinical trials (15), which was significantly higher than that of

immunotherapy alone or targeted therapy alone. Therefore,

combination therapies with anti-PD-1 antibody and TKI are

widely favored in clinical practice (21). Despite the high ORR of

this combination therapy, due to the 50% occurrence of severe

(grade 3-4) adverse events (22), probability of adverse events is high

and severe, and it benefits only a select group of patients. It is

therefore crucial in clinical practice to identify patients who will

benefit or are more susceptible to serious adverse reactions prior to

initiation of combination therapy. Nevertheless, no reliable

biomarkers can be accurately predicted response to combined

targeted therapy and immunotherapy (23). Therefore, it is

particularly important to explore the potential of imaging as a

non-invasive monitoring tool.

The impact of immunotherapy on the tumor microenvironment

is profound. Research has shown that immunotherapy can alter the

cellular composition within tumors, including immune cell

infiltration and the activation of tumor-associated fibroblasts,

which may lead to changes in tumor vascularity and structural

remodeling (24). These changes may be reflected in radiomic

features, such as tumor texture, density, and shape, providing

crucial non-invasive biomarkers for assessing treatment response.

Radiomics is a developing technology that captures high-

throughput radiomic features from radiological images with high

sensitivity, which reflect tumor microenvironment and

heterogeneity (25–27). These radiomic features are closely

associated with tumor biological behavior and may provide

important insights for evaluating the response to immunotherapy.
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Multiple studies have shown that superior predictive ability of

radiomics for immunotherapy response in breast cancer, lung

cancer, and renal cancer. However, most of these studies utilized

computed tomography (CT) or magnetic resonance imaging (MRI)

(28–32). For example, studies based on MRI and contrast-enhanced

CT showed that radiomic models have demonstrated precise

prediction capabilities for responses to TKI, TKI plus anti-PD-1

antibody, and anti-PD-1 antibodies for advanced HCC patients

(33–35), thus preliminarily supporting its favorable predictive

performance. However, both MRI and contrast-enhanced CT

imaging are limited in application to specific populations. For

example, MRI is not suitable for patients with metal implants

(e.g., dentures or cardiac stents) or claustrophobia, while contrast-

enhanced CT is not suitable for patients with allergy to contrast

agents. Ultrasound is a conventional imaging modality widely used

in clinical diagnosis and treatment (36). Ultrasound has several

advantages over MRI and CT, including shorter examination and

wait time, no radiation, and lower costs. Ultrasomics is a branch of

radiomics that has shown favorable performance in the diagnosis

(37), pathological grading (38, 39), immunohistochemistry (40, 41)

and prognostic prediction (42, 43) of HCC. However, the predictive

performance of ultrasomics in assessing the response to TKI

combined anti-PD-1 antibody therapy for advanced HCC patients

has been rarely studied, this study intends to explore this,

developing and validating a machine learning-based ultrasomic

model to predict the objective response of patients with

unresectable HCC to TKI combined with PD-1 antibody therapy,

in order to provide novel therapeutic options for who were

intermediate- to advanced stage liver cancer patients.
2 Materials and methods

2.1 Study design and subjects

This was a retrospective, two-center study. Clinical,

pathological and ultrasound information were collected from

1,128 patients with intermediate/advanced or recurrent

unresectable HCC treated with a TKI combination with anti-PD-

1 therapy at Henan Provincial People’s Hospital (institution I) and

the First Affiliated Hospital of Zhengzhou University (institution II)

between December 2019 and November 2023. These data included:

(1) Demographic and clinical characteristics: gender, age, cirrhosis,

Child-Pugh classification, and treatment plan; (2) Laboratory

indices: Hepatitis B surface antigen (HbsAg)/hepatitis C virus

antibody (HCV-Ab), carcinoembryonic antigen (CEA), alpha-

fetoprotein (AFP), carbohydrate antigen 19-9 (CA19-9), total

bilirubin (TBIL), alanine aminotransferase (ALT), glutamyl

transpeptidase (GGT), aspartate aminotransferase (AST),

prothrombin time (PT) level, and D-dimer; (3) Histopathological

features: Barcelona Clinic Liver Cancer (BCLC) staging (44),

maximum tumor diameter, metastasis, and tumor emboli; (4)

