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Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University,
Nanning, Guangxi, China
Tumor angiogenesis is a characteristics of malignant cancer progression that

facilitates cancer cell growth, diffusion and metastasis, and has an indispensable

role in cancer development. N6-methyladenosine (m6A) is among the most

prevalent internal modifications in eukaryotic RNAs, and has considerable

influence on RNA metabolism, including its transcription, splicing, localization,

translation, recognition, and degradation. The m6A modification is generated by

m6A methyltransferases (“writers”), removed by m6A demethylases (“erasers”),

and recognized by m6A-binding proteins (“readers”). There is accumulating

evidence that abnormal m6A modification is involved in the pathogenesis of

multiple diseases, including cancers, and promotes cancer occurrence,

development, and progression through its considerable impact on oncoprotein

expression. Furthermore, increasing studies have demonstrated that m6A

modification can influence angiogenesis in cancers through multiple pathways

to regulate malignant processes. In this review, we elaborate the role of m6A

modification in tumor angiogenesis-related molecules and pathways in detail,

providing insights into the interactions between m6A and tumor angiogenesis.

Moreover, we describe how targeting m6A modification in combination with

anti-angiogenesis drugs is expected to be a promising anti-tumor treatment

strategy, with potential value for addressing the challenge of drug resistance.
KEYWORDS
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1 Introduction

Tumor cell proliferation relies on provision of sufficient oxygen and nutrients to meet

the metabolic needs of the tissue via blood vessels; however, when tumors grow beyond a

certain extent, existing blood vessels are insufficient to satisfy the demands of the tumor,

and new blood vessel formation is required (1). During tumor angiogenesis, the

“angiogenesis switch” is activated due to the imbalance of pro- and anti-angiogenic

factors in the tumor microenvironment, resulting in formation of an abnormal tumor
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vascular system (2). Cancer vascular networks are also integral to

the metastasis and spread of cancer tissue to distant organs.

In recent years, there has been considerable research interest in

N6-methyladenosine (m6A) RNA methylation, which is an internal

RNA modification occurring extensively in mammalian eukaryotic

cells as an epigenetic gene expression regulatory mechanism (3). The

m6A modification is most frequent found in highly-conserved

RRACH (R=G/A, H=A/C/U) consensus sequences, and is

predominantly enriched in 3’-untranslated terminal regions (3’-

UTRs), close to termination codons, and in internal exons (4, 5).

Further, m6A modification is a dynamic and reversible process that

methylated at the N-6 site of adenosine of RNA molecule, not only

presenting in messenger RNAs (mRNAs), but also in non-coding

RNAs (ncRNAs), such as long ncRNAs (lncRNAs), microRNAs

(miRNAs), and circular RNAs (circRNAs) (3, 6). The basic processes

involved in m6A methylation are regulated by interactions among

three factors: “writers” (m6A methyltransferases), “erasers” (m6A

demethylases), and “readers” (RNA-binding proteins) (7), where

m6A methyltransferases catalyze methylation modifications, m6A

demethylases are responsible for removal of methylation

modifications, and RNA-binding proteins are mainly responsible

for recognizing and binding to specific m6A binding sites (8).

Through its roles in processes including RNA transcription,

splicing, localization, translation, recognition, and degradation,

m6A methylation modification participates widely in the

regulation of target RNA expression, which contributes to

tumorigenesis and tumor progression (9). Research into m6A

modification in the context of tumor angiogenesis has gradually

increased and numerous molecular mechanisms related to tumor

angiogenesis regulation by m6A have been preliminarily validated.

In this review, we provide a brief introduction to the biological

processes of m6A modification and tumor angiogenesis. Then, we

summarize studies on the mechanisms by which m6A modification

impacts the development of diverse tumors through regulation of

angiogenesis. Finally, we discuss the potential clinical application

value of targeting m6A modification combined with drugs

inhibiting angiogenesis in the treatment of cancer.
2 Regulators of m6A modification

