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Purpose: This study aims to evaluate the effectiveness of CT-based radiomics

features in discriminating between nodular goiter (NG) and papillary thyroid

carcinoma (PTC).

Methods: A retrospective cohort comprising 228 patients with nodular goiter

(NG) and 227 patients with papillary thyroid carcinoma (PTC) diagnosed between

January 2018 and December 2022 was consecutively enrolled. Propensity score

matching (PSM) was applied to align patients with NG and PTC. A total of 851

radiomics features were extracted from CT images acquired during the arterial

phase for each individual. Feature selection was carried out utilizing the least

absolute shrinkage and selection operator (LASSO) logistic regression algorithm

to generate the radiomics score (Rad-score). Subsequently, the Rad-score was

incorporated into a multivariate logistic regression analysis to construct a

radiomics nomogram for visual representation.

Results: Following PSM implementation, 101 patients diagnosed with NG were

matched with an equivalent number of patients diagnosed with PTC. The

developed radiomics score exhibited excellent predictive performance in

distinguishing between NG and PTC, with high values of AUC, sensitivity, and

specificity in both the training cohort (AUC = 0.823, accuracy = 0.759, sensitivity =

0.794, specificity = 0.740) and validation cohort (AUC = 0.904, accuracy = 0.820,

sensitivity = 0.758, specificity = 0.964).

Conclusion: The utilization of CT-based radiomics analysis following PMS offers a

quantitative and data-driven approach to enhance the accuracy of distinguishing

between nodular goiter (NG) and papillary thyroid carcinoma (PTC).
KEYWORDS

nodular goiter, papillary thyroid carcinoma, computed tomography, radiomics,

propensity score matching
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Introduction

Thyroid nodules are a prevalent clinical condition, comprising

nodular goiter (NG) and papillary thyroid carcinoma (PTC) as the

predominant benign and malignant subtypes, respectively (1).

Traditional imaging modalities, including ultrasound and

computed tomography (CT), have conventionally been employed

for thyroid nodule characterization (2, 3). However, their subjective

interpretation and limited quantitative assessment may contribute

to diagnostic uncertainties and potential misclassifications. The

overlapping clinical and imaging features of these conditions pose

diagnostic challenges. Accurate differentiation between benign NG

and malignant PTC is essential for guiding optimal treatment

decisions and improving patient outcomes. While fine-needle

aspiration (FNA) serves as the gold standard for preoperative

qualitative diagnosis of thyroid nodules under ultrasound

guidance, it is associated with potential sampling bias and

challenges in interpreting non-specific results (4, 5).

In recent years, the emerging field of radiomics has recently

become increasingly recognized as a promising tool in medical

imaging analysis, offering a quantitative and data-driven approach

for extracting comprehensive information from medical images (6–8).

By capturing subtle imaging features and quantifying intricate patterns

within the tumor microenvironment, radiomics holds the potential to

provide deeper insights into the underlying tissue characteristics and

improve the diagnostic accuracy of thyroid nodules (9–11). The

utilization of radiomics in thyroid imaging represents a paradigm

shift towards precision medicine, enabling a more refined and

personalized approach to the diagnosis and management of thyroid

diseases (12, 13).

While previous studies (13, 14) have showcased the effectiveness of

radiomics in oncology for tumor characterization, prognostication, and

treatment response assessment, the application of CT-based radiomics

in distinguishing between nodular goiter (NG) and papillary thyroid

carcinoma (PTC) remains relatively limited. This study aims to bridge

this gap by investigating the role of CT-based radiomics in

distinguishing between NG and PTC through the development of a

radiomics nomogram based on advanced imaging analysis techniques.

The CT arterial phase images demonstrate the most pronounced

contrast enhancement disparities between benign and malignant

thyroid nodules, which are essential for precise radiomics analysis.

By leveraging the wealth of quantitative information extracted fromCT

images of arterial phase, we seek to enhance the accuracy, objectivity,

and predictive capability of thyroid nodule differentiation, ultimately

contributing to improved patient care and clinical decision-making in

thyroid pathology.