Ultrasound image acquisition: Ultrasound images of the lesion(s)

within two weeks before the first treatment; (5) Follow-up

information: Prognostic indicators such asprogression-free

survival (PFS).
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Criteria for screening patients were as follows. Main inclusion

criteria: (1) ≥ 18 years old, diagnosed with HCC through two

imaging modalities or a biopsy; (2) Regular TKI plus anti-PD-1

treatment for at least 2 cycles; (3) Liver ultrasound examination

within 2 weeks before treatment and complete ultrasound imaging

data; (4) No prior history of cancer aside fromHCC; (5) Measurable

lesions identified in accordance with Response Evaluation Criteria

in Solid Tumors (RECIST) version 1.1; and (6) At least 2 months

between the commencement of combination therapy and any prior

treatment (e.g., TACE, radiofrequency ablation, liver resection).

Exclusion criteria: (1) Local treatment during the follow-up period;

(2) Incomplete clinical data; (3) Incomplete, unclear or obstructed

ultrasound images; (4) Loss to follow-up. A final total of 134 eligible

HCC patients were included from the two centers and randomly

allocated to the training cohort (n = 93) and validation cohort (n =

41) at a 7:3 ratio using stratified random sampling. Figure 1

illustrates the patient enrollment process.

The research was approved by both healthcare facilities’ ethical

review boards and followed the standards of the Declaration of

Helsinki. All patients signed a consent form for anti-PD-1

treatment before each treatment.
2.2 Parameter definition and
subsequent strategy

All patients received oral TKIs (including lenvatinib, apatinib,

sorafenib, and regorafenib) once daily at a dose determined based

on the patient ’s weight. Anti-PD-1 antibody was given

intravenously once every 21-day treatment cycle, starting on day

1. Toripalimab was administered intravenously at 3 mg/kg body

weight, and sintilimab, camrelizumab, and tislelizumab were all

administered intravenously at a fixed dose of 200 mg. Treatment
Frontiers in Oncology 04
response was assessed every two treatment cycles, and objective

tumor response was assessed at least once following the

commencement of combination therapy.

PFS has been defined as the time between therapy beginning

and first progression or mortality for any cause. The observation

cutoff date was February 29, 2024.

Tumor response, the outcome of the study, was assessed by a

senior oncologist and a junior radiologist according to RECIST

V.1.1 (45). The assessment period was defined as 4–12 weeks after

treatment (33). Objective response has been measured by the

changes in tumor size on imaging, along with considerations of

clinical factors such as the development of new lesions.

The major outcome of the work was the response to

combination therapy, evaluated for complete response (CR),

partial response (PR), stable disease (SD), and progressive disease

(PD) based on RECIST V1.1. In this study, patients achieving PR

and CR were categorized as ‘objective responders’, while those in SD

and PD served as ‘non-objective responders’ (28).
2.3 Image acquisition, preprocessing and
ROI segmentation

Patients underwent an abdominal ultrasound examination in

the supine position under fasting conditions within 2 weeks prior to

the first treatment. Abdominal ultrasound images were obtained

using a convex array transducer at a frequency of 2.5-7.5 MHz. The

equipment models were GE Logiq E20, Philips EPIQ 7, SIEMENS

and other types. Clear original ultrasound images of tumor lesions

were selected and exported in DICOM format. Ultrasound images

were preprocessed by experienced researchers to ensure that the

extracted features are comparable and ensure consistency across

various equipment and operators. Specifically, a B-spline curve was
FIGURE 1

Flow diagram illustrating patient inclusion and exclusion criteria.
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used to resample images of various voxel sizes to a pixel size of 1

mm x 1 mm. Additionally, gray level discretization was performed

by setting a fixed bin width of 25 in the histogram.

Images were segmented into regions of interest (ROI) by two

sonographers. First, under the guidance of a senior sonographer

(Sonographer 1), a junior sonographer (Sonographer 2) manually

outlined the regions of interest (ROI) along the edges of tumor

lesions on each ultrasound image using ITK-SNAP 3.8 (http://

www.itksnap.org). Both Sonographer 1 and Sonographer 2 received

standardized training during the ROI segmentation process to

ensure consistency and reliability in the segmentation outcomes.