As an epigenetic posttranscriptional regulatory mechanism and

an emerging research frontier, m6A modification is the most

prevalent and abundant internal chemical modification occurring

in mammalian mRNAs and ncRNAs (10–13). m6A methylation

was first discovered in 1974, and its study has increased

considerably in recent years, owing to improvements in detection

methods (3). m6A modification is involved in the regulation of

almost all RNA metabolism processes, and influences various

biological functions (8, 9, 14), including RNA transcription (15,

16), splicing (17–19), subcellular location (20, 21), translation (22,

23), stability (24–26) and binding capacity (27), thus affecting RNA

expression and functions. In mammalian RNA, m6A accounts for

approximately 0.1%–0.4% of adenylate residues, representing an

average of 3-5 m6A-modified sites per transcript (5, 11, 28). m6A

modification is defined as methylation of the sixth N atom of RNA
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adenylate (A) (3). With the development and application of high-

throughput sequencing technologies, abundant studies have

reported that m6A sites are preferentially enriched in 3’-UTRs,

near termination codons, and in internal exons, at the highly-

conserved consensus motif, RRACH (4, 5, 26, 29). In recent years,

m6A modification sites have also been discovered 5’-UTRs, and

play critical roles in commencement of cap-independent translation

(30, 31).

Similar to DNA methylation and histone modifications, m6A

RNA modification is dynamic and reversible, and is mediated by

three categories of enzymes: methyltransferases, also referred to as

“writers”, which catalyze methylation; demethylases, or “erasers”,

which removed the modification; and RNA binding-proteins,

known as “readers”, which recognize and bind to m6A sites

(8, 32, 33). The functions of these proteins separately ensure the

expression of RNAs (Figure 1; Table 1).
2.1 m6A “writers”

The core components of the methyltransferase complex (MTC)

are methyltransferase-like 3 (METTL3), methyltransferase-like 14

(METTL14), and Wilms tumor 1 associated protein (WTAP) (34,

35). METTL3 is a highly conserved S-adenosyl methionine (SAM)-

binding protein identified by Joseph et al. in 1997 (36), and the most

significant component subunit of the MTC, able to catalyze the

transfer of methyl groups in SAM to adenine bases in RNA (37). As

a pseudo-methyltransferase, METTL14 exhibits no catalytic

activity; however, it plays an essential role in allosteric activation

of METTL3, to intensify its catalytic function and is also responsible

for combining with target RNAs by recognizing the specific

RRACH consensus sequence (38, 39). A 1:1 ratio of METTL3 and

METTL14 come together to form a stable heterodimer and

colocalize in nuclear speckles (40). A recent study found that

METTL3 is vital for promoting METTL14 stabilization by

protecting its ubiquitinated sites from STIP1 homology and U-

box-containing protein 1 (STUB1)-induced ubiquitination

degradation to maintain m6A homeostasis (41). WTAP, a partner

of the Wilms tumor 1 (WT1) protein, can promote recruitment of

the METTL3-METTL14 heterodimer and ensure colocalization of

the complex in nuclear speckles to mediate m6A modification (42).

WTAP is a bridging protein that occurs in two different complexes:

the METTL3-METTL14-WTAP complex, also referred to as the

m6A–METTL complex (MAC), which has a primarily catalytic role;

and the RBM15/ZC3H13/WTAP/VIRMA/Hakai complex, known

as the m6A-METTL-associated complex (MACOM), which mainly

exerts a regulatory function (43).

RNA-binding motif protein 15 (RBM15) does not have a

catalytic function and belongs to the split end (Spen) protein

family. RBM15 can interact with METTL3 in a WTAP-dependent

manner, and facilitates recruitment of the WTAP-METTL3

complex to specific RNA-binding sites, allowing m6A

methylation of adjacent consensus motifs, as does its paralog,

RBM15B (44, 45). Vir-like m6A methyltransferase associated

(VIRMA, originally known as KIAA1429), localizes to nuclear

speckles in humans, and modulates region-selective methylation
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modification by recruiting the catalytic core complex, METTL3-

METTL14-WTAP, to specific RNA sites (46, 47). Alternatively,

VIRMA associates with cleavage polyadenylation specificity factor

subunit 5 (CPSF5) as well as cleavage polyadenylation specificity

factor subunit 6 (CPSF6), in an m6A-dependent manner (47). In

concert with WTAP, zinc finger Cys-Cys-Cys-His (CCCH)-type

containing 13 (ZC3H13) retains the MTC in nuclear speckles,

possibly due to its low-complexity domains, which target proteins

to sub-cellular organelles enriched for RNA processing enzymes

and pre-mRNA splicing factors, leading to enhanced m6A

modification (48). Cbl protooncogene-like 1 (CBLL1, also called

Hakai), a ring-finger type E3 ubiquitin ligase, has an essential role in

maintaining the stability of MACOM (49).
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In addition, there are a number of newly-discovered

methyltransferases that warrant research attention. For example,

CCHC-type containing 4 (ZCCHC4), which has a conserved

“DPPF” catalytic motif, was identified as a novel ribosomal RNA

(rRNA)-adenosine-methyltransferase, with a critical role in

catalyzing m6A modification of 28S rRNA and that mediates

ribosome subunit distribution and global translation (50, 51).