Propensity score matching (PSM) is a commonly used statistical

method in observational studies to eliminate confounding bias when

randomization is not feasible (15). As an alternative to multiple

regression analysis, PSM matches treated subjects with control

subjects who exhibit similar treatment propensities based on

preexisting covariates that influence treatment selection, thereby

reducing the impact of confounders. This study employed PSM to

evaluate the feasibility of CT-based radiomic features in differentiating

nodular goiter (NG) from papillary thyroid carcinoma (PTC).
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Materials and methods

Study population

The retrospective cross-sectional study received approval from

the Ethics Committee of the First Affiliated Hospital of Jinan

University, with a waiver of the requirement for informed

consent from participants. The study enrolled a cohort

comprising 228 patients diagnosed with nodular goiter and 227

patients with papillary thyroid carcinoma, as confirmed by

postoperative pathology. Inclusion criteria comprised: (i)

preoperative contrast-enhanced CT imaging of the neck; and (ii)

histological confirmation of thyroid nodules as nodular goiter or

papillary thyroid carcinoma. Exclusion criteria included: (i)

incomplete clinical laboratory data; (ii) concurrent presence of

benign and malignant thyroid nodules; (iii) history of prior

surgical interventions or medication treatments before CT scans;

and (iv) presence of CT imaging artifacts (e.g., nodules with coarse

calcifications) or thyroid nodules with a maximum diameter of less

than 3 mm, which may hinder accurate delineation of the region of

interest. Following the rigorous application of the aforementioned

inclusion and exclusion criteria, a cohort of 160 patients diagnosed

with nodular goiter and 173 patients with papillary thyroid cancer

were meticulously selected for analysis.

Subsequently, a meticulous 1:1 propensity score matching

analysis was employed to harmonize the baseline clinical data of

patients with nodular goiter and papillary thyroid carcinoma. This

meticulous process culminated in the inclusion of a carefully

matched cohort comprising 101 patients with nodular goiter

(16 males, 85 females; mean age 41.515 ± 14.775 years; age range:

14-79 years) and 101 patients with papillary thyroid carcinoma (11

males, 90 females; mean age 41.139 ± 11.843 years; age range: 17-71

years). After propensity score matching analysis (PSM), the

remaining 202 patients were randomly allocated into a training

cohort(n=141) and a validation cohort(n=61) in a ratio of 7:3. The

detailed patient selection process is visually depicted in Figure 1.
Radiomics workflow

The radiomics workflow entails the sequential stages of CT

image acquisition, segmentation, feature extraction and selection,

and the development of radiomics nomogram. The detailed

workflow of Radiomics is illustrated in Figure 2.
CT image acquisition

We performed enhanced CT imaging of the neck utilizing a

Toshiba 16-row or 320-row 640-slice spiral CT system

manufactured. Standard clinical scanning protocols were adhered

to, with parameters configured at 120 KV, 200-350 mA, a pitch of

0.8, and a slice thickness of 3mm by established clinical practice

guidelines. Patients were positioned in the supine orientation, and

the scanning coverage extended from the oropharynx to the
frontiersin.org

https://doi.org/10.3389/fonc.2024.1465941
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1465941
FIGURE 1

Flow diagram showing the selection of the study population.
FIGURE 2

The workflow of CT-based radiomics includes: Image acquisition; Segmentation; Feature extraction; Feature selection; Development of a
Radiomics Nomogram.
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superior margin of the clavicle. Iodixanol (350mg iodine/ml) is

utilized as a contrast agent, with the standard adult dosage being

50 ml and the pediatric dosage being 1 ml/kg. An automatic injector

is employed, with the injection rate set at 2-4 ml/sec. The contrast

injection is administered using an aorta tracking method, which

continuously monitors the concentration of the contrast agent

in the aorta and automatically initiates scanning once a preset

threshold is reached. This approach enhances the quality of arterial

phase images and reduces individual variations. However, the

arterial phase of CT imaging is prone to artifacts, particularly

high-density artifacts from the brachiocephalic vein. These can

be mitigated by adjusting the rate of contrast agent injection,

optimizing scan timing, or employing iterative reconstruction

techniques. Subsequently, all CT images were extracted from

the Picture Archiving and Communication System (PACS) in the

“DICOM” format for analysis and interpretation in this study.
Segmentation, feature extraction,
and selection

The initial step involves segmenting thyroid nodules. The CT

images in “DICOM” format were meticulously imported into the

3D-Slicer software (version 4.10.2, open-source; https://

www.slicer.org/) by two experienced radiologists for precise

delineation of thyroid nodules. The region of interest (ROI) was

carefully outlined layer by layer to ensure utmost precision, with

meticulous attention to tumor morphology and boundaries.