To evaluate how consistently features were identified between

observers, Sonographer 1 randomly selected 50 ultrasound images

for re-segmentation. Both sonographers were kept unaware of the

clinical data and treatment outcomes for entirety patients. Lesion

segmentation and subsequent procedures are shown in Figure 2.
2.4 Extraction and screening of
ultrasomic features

Ultrasomic features were extracted using the Python package

Pyradiomics v.2.1.2. The original images were processed by 14

filters to generate the derived images. Seven categories of features

obtained from the original and derived images: first-order, shape

features, gray-level size zone matrix (GLSZM), gray-level co-

occurrence matrix (GLCM), gray-level dependency matrix

(GLDM), gray-level run length matrix (GLRLM), and

neighboring gray tone difference matrix (NGTDM). Details

regarding feature extraction and applied filters are summarized in

Supplementary Material 1.

To make the distribution of features uniform, the ultrasomic

features were standardized through Z-score for further analysis.

However, a vast array of high-dimensional features extracted could

reduce computational efficiency and elevate the risk of overfitting.

Consequently, dimensionality reduction was performed to identify

valuable features. First, the reproducibility (inter-observer

agreement) of features extracted from ROI was measured by
Frontiers in Oncology 05
calculating the intra-class correlation coefficient (ICC). ICC > 0.8

demonstrated good reliability (46), and the analysis comprised

characteristics with ICC > 0.8. Second, features with a variance of

0 were excluded using the variance filtering method. Then, any

relationship (linear or nonlinear) between each feature and the

classification label was captured by mutual information method,

and features with maximum information coefficient (MIC) of 0

were excluded. Last, further feature dimensionality reduction was

accomplished using the embedding method combined with extreme

gradient boosting (XGBoost) to select the most valuable features.
2.5 Model construction and evaluation

Three prediction models were built using the XGBoost

algorithm, namely the ultrasomic model, clinical model and

combined model. XGBoost is an efficient machine learning (ML)

algorithm that integrates optimized regularization techniques and

parallelization strategies to improve the generalizability, training

efficiency, and thus robustness of the model (47).

Initially, the ultrasomic model was developed using the

ultrasomic features identified through the above steps from the

lesion ROIs in the ultrasound images of the patients. Second, the

clinical model was developed based on clinical characteristics of all

patients, such as sex and age. Last, the above clinical and ultrasomic

features were integrated to construct a combined model.

The predictive efficacy concerning the three models was

assessed within training and validation cohorts based on metrics

such as area under the receiver operating characteristic curve

(AUC) with a 95% confidence interval, sensitivity, accuracy,

and specificity.
2.6 Statistical analysis and survival analysis

Statistical analyses were performed using R (V.4.4.0, http://

www.R-project.org) and SPSS V.25.0 (IBM SPSS V.25.0, Chicago,

USA). Continuous variables were expressed as mean ± standard
FIGURE 2

Study flow chart. The study procedures encompassed image acquisition, ROI segmentation, extraction and selection of features, and model
construction and evaluation.
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deviation or median [inter quartile range (IQR)], while the

categorical variables were expressed as counts and percentages.

Data comparisons for the training and validation cohorts were

performed using the t-test for normally distributed variables or the

Mann-Whitney test for non-normally distributed variables. The

performance of each model was assessed using the ROC curve and

AUC, and the AUCs of the models were compared using the Delong

test. A p < 0.05 was regarded as statistically significant.

We used the radiomics-based Rad-score to forecast the

prognosis of patients with HCC. The optimal cutoff was

calculated using the Youden’s index. PFS was determined by the

Kaplan-Meier (KM) survival curves, and the log-rank test was used

to get the p-value.
3 Results

3.1 Baseline clinical characteristics

In this study, we screened a total of 1,128 patients with

hepatocellular carcinoma who received treatment with a

combination of TKI and anti-PD-1 antibody. Eventually, an

overall number of 134 eligible HCC patients from two
Frontiers in Oncology 06
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into the training cohort (n = 93) and validation cohort (n = 41).

In this study, males and females accounted for 83.58% (112/134)

and 16.42% (22/134) of the total patient population, respectively.