Methyltransferase-like 5 (METTL5) participates in 18S rRNA

methylation and can form a heterodimeric complex together with

TRMT112, which functions as an allosteric adaptor to enhance

METTL5 stabilization (52, 53). Furthermore, methyltransferase-like

16 (METTL16) is a class-I methyltransferase considered to be a

unique m6A regulatory factor, distinct from the METTL3/
FIGURE 1

The molecular mechanisms involved in m6A methylation. m6A modification is a dynamic and reversible process conducted by m6A “writers”,
“erasers”, and “readers”. m6A “writers” (METTL3, METTL14, WTAP, RBM15/15B, VIRMA, ZC3H13, CBLL1, ZCCHC4, METTL5, and METTL16) catalyze
RNA methylation. m6A modification can be removed by m6A “erasers”, including FTO, ALKBH5, and ALKBH3. m6A “readers” recognize and combine
with m6A sites on targeted RNA to affect its fate, and primarily include YTHDC1/2, YTHDF1/2/3, IGF2BP1/2/3, HNRNPA2B1, HNRNPC/G, eIF3, FMRP,
PRRC2A, LRPPRC, and NKPA. m6A modifications are involved in almost all RNA metabolic processes, including transcription, splicing, translation,
degradation, and nuclear export, among others.
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TABLE 1 The function of m6A methylation enzymes/regulators in RNA metabolism.

Type Regulators Full name Function Refs

Writers

METTL3 Methyltransferase-like 3 catalyzes m6A modification (38)

METTL14 Methyltransferase-like 14 intensifies METTL3 catalytic activity and combines with target RNAs (39)

WTAP Wilms Tumor 1 associated protein promotes METTL3-METTL14 heterodimer co-locates in nuclear speckles (43)

RBM15 RNA-binding motif protein 15 recruits of m6A complex to specific RNA-binding sites (45)

RBM15B RNA-binding motif protein 15B recruits of m6A complex to specific RNA-binding sites (46)

VIRMA
(KIAA1429)

Vir-like m6A
methyltransferase-associated

recruits the methyltransferase core complex to specific RNA sites and
associates with cleavage polyadenylation specificity factors CPSF5
and CPSF6.

(48)

ZC3H13
Zinc finger Cys-Cys-Cys-His (CCCH)-
type containing 13

retains the MTC in nuclear speckles to enhance m6A modification (49)

CBLL1(Hakai) Cbl Protooncogene-like 1 maintains the stability of m6A-METTL Associated Complex (MACOM) (50)

ZCCHC4
Zinc finger Cys-Cys-Cys-His (CCHC)-
type containing 4

catalyzes 28S rRNA m6A modification (51)

METTL5 Methyltransferase-like 5 catalyzes 18S rRNA m6A modification (53)

METTL16 Methyltransferase-like 16
promote RNA translation in the cytoplasm and m6A deposition in
the nucleus

(56)

Erasers

FTO
Fat mass and obesity-
associated protein

removes m6A modification (60)

ALKBH5 AlkB homologue 5 removes m6A modification (61)

ALKBH3 AlkB homologue 3 removes m6A modification (63)

Readers

YTHDC1
YT521-B homology (YTH) domain-
containing 1

promotes pre-RNA splicing and RNA nuclear export (71)

YTHDC2
YT521-B homology (YTH) domain-
containing 2

improves the translation efficiency and decreases the stability and
abundance of target RNAs

(75)

YTHDF1 YTH domain family protein 1 promotes mRNA translation initiation (23)

YTHDF2 YTH domain family protein 2 promotes mRNA degradation (67)

YTHDF3 YTH domain family protein 3
cooperates with YTHDF1 to promote mRNA translation or cooperates
with YTHDF2 to promote mRNA degradation

(70)

IGF2BP1
Insulin-like factor-2 mRNA-binding
protein 1

promotes the stability and translation efficiency of target mRNA (27)

IGF2BP2
Insulin-like factor-2 mRNA-binding
protein 2

promotes the stability and translation efficiency of target mRNA (27)

IGF2BP3
Insulin-like factor-2 mRNA-binding
protein 3

promotes the stability and translation efficiency of target mRNA (27)