Automated generation of a three-dimensional volumetric image

was facilitated through the use of level tracing and slice

interpolation functions, resulting in the establishment of a volume

of interest (VOI).

The subsequent step entails feature extraction and selection,

leveraging Radiomics, an embedded plug-in within the 3D-Slicer

software, to extract radiomics features. These features encompass

first-order characteristics, morphological attributes, GLCM (Gray

Level Co-occurrence Matrix), GLDM (Gray Level Dependence

Matrix), GRLM (Gray Level Run Length Matrix), GLSZM (Gray

Level Size Zone Matrix), NGTDM (Neighborhood Gray Tone

Difference Matrix), and Wavelet small wave features.

To assess the inter-observer reliability among different observers

and machines, two radiologists, blinded to the pathological results,

were randomly selected to independently segment ROIs in 40 cases.

For intra-observer reliability, the first reader re-extracted features

after a one-month interval. The intraclass correlation coefficient

(ICC) was used to evaluate the consistency and reproducibility of

the extracted radiomics features. Radiomics features with an ICC

greater than 0.75 were retained for subsequent studies.

Prior to dimensionality reduction and feature selection in

radiomics analysis, data standardization was performed through

Z-score normalization. The redundant features, which had a

Spearman correlation coefficient exceeding 0.9, were excluded.

The open-source R software was used concurrently for radiomics

feature selection. Statistically significant features distinguishing

between the two groups were identified through the application of

the Mann-Whitney U test, Spearman correlation analysis, and
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Minimum Redundancy Maximum Relevance (mRMR). The

redundant features, which had a Spearman correlation coefficient

exceeding 0.9, were excluded.
Development of CT radiomics signature
and nomogram

Meanwhile, the Lasso algorithm was employed to select the most

informative features for distinguishing between NG and PTC in the

training set. To mitigate overfitting, a fivefold cross-validation was

performed iteratively 100 times. The resulting radiomics score (rad-

score) was computed by multiplying the corresponding coefficients.

Subsequently, a radiomics nomogram was constructed using

multivariate logistic regression analysis within the training cohort.
Statistical analysis

The statistical analysis was performed using SPSS version 26.0

and R version 4.3.0 for data analysis. The clinical baseline data of

patients with nodular goiter and papillary thyroid carcinoma were

matched in a 1:1 ratio through propensity score matching analysis,

with a caliper value set at 0.05. Quantitative data that followed a

normal distribution were presented as mean ± standard deviation

(SD), while non-normally distributed quantitative data were

described using the median and interquartile range (IQR). To

compare groups, we utilized the independent sample t-test for

normally distributed data and the Mann-Whitney U test for non-

normally distributed data. Categorical data were reported in terms of

frequency and percentage. In SPSS version 26.0, univariate analysis

was conducted using the chi-square test for categorical variables.

Lasso regression analysis and multivariate logistic regression analysis

were performed in R utilizing the “glmnet” and “caret” packages. The

model’s predictive performance and clinical utility were evaluated by

generating ROC curves, calibration curves, and decision curves.

Statistical significance was considered when P < 0.05.
Results

Clinical characteristics

The clinical characteristics of patients with nodular goiter (NG)

and papillary thyroid carcinoma (PTC) before and after propensity

score matching (PSM) are detailed in Table 1 and the propensity

score distributions are shown in Figure 3. A total of 160 cases of

nodular goiter and 173 cases of papillary thyroid carcinoma were

included in the study. Baseline clinical variables were harmonized

using PSM to mitigate selection bias. Subsequent to PSM, 101 NG

patients were matched with 101 PTC patients based on their clinical

profiles. Prior to matching, significant differences in gender, FT4,

TSH, ANTI-TG, and TG were observed between the NG and PTC

groups (p < 0.05). However, following matching, no statistically

significant clinical disparities were detected between the NG and

PTC cohorts (p > 0.05).
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Construction of radiomics signature

A comprehensive array of 851 radiomics features was

extracted from CT images of arterial phase-enhanced. The six

most valuable features were identified through Lasso logistic

regression (Figure 4). These selected features were then linearly
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combined with their respective coefficients to compute the

radiomics scores(rad-score).