The percentages of responders and non-responders to treatment

were 33.58% (45/134) and 66.42% (89/134), respectively. PR was

achieved in 45 patients (33.58%), SD in 62 patients (46.27%), and

PD in 27 patients (20.15%). Baseline demographic and disease

characteristics had no significant differences between training

and validation cohorts (Table 1). ORR was 33.33% (31/93) in the

training cohort and 34.15% (14/41) in the validation cohort (p

= 0.927).

Univariate logistic regression analysis of agents used by responders

and non-responders showed that different TKIs or anti-PD-1

antibodies had no significant effect on treatment response (p >

0.05) (Table 2).
3.2 Feature extraction and screening

A combined sum of 1,409 features were obtained from patients’

both original and derived ultrasound images. These features were

classified as first-order (18), shape features (14), GLSZM (16),
TABLE 1 Baseline characteristics of unresectable HCC patients receiving combined immunotherapy in the training and validation cohorts.

Variables All patients
(n =134)

Training cohort
(n =93)

Validation cohort
(n =41)

P value

Gender 0.521

Female 22 (16.42%) 14 (15.10%) 8 (19.50%)

Male 112 (83.58%) 79 (84.90%) 33 (80.50%)

Age (year), mean ± SD 59.74 ± 10.10 58.49 ± 10.25 62.56 ± 9.25 0.031

HbsAg/HCV-Ab 0.418

positive 110 (82.09%) 78 (83.90%) 32 (78.00%)

negative 24 (17.91%) 15 (16.10%) 9 (22.00%)

Child-Pugh 0.609

A 57 (42.54%) 41 (44.10%) 16 (39.00%)

B 75 (55.97%) 51 (54.80%) 24 (58.50%)

C 2 (1.49%) 1 (1.10%) 1 (2.40%)

Tumor response 0.927

Yes 45 (33.58%) 31 (33.33%) 14 (34.15%)

No 89 (66.42%) 62 (66.78%) 27 (65.85%)

AFP (ng/ml) 148.63 (19.65-1040.25) 150.65 (12.02-1118.00) 132.00 (32.70-1033.50) 0.938

CEA (ng/ml) 2.25 (1.59-3.25) 2.26 (1.59-3.21) 2.10 (1.59-4.09) 0.800

CA199 (U/ml) 22.315 (10.43-51.95) 22.33 (12.85-52.40) 17.60 (8.63-51.91) 0.343

AST, >40 (U/L) 65 (48.51%) 45 (48.40%) 20 (48.80%) 0.967

ALT, >40 (U/L) 85 (63.43%) 59 (63.40%) 26 (63.40%) 0.998

(Continued)
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GLCM (24), GLDM (14), GLRLM (16), and NGTDM (5). First,

features with an ICC < 0.8 were not considered, retaining 1054

features that were considered robust. Second, 16 features with a

variance of 0 were removed using the variance filtering method, and

530 features with a MIC of 0 were excluded by the mutual

information method. Last, the features were subjected to further

dimensionality reduction by the embedding method combined with

XGBoost. Ultimately, 20 most valuable features were obtained after

screening. The importance and heat map of features are shown in

Supplementary Figures S2, S3 and Supplementary Material S2.
3.3 Model construction and
performance comparison

Three prediction models were built using XGBoost: the

ultrasomic model, clinical model, and combined model.

Supplementary Material 3 contains additional information

regarding the construction of the models. The results show that

though all three models could predict the response to TKI

combined with anti-PD-1 treatment in HCC, the AUCs of the

ultrasomic model for the training cohort and validation cohort were

0.999 (95%CI: 0.997-1.000) and 0.828 (95%CI: 0.690-0.966), which
TABLE 1 Continued

Variables All patients
(n =134)

Training cohort
(n =93)

Validation cohort
(n =41)

P value

GGT, >58 (U/L) 106 (79.10%) 73 (78.50%) 33 (80.50%) 0.794

ALP, >130 (U/L) 74 (55.22%) 53 (57.00%) 21 (51.20%) 0.536

TBIL, >25 (mmol/L) 29 (21.64%) 23 (24.70%) 6 (14.60%) 0.191

D_dimer,>0.3 (mg/L) 105 (78.36%) 72 (77.40%) 33 (80.50%) 0.691

PT,>13.6 (s) 33 (24.63%) 22 (23.70%) 11 (26.80%) 0.694

Liver cirrhosis 106 (79.10%) 76 (81.70%) 30 (73.20%) 0.262

Long-diameter,≥50 (mm) 78 (58.21%) 54 (58.06%) 24 (58.54%) 0.889

Tumor number 0.642

Single 42 (31.34%) 28 (30.10%) 14 (34.10%)