HNRNPA2B1
Heterogeneous nuclear
ribonucleoprotein A2/B1

promotes mRNA splicing and miRNA maturation (20)

HNRNPC
Heterogeneous nuclear
ribonucleoprotein C

mediates mRNA abundance and splicing (18)

HNRNPG
Heterogeneous nuclear
ribonucleoprotein G

mediates mRNA abundance and splicing (78)

eIF3
Eukaryotic translation initiation
factor 3

enhances mRNA translation (31)

FMRP Fragile X mental retardation protein modulates m6A-dependent mRNAs nuclear export and stability (80)

PRRC2A Proline rich coiled-coil 2A modulates target mRNA stability (82)

LRPPRC
Leucine-rich pentatricopeptide
repeat-containing

heightens target PD-L1 mRNA stability (85)

NKAP NF-kB-associated protein facilitates target mRNA splicing and maturation (84)

(Continued)
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METTL14 complex (54). METTL16 interacts directly with eIF3a,

eIF3b, and rRNAs in the cytosol, to promote translation of mRNAs

and deposits m6A into mRNA targets in the nucleus (55, 56). The

N-terminal methyltransferase domain and two C-terminus

vertebrate-conserved regions of METTL16 are RNA-binding

domains used to combine with its targets (57). It binds multiple

RNAs, such as pre-mRNAs, ncRNAs and lncRNAs. METTL16

serves as a m6A methyltransferase that recognizes the conserved

sequence UACAGAGAA, in MAT2A mRNA and U6 snRNA

substrates (58); however, the interaction between METTL16 and

its substrate lncRNA MALAT1, occurs through specific recognition

and binding of triple helix RNA, and whether MALAT1 is

methylated by METTL16 remains to be determined (59).

The above-mentioned “writers”, particularly those investigated

in only a small number of studies, require further investigation.
2.2 m6A “erasers”

m6A demethylases, also referred to as m6A “erasers”, can

reverse m6A methylation and include: fat mass and obesity-

associated protein (FTO), alkB homologue 5 (ALKBH5) and alkB

homologue 3 (ALKBH3); these three proteins belong to the

dioxygenase ALKB family, which have reserved a-ketoglutarate
and iron(II)-dependent oxygenase domains, and can reduce m6A

modification levels in RNA (60).

The first protein to be shown to harbor m6A demethylation

capacity was FTO, which is located in the cytoplasm and has an

important role in the regulation of adipogenesis (61). Under

demethylase FTO catalysis, m6A can be sequentially oxidized to

N6-hydroxymethyladenosine (hm6A) and then N6-formyladenosine

(f6A), with subsequently conversion of f6A to adenosine (A), thereby

regulating levels of m6A (62).

ALKBH5 was the second m6A demethylase to be discovered

and is distributed in the nucleoplasm, where it is responsible for

regulating mRNA export from the nucleus to the cytoplasm, as well

as affecting mRNA metabolic processes, including splicing and

stability (63, 64). ALKBH3, is located in both the cytoplasm and

nucleus, and was recently identified as a novel m6A demethylase

with a preference for demethylation of transfer RNA (tRNA), rather

than mRNA or rRNA (65). Importantly, ALKBH3-demethylated

tRNA prominently facilitated translation efficiency of protein (66).
Frontiers in Oncology 05
2.3 m6A “readers”

In addition to “writers” and “erasers”, m6A modification

requires another essential group of molecules, RNA binding

proteins (RBPs), also termed “readers” (7). Although these

proteins do not directly change the level of methylation like

methyltransferases and demethylases, they can confer the

destinies of RNAs by recognizing and preferentially combining

the methylation sites of RNA (34).