Rad-score=−0.01243199−0.04367516*wavelet-HLL_firstorder-

Uniformity

−0.50841517*wavelet-HLL_glrlm-GrayLevelNonUniformity

Normalized
TABLE 1 Clinical characteristics of patients with NG and PTC before and after propensity score matching.

Characteristics Before match After match

NG (n=160) PTC(n=173) P-value NG (n=101) PTC(n=101) P-value

Age, years (mean ± SD) 43.2 ± 14.0 39.2 ± 11.8 0.007 41.5 ± 14.8 41.1 ± 11.8 0.842

Gender 0.039 0.409

Male 20 35 16 11

Female 140 138 85 90

FT3, pmol/L(mean ± SD) 5.19 ± 0.77 5.32 ± 0.86 0.122 5.27 ± 0.71 5.22 ± 0.76 0.637

FT4, pmol/L(mean ± SD) 13.14 ± 13.14 11.61 ± 11.61 <0.001 12.03 ± 2.32 12.03 ± 2.16 0.651

TSH, mIU/L(M(P25, P75)) 1.17(0.75, 1.76) 1.38(1.022,1.97) 0.004 1.25(0.78,1.86) 1.40(1.00,1.92) 0.181

ANTI-TG, IU/mL(M(P25, P75)) 0.60(0.09,15.00) 0.21(0.00,6.81) 0.003 0.45(0.07,3.75) 0.20(0.00,3.04) 0.061

ANTI-TPO, IU/mL(M(P25, P75)) 2.93(0.62, 28.00) 1.71(0.57,21.55) 0.384 1.69(0.45,28.00) 1.45(0.52,13.37) 0.824

TG, ng/mL(mean ± SD) 76.89 ± 105.83 41.03 ± 93.76 <0.001 49.02 ± 79.39 53.45 ± 114.73 0.750
FT3, Free Triiodothyronine; FT4, Free Thyroxine; TSH, Thyroid Stimulating Hormone; ANTI-TG, Anti-Thyroglobulin Antibody; ANTI-TPO, Anti-Thyroid Peroxidase Antibody;
TG, Thyroglobulin.
FIGURE 3

Propensity scores of the baseline characteristics before and after matching. Distribution of propensity scores before (A, B) and after matching (C, D).
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−0.05779006*wavelet-LHL_firstorder_Uniformity

−0.16264499*wavelet-LHH_glrlm_LongRunLowGrayLevel

Emphasis

−0.13338604*wavelet-LLH_glrlm_GrayLevelNonUniformity

Normalized

−0.02678135*wavelet-LLH_glszm_SizeZoneNonUniformity

The differences in the rad-score values between NG and PTC

were statistically significant in both the training and validation

cohorts (p<0.001, Table 2).
Development and performance of
radiomics nomogram

The Rad-score served as an independent predictor for

distinguishing between nodular goiter (NG) and papillary thyroid

carcinoma (PTC) through multivariate logistic regression.

Subsequently, a radiomics nomogram was developed to

personalize discrimination (Figure 5). Lower risk values on the

nomogram indicate a higher likelihood of NG, while higher risk

values suggest a greater propensity towards PTC.

Radiomics nomogram demonstrated excellent predictive

performance in both the training cohort (AUC = 0.823, accuracy =

0.759, sensitivity = 0.794, specificity = 0.740) and the validation cohort

(AUC= 0.904, accuracy = 0.820, sensitivity = 0.758, specificity = 0.964),

as depicted in (Figure 6, Table 3). Calibration curves for the training
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and validation cohorts showed close alignment between the calibrated