Multiple 92 (68.66%) 65 (69.90%) 27 (65.90%)

BCLC stage 0.896

A 1 (0.75%) 1 (1.10%) –

B 58 (43.28%) 41 (44.10%) 17 (41.50%)

C 75 (55.97%) 51 (54.80%) 24 (58.50%)

cancer_embolus 64 (47.76%) 44 (47.30%) 20 (48.80%) 0.875

Tumor responses 0.661

PR 45 (33.58%) 31 (33.33%) 14 (34.15%)

SD 62 (46.27%) 45 (48.39%) 17 (41.46%)

PD 27 (20.15%) 17 (18.28%) 10 (24.39%)
Unless otherwise specified, data for n (%) or median (IQR). IQR, interquartile range; AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; ALP, alkaline
phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, glutamyl transpeptidase; HCC, hepatocellular carcinoma; PT, prothrombin time; TBIL, total bilirubin;
BCLC, Barcelona Clinic Liver Cancer; PR, partial response; SD, stable disease; PD, progressive disease.
TABLE 2 Univariate logistic regression analysis of the effect of different
TKIs and anti-PD-1 antibodies on response in unresectable HCC.

Univariate
Analysis

HR 95%CI P value

Anti-PD-1
Antibody

0.094

Sintilimab Reference

Camrelizumab 0.437 0.184-1.037 0.061

Tislelizumab 0.530 0.200-1.405 0.202

Toripalimab 4.174 0.408-42.716 0.229

TKI 0.476

lenvatinib Reference

Apatinib 0.916 0.334-2.511 0.864

Sorafenib 0.690 0.266-1.792 0.447

Regorafenib 1.636 0.592-4.521 0.343
HR, hazard ratio; CI, confidence interval: HCC, hepatocellular carcinoma; TKI, tyrosine
kinase inhibitor.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1464735
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu et al. 10.3389/fonc.2024.1464735
were similar to those of the combined model [0.977 (95%CI: 0.957-

0.998) and 0.881 (95%CI: 0.758-1.000), respectively] all higher than

those of the clinical model [0.876 (95%CI: 0.815-0.936) and 0.766

(95%CI: 0.597-0.935), respectively]. When ultrasomic features were

combined with clinical characteristics, the combined model did not

show significant improvement in predicting response to TKI in

combination with anti-PD-1 therapy compared to the ultrasomic

model. Figure 3 displays the ROC curves for all three models in both

training and validation cohorts, with detailed performance

evaluation presented in Table 3.
3.4 Prognostic performance of
ultrasomic features

Based upon an optimal Rad-score cut-off of 0.057, patients were

stratified into two risk groups (Supplementary Material 4). Survival

analysis revealed that PFS was significantly different between

patients with Rad-score greater than 0.057 and those with Rad-

score less than 0.057 in both the training and validation cohorts

(HR = 0.488, 95% CI: 0.299-0.796, p = 0.003; and HR = 0.451, 95%

CI: 0.229-0.887, p = 0.02) (Figure 4). The median PFS of patients

with Rad-score greater than 0.057 was nearly twice as long as that of

patients with score less than 0.057 (training cohort: 135 d (95%CI:

107.860-162.140) vs. 81 d (95%CI: 65.313-96.687); validation

cohort: 168 d (95%CI: 153.210-182.790) vs. 92 d (95%CI: 74.392-

109.608), respectively).
4 Discussion

Immunotherapy is a significant breakthrough in treating

advanced or unresectable HCC (48, 49), bringing a new approach

to tumor treatment and ushering in a new era of tumor

immunotherapy (50). It has also significantly improved outcomes

and provided favorable clinical benefits to HCC patients (51).