The YT521-B homology (YTH) domain family members,

YTHDF1/2/3 and YTHDC1/2, have conserved m6A-binding

domains and selectively bind to RNA with m6A modification at

RRACH consensus sequences, with numerous downstream effects

(67, 68). YTHDF1, a translation promoter, can evoke m6A-

modified mRNA translation through interaction with the

translation complex, which comprises eukaryotic translation

initiation factor 3 (eIF3), eIF4G, and poly (A) binding protein

(PABP), among other molecules (22, 37). YTHDF2, as the first

discovered and the most widely studied m6A “reader”, can recruit

the deadenylase complex CCR4-NOT by direct interaction with the

superfamily homology (SH) domain of CNOT1, thereby resulting

in degradation of the transcripts (69, 70). with a synergistic role to

those of YTHDF1 and YTHDF2, coordinating with YTHDF1 to

trigger m6A-labelled mRNA translation, or cooperating with

YTHDF2 to accelerate m6A-containing mRNA degradation (23,

71). Distinct from the dominant cytosol localization of other YTH

domain family members, YTHDC1 is preferentially distributed in

the nucleus, and contributes to pre-RNA splicing by recruiting

serine- and arginine-rich splicing factor 3 (SRSF3) and

antagonizing SRSF10 to promote exon inclusion (72). In addition,

YTHDC1 facilitates RNA nuclear export via interacting with

nuclear RNA export factor 1 (NXF1) and three prime repair

exonuclease (TREX) (73, 74). YTHDC2 improves target RNA

translation efficiency and elongation, as well as reducing their

stability and abundance, by interacting with 5′-3′ exoribonuclease
1 (XRN1) (75, 76). The m6A “reader”, heterogeneous nuclear

ribonucleoprotein (HNRNP) A2/B1 (HNRNPA2B1), localizes to

the nucleus, and can not only recognize and combine with m6A-

marked mRNA to regulate alternative splicing events, but also

participates in facilitating miRNA maturation through binding to

m6A-labelled primary miRNA transcripts and recruiting the

microprocessor complex protein, DiGeorge syndrome critical
TABLE 1 Continued

Type Regulators Full name Function Refs

Others

H3K36me3 Histone H3 trimethylation at Lys36 promote m6A deposition in mammals (87)

H3K36me2 Histone H3 dimethylation at lysine 36 promote m6A deposition in the Arabidopsis genome (88)

H1 Histone H1 facilitate m6A deposition (89)

RNAPII RNA polymerase II suppress m6A deposition (90)

TARBP2
Trans-activation response (TAR)
RNA-binding protein 2

promote m6A deposition (91)

EJCs Exon junction complexes suppress m6A deposition (92)
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region 8 (DGCR8) (19, 77, 78). Additionally, “m6A switch”, a

special mechanism, has been proven to be related to both HNRNPC

and HNRNPG, which can optionally bind to this structure switch,

instead of directly binding to m6A sites, thereby influencing m6A-

labelled transcript abundance and alternative splicing (17, 79). The

three insulin-like factor-2 mRNA-binding protein (IGF2BP)

paralogs, IGF2BP1/2/3, are a class of m6A “readers” located in

the cytosol, and can stabilize m6A-modified target transcripts and

enhance target mRNA translation efficiency by recognizing the

consensus GG(m6A)C motif (26). A recent study showed that

IGF2BP proteins may also be able to read the structural changes

mediated by the “m6A-switch” (80).

In addition, eIF3 also serves as an m6A “reader”, located in both

the nucleus and cytosol, that binds m6A sites in the 5′-UTR region

of mRNAs and stimulates transcripts translation in a cap-

independent manner (30). The cytosolic protein fragile X mental

retardation protein (FMRP), can modulate m6A-dependent mRNA

nuclear export and stability (81, 82). Further, proline rich coiled-

coil 2A (PRRC2A) is a newly-discovered m6A modification

“reader”, that localizes in both the nucleus and cytosol, whose

GRE domain combines with a consensus GGACU motif in the

Olig2 mRNA coding sequence, thereby post-transcriptionally

modulating target mRNA stability in an m6A-dependent manner

(83, 84). Most recently, the RBP NF-kB activating protein

(NKAP) was shown to facilitate target mRNA splicing and

maturation in an m6A-dependent manner (85). Further, leucine-

rich pentatricopeptide repeat-containing (LRPPRC) was identified

as a novel “reader” that can enhance target PD-L1 mRNA

stabilization in an m6A-dependent manner (86). The specific

mechanisms involved in m6A reader functions warrant further

study and there remain many undiscovered “readers” to be explored.
2.4 Others

In addition to the deposition of m6A methylation on RNA

transcripts by m6A MTCs, recent studies have found that external

factors, such as histone modifications, RBPs, transcription factors,

and RNA polymerase II (RNAPII), are also involved in regulating

m6A deposition. It was demonstrated that m6A deposition on

RNAs in mammals was linked to the histone mark, H3K36me3,

which interacts directly with METTL14 to recruit the m6A MTC to

bind adjacent to RNAPII, thereby promoting m6A deposition on

newly formed RNA (87). Another report has found that histone

H3K36me2 distributed at the 3’-end of the genes is significantly

correlated with m6A deposition in the Arabidopsis genome (88).