prediction curve and the ideal standard curve, indicating the accurate

predictive ability of the Radiomics nomogram for PTC occurrence

(Figure 7). Decision curve analysis on both the training and validation

cohorts revealed substantial net benefits for patients at probability

threshold values of 0.2-0.8 using the radiomics nomogram,

underscoring its significant clinical applicability (Figure 8).
Discussion

This research presents a significant progress in the field of thyroid

imaging by introducing a CT-based radiomics nomogram to

distinguish between nodular goiter (NG) and papillary thyroid

carcinoma (PTC). Propensity score matching (PSM) is a commonly

employed statistical technique in observational clinical research or

clinical trial data, aimed at addressing confounding biases and

achieving comparable outcomes to those of randomized controlled

trials throughout the entire study design process (16). In the

investigation by Li et al. (17), post Propensity Score Matching

(PSM), their findings suggested that radiomics analysis of CT images

demonstrates a satisfactory level of accuracy in differentiating focal

autoimmune pancreatitis (fAIP) from pancreatic ductal

adenocarcinoma (PDAC). This study is the first to apply Propensity

Score Matching (PSM) in Thyroid radiomics research to control for

clinical confounding biases. By incorporating radiomics analysis with
FIGURE 4

Radiomic feature selection was conducted using the parametric method known as the least absolute shrinkage and selection operator (LASSO).
(A) Tuning parameter (l) selection in the LASSO model was performed through 5-fold cross-validation based on minimum criteria. (B) The LASSO
coefficient profiles of the radiomics features were analyzed, highlighting six resulting features with nonzero coefficients in the plot.
TABLE 2 Rad-score of patients in the NG and PTC groups in the training and validation cohorts.

Training cohort

P-value

Validation cohort

P-valueNG (n=68) PTC(n=73) NG (n=33) PTC (n=28)

Rad-score
(mean ± SD)

0.340 ± 0.266 0.663 ± 0.239 <0.001 0.295 ± 0.203 0.707 ± 0.213 <0.001
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propensity score matching (PSM) methodology, a more precise and

reliable approach has been developed to differentiate these two

thyroid conditions.

Currently, significant advancements have been made in US-

based radiomics research for distinguishing between benign and

malignant thyroid nodules and predicting neck lymph node

metastasis of malignant thyroid cancers; however, the exploration

of CT-based radiomics technology in thyroid imaging remains

limited (18, 19). US radiomics studies typically focus on the

largest slice of a single thyroid lesion, which may result in loss of
Frontiers in Oncology 07
critical tumor information and be susceptible to operator

subjectivity. In contrast, CT-based radiomics allows for the

delineation of the tumor contour layer by layer, capturing

comprehensive tumor information and significantly minimizing

the impact of subjective factors.

Previous studies have made some progress in differentiating

nodular goiter (NG) and papillary thyroid carcinoma (PTC)

using CT texture analysis and radiomics models. Guo et al. (20)

utilized CT-based texture analysis and identified that by setting

the entropy value at 6.55 as the threshold for distinguishing
FIGURE 5

The radiomics nomogram was developed based on the radiomics score in the training cohort.
FIGURE 6

The AUC of the radiomics nomogram in the training cohort (A) and validation cohort (B).
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TABLE 3 Diagnostic performances of the radiomics nomogram in training and validation cohorts.

AUC (95%CI) Accuracy sensitivity specificity

Training cohort 0.823(0.752-0.893) 0.759 0.794 0.794

Validation cohort 0.904(0.822-0.985) 0.820 0.758 0.964
F
rontiers in Oncology
 08
FIGURE 7

Calibration curve of the radiomics nomogram. (A) Calibration curve of the nomogram in the training cohort showed a nonsignificant statistic
(p = 0.782) in the Hosmer-Lemeshow test; (B) Calibration curve of the nomogram in the validation cohort displayed a nonsignificant statistic
(p = 0.710) in the Hosmer-Lemeshow test.
FIGURE 8

Decision curve of the radiomics nomogram in the training cohort (A) and validation cohort (B). The decision curve demonstrated that if the
threshold probability is within the range of 20% to 80%, the application of radiomics nomogram to differentiate NG from PTC adds more benefit
than treating all or none of the patients.
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between benign and malignant thyroid nodules, the AUC was

calculated to be 0.716 (95% CI: 0.585-0.847, P=0.005), with

corresponding sensitivity and specificity values of 75.0% and

62.5%, respectively. Li et al. (21) demonstrated that a radiomics

model, utilizing 3D features extracted from CT images of arterial

phase, outperformed a panel of experienced radiologists in

differentiating NG and PTC achieved impressive AUCs of 0.889

and 0.887 in the training and validation sets respectively.

