AUTHOR=Kim Hojung , Kim Jina , Yeon Su Yeon , You Sungyong TITLE=Machine learning approaches for spatial omics data analysis in digital pathology: tools and applications in genitourinary oncology JOURNAL=Frontiers in Oncology VOLUME=Volume 14 - 2024 YEAR=2024 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1465098 DOI=10.3389/fonc.2024.1465098 ISSN=2234-943X ABSTRACT=Recent advances in spatial omics technologies have enabled new approaches for analyzing tissue morphology, cell composition, and biomolecule expression patterns in situ. These advances are promoting the development of new computational tools and quantitative techniques in the emerging field of digital pathology. In this review, we survey current trends in the development of computational methods for spatially mapped omics data analysis using digitized histopathology slides and supplementary materials, with an emphasis on tools and applications relevant to genitourinary oncological research. The review contains three sections: 1) an overview of image processing approaches for histopathology slide analysis; 2) machine learning integration with spatially resolved omics data analysis; 3) a discussion of current limitations and future directions for integration of machine learning in the clinical decision-making process.