Histone H1 modification is also proposed to mediate m6A

modification of nascent RNAs. Genes transcribed slowly contain

high levels of histone H1, which leads to reduced RNAPII

recruitment at transcription start site-proximal regions, thus

facilitating co-transcriptional m6A deposition (89). Further,

RNAPII transcriptional dynamics are associated with m6A

deposition; slow RNAPII transcription elongation and low rates

of RNAPII pausing result in elevated m6A deposition on mRNAs

and decreased translation efficiency (90). In addition, the RBP,

TARBP2, promotes m6A deposition on transcripts by recruiting the
Frontiers in Oncology 06
MTC, leading to intron retention and nuclear decay (91). In

addition to mechanisms involved in activation of m6A

deposition, a recent study has found that exon junction

complexes (EJCs) act as m6A “suppressors”, to prevent m6A

deposition in average-length internal exons by packaging

proximal RNA, thereby regulating global m6A specificity (92).

Although we have gained new insights into the processes that

guide and suppress m6A deposition, so far, the mechanisms

underlying m6A specific enrichment in certain transcriptome

regions remain unclear.
3 Angiogenesis

3.1 Sprouting angiogenesis

The critically traditional tumor angiogenesis, also termed as

sprouting angiogenesis, was first proposed by Professor Judah

Folkman in 1971 suggesting that tumor growth was closely

associated with angiogenesis (93). Since then, there have been

numerous studies worldwide focused on confirming the theory of

Folkman, which have led to considerable achievements based on

targeting tumor angiogenesis (94, 95). Sprouting angiogenesis,

existing in physiological and pathological processes, is the

development of new blood vessels from pre-existing vascular

networks involved in the survival and development of tumor

through the supply of oxygen, nutrients as well as removal of

metabolic waste, and plays a pivotal role in tumor invasion and

metastasis (1, 96). Solid tumor survival and growth rely on sufficient

blood supply, and when tumors reach > 2 mm in diameter, diffusion

alone cannot meet their need to obtain oxygen and nutrients, so that

neovascularization becomes necessary to meet the requirements of

tumor tissues, which will otherwise undergo necrosis as a result of

ischemia and hypoxia (1, 97). Hypoxia in cells leads to increased

expression of hypoxia-inducible factor (HIF) (98), which induces

upregulation of vascular endothelial (VE) growth factor (VEGF),

angiopoietin (Ang), and other angiogenic molecules (99, 100).

Other drivers of tumor angiogenesis include genetic mutations,

inflammatory responses, and mechanical stress (101). The normal

process of angiogenesis is strictly controlled by pro- and anti-

angiogenic regulatory factors, to maintain a relatively dynamic

homeostasis (102), disruption of which within the tumor

microenvironment activates the so-called “angiogenic switch”,

thus promoting tumor angiogenesis (103). Among them, pro-

angiogenic factors include VEGF, platelet-derived growth factor

(PDGF), epidermal growth factor (EGF), tumor necrosis factor-a
(TNF-a), interleukin-8 (IL-8) etc., while anti-angiogenic factors

comprise angiostatin, endostatin, thrombospondin-1 (TSP-1),

tissue inhibitors of metalloproteinases (TIMPs) and so on (101,

104). Unlike normal blood vessels, tumor vasculature is abnormally

variable in shape and structure, resulting in dense and disordered

vascular networks (105). This is because tumor endothelial cells are

not organized according to traditional grading arrangements. The

characteristics of tumor blood vessels are also reflected in the

permeability of curled and dilated abnormal blood vessels and the

efficiency of tissue perfusion, resulting in irregular blood flow (106).
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Therefore, abnormalities in tumor blood vessels affect both the

delivery of oxygen and nutrients to the tumor, and create a hypoxic,

acidic, and inflammatory tumor microenvironment, which activates

tumor angiogenesis by promoting secretion of proangiogenic

factors and further inducing malignant tumor development

(107, 108).
3.2 Vasculogenic mimicry

More than 20 years after the concept of classical tumor

angiogenesis was proposed, the distinct process of vasculogenic

mimicry (VM) was first defined by Maniotis et al. in human

melanoma (109). VM relies on pluripotent embryonic stem cells,

highly invasive tumor cells and the extra-cellular matrix in

aggressive primary and metastatic tumors rather than depending

on vascular ECs; however, it can also play an important role in

supplying malignant tumors with sufficient blood, thus promoting

tumor survival, invasion and metastasis (110). Furthermore, VM is

significantly linked with tumor grade and poor prognosis in patients

with aggressively malignant cancers (111