However, these studies are retrospective in nature, introducing

selection bias, and generally demonstrate poor performance in

distinguishing between the two groups using CT texture analysis

alone. This study utilized propensity score matching (PSM)

to mitigate the impact of clinical confounding factors, with

the aim of assessing the potential application of CT Radiomics

in distinguishing between nodular goiter and papillary

thyroid carcinoma. The radiomics nomogram’s performance

was visualized using ROC curves, and its clinical utility was

further validated through calibration curves and decision

curve analysis.

In order to achieve the visualization of the Rad-score, we

developed a radiomics nomogram to aid clinicians in

personalized differentiation between nodular goiter (NG) and

papillary thyroid carcinoma (PTC). The ability of the radiomics

nomogram to stratify patients based on their risk of either NG or

PTC highlights its potential for individualized patient care and

decision-making. The strong predictive performance demonstrated

by the radiomics score, as evidenced by the high sensitivity and

specificity values in both the training (sensitivity = 0.794, specificity

= 0.740) and validation groups (sensitivity = 0.758, specificity =

0.964), underscores its clinical utility and reliability. Moreover, the

calibration curves and decision curve analysis further validate the

robustness and clinical relevance of the radiomics score. The

radiomics nomogram’s ability to accurately discriminate between

NG and PTC contributes to improved patient outcomes and

treatment strategies.

The comprehensive evaluation of 851 radiomics features

extracted from CT images of arterial phase-enhanced in this

study underscores the depth and complexity of the information

captured through radiomics analysis. The arterial phase captures

peak contrast enhancement, facilitating the visualization of

vascular structures within the thyroid. This is crucial for

identifying vascular proliferation associated with malignancy in

papillary thyroid carcinoma (PTC) and is particularly significant

when compared to the more uniform enhancement pattern

observed in nodular goiter (NG). By identifying the six most

valuable radiomics features and incorporating them into the

radiomics scores, we have created a powerful tool for clinicians

to leverage in the diagnostic process. The radiomics scores derived

from the selected features and their corresponding coefficients

provide a quantitative measure that enhances the objectivity and

precision of the diagnostic model.

The discovery in this study that the radiomics score is primarily

composed of wavelet features signifies that image features derived from
Frontiers in Oncology 09
wavelet characteristics effectively encapsulate subtle textural intricacies

within medical images. This underscores the capacity of wavelet-based

radiomics features to accurately represent fine textural details in thyroid

imaging, thereby enriching the realm of medical imaging with

comprehensive and precise information crucial for disease diagnosis,

prognosis evaluation, and treatment monitoring (22, 23).

While this study contributes valuable insights into the

application of CT-based radiomics in the differential diagnosis of

nodular goiter (NG) and papillary thyroid carcinoma (PTC), several

limitations should be acknowledged. First, this study was conducted

with a limited sample size, which may impact the generalizability of

the findings. Future studies with larger and more diverse patient

cohorts are warranted to validate the robustness of the radiomics

nomogram. Second, this research was conducted in a single center,

which may introduce center-specific biases and limit the external

validity of the results. Multi-center studies are needed to enhance

the generalizability of the radiomics model. Third, despite the use of

propensity score matching to adjust for potential biases, the

retrospective nature of the study may still introduce selection

bias. Prospective studies with well-defined inclusion criteria can

mitigate this limitation. In addition, this study focused on CT

arterial phase-enhanced images for radiomics analysis.

Incorporating other imaging modalities, such as MRI or

ultrasound, may provide a more comprehensive evaluation of

thyroid nodules.

In conclusion, the application of PSM facilitates the

development and evaluation of a radiomics nomogram for

distinguishing between NG and PTC, thereby advancing

personalized and evidence-based healthcare in the field of thyroid

imaging. The integration of advanced imaging analysis techniques

with statistical methodologies has the potential to enhance

diagnostic practices and improve patient outcomes in thyroid

disease management. Further research and clinical validation are

warranted to fully realize the clinical impact and potential of

radiomics in thyroid pathology.
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