However, due to the differences in immune microenvironment

among patients and severe side effects, immunotherapy provides

benefits to a limited subset of patients. Therefore, accurate and

noninvasive identification of patients with objective responses to
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immunotherapy prior to treatment remains a key challenge in

clinical practice (9). Previous studies have shown that some

biomarkers like PD-1 and so on can predict whether a patient

will respond to immunotherapy. However, these biomarkers require

invasive biopsy, are costly, and may pose certain risks. They may

also not indicated to patients with intermediate to advanced HCC

whose tumors are unresectable or in poor physical condition. In

addition, the efficacy of biomarkers to predict immunotherapy

response is also less than ideal (52).

Radiomics is an advanced technique of analyzing images that

thoroughly mines high-throughput information within images,

uncovering radiomic features that imperceptible to unaided eye.

This approach proves particularly valuable for disease diagnosis and

prognosis prediction (53). Radiomic features can reflect the

microstructure and biological characteristics of tumors. Studies

have shown that certain features, such as GLCM and shape

characteristics, have significant correlations with tumor cell

density, necrotic areas, and the degree of fibrosis (54). These

features can provide information regarding tumor response and

pathological changes after treatment. For instance, changes in

radiomic features can indicate alterations in tumor blood supply,

thereby predicting improvements or deterioration in treatment

outcomes (55). As a branch of radiomics, ultrasomics also plays a

key role in liver cancer diagnosis and management. In our study, we

developed an ultrasomic model, a clinical model, and a combined

model derived from pre-treatment ultrasound images to

noninvasively predict the objective response to TKI combined

with anti-PD-1 therapy in unresectable HCC. Clinical factors

provide background information about the patients, while

radiomic features reflect the biological characteristics of tumors.

The combination of both can help identify individual differences in

immune therapy responses among patients. We found that the

ultrasomic model and combined model displayed good prediction

performance in the training and validation cohorts from two

centers, and the extracted ultrasomic features were closely

associated with PFS. Therefore, the ML-based ultrasomic model

serves as an accurate and noninvasive tool for predicting objective

response to TKI and anti-PD-1 combination therapy for HCC

patients, which is essential for developing management strategies

and enhancing patient outcomes. As far as we are aware, this
FIGURE 3

ROC curves depicting the performance of the three models in the training and validation cohorts. (A) Clinical model; (B) Ultrasomic model;
(C) Combined model.
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research is the first to utilize an ultrasomic model to noninvasively

predict the effectiveness of TKI plus anti-PD-1 combination therapy

for HCC.

There have been several studies on the association between the

radiomic features in HCC patients and immunotherapy responses,

mainly based on MRI and CT imaging techniques (33–35). Xu et al.

evaluated the performance of a radiomic model based on pre-

treatment MRI images in predicting objective response to lenvatinib

combined with anti-PD-1 antibody in advanced HCC (34). They

constructed a clinicopathological model and a radiomic model

based on selected clinicopathological and radiomic features,

respectively. The AUCs of the two models were 0.748 (95% CI:

0.656-0.840) and 0.702 (95% CI: 0.547-0.884) in the training cohort

(n = 124), and 0.886 (95% CI: 0.815-0.957) and 0.820 (95% CI:

0.648-0.984) in the validation cohort (n = 46), demonstrating that

the radiomic model demonstrated superior predictive capabilities.

In addition, the authors also found that the radiomic features

showed correlation with overall survival (OS) and PFS. Bo et al.

constructed 10 ML-based radiomic models using contrast-

enhanced CT features for predicting the efficacy of lenvatinib for

advanced or unresectable HCC (33). Among these 10 ML

algorithms, AutoGluon demonstrated the most accurate

predictive capacity in the training cohort (n = 74) (AUC = 0.97)
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and favorable performance in validation cohort (n = 35) (AUC =

0.93). Furthermore, using K-means clustering, two radiomic

subtypes were identified, and subtype 1 was shown to be linked to

longer PFS and OS in the Kaplan-Meier curves. Yuan et al.

developed a radiomic nomogram using pre-treatment contrast-

enhanced CT images to predict immune response to anti-PD-1

antibody in HCC patients (35). The radiomic nomogram

incorporated eight radiomic features and two clinical

characteristics and demonstrated an AUC of 0.894 (95% CI:

0.797–0.991) in the training cohort (n = 40) and 0.883 (95% CI:

0.716–0.998) in the testing cohort (n = 18). Wei et al. constructed 10

radiomic models developed from pre-treatment CT images to assess

and predict treatment effectiveness of TKI plus anti-PD-1 therapy

in HCC (n = 55) (56). The support vector machine (SVM) model

presented superior performance, reaching an AUC of 0.933 in

training set and 0.792 in testing set.

In agreement with these findings, our study demonstrated that the

clinical model had a suboptimal performance in predicting the

efficiency of TKI plus anti-PD-1 treatment in HCC patients, while

the ultrasomic model exhibited satisfactory efficacy in both the training

cohort [n = 93; AUC = 0.999 (95% CI: 0.997-1.000)] and validation

cohort [n = 41; AUC = 0.828 (95% CI: 0.690-0.966)]. The combined

model based on imaging and clinical data showed similar performance
TABLE 3 Performance of each model in the training cohort and validation cohort.

Cohort Model Accuracy (%) Sensitivity (%) Specificity (%) AUC (95%CI) P value

Training cohort Clinical 75.81 79.03 72.58 0.876 (0.815-0.936) <0.0001

Ultrasomics 98.39 98.39 98.39 0.999 (0.997-1.000) <0.0001

Combined 91.13 96.77 85.48 0.977 (0.957-0.998) <0.0001

Testing cohort Clinical 73.17 64.29 77.78 0.766 (0.597-0.935) 0.006

Ultrasomics 73.17 71.43 74.07 0.828 (0.690-0.966) 0.001

Combined 82.93 85.71 81.48 0.881 (0.758-1.000) <0.0001
AUC, area under the curve; CI, confidence interval.
FIGURE 4

Association between ultrasomic features and treatment prognosis. (A) Kaplan-Meier curve illustrating the relationship between ultrasomic features
and PFS in the training cohort; (B) Kaplan-Meier curve illustrating the relationship between ultrasomic features and PFS in the validation cohort.
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to ultrasomic model in the training cohort, with an AUC of 0.977(95%

CI: 0.957-0.998), and increased to 0.881(95%CI: 0.758-1.000) in the

validation cohort, but there was no statistically significant difference in

comparison to the ultrasomic model (p > 0.05). Additionally, the

extracted ultrasomic features correlated with PFS, demonstrating

potential value in prognosis prediction. The ultrasomic model

developed in the training and validation cohorts from two centers in

the study had similar or even better predictive performance than the

aforementioned MRI- or CT-based radiomic models. This also

indicates that grayscale ultrasound images contain a significant

amount of information, which shows strong potential for predicting

tumor heterogeneity levels. Ultrasound is a commonly used imaging

modality for liver diseases. It is more convenient, faster, and less

expensive than MRI and CT, and is therefore more extensively used in

clinical practice.

This work presents a few limitations, however. First, the sample

size of the study is limited, and only two medical centers are included,

which lacks many external validations. Insufficient sample size may

lead to model instability, affecting its generalization ability. Given the

recent emergence of immunotherapy and the stringent inclusion/

exclusion criteria in this work, many patients were excluded as a

result of concurrent use of other local treatments during the study,

resulting in relatively small study cohort. As more patients undergo

immunotherapy, further multicenter large-cohort studies are

warranted to supplement and enhance external validation to verify

and improve the generalization ability of the model. Second, this study

only analyzed two-dimensional grayscale ultrasound images, while

contrast-enhanced ultrasound can provide richer hemodynamic

information, potentially improving the identification of tumor

characteristics. We will consider incorporating radiomic features

from contrast-enhanced ultrasound in future studies to further

validate the effectiveness of our model. Last, treatment responses

may vary among patients receiving different TKIs and anti-PD-1

antibodies. Our analysis showed that different medications had no

significant effect on treatment response. Additionally, studies have

reported comparable ORR among combination therapies with TKI and

different anti-PD-1 antibodies. Future studies will need to be expanded

to predict response to each kind.

In summary, our ultrasomic model performed well in

noninvasively predicting the efficacy of TKI plus anti-PD-1

therapy in HCC, providing an important tool for non-invasively

assessing the tumor microenvironment. The findings of this study

may offer valuable insights for optimizing HCC treatment strategies

and avoid unnecessary side effects and guiding clinicians in

developing more accurate treatment plans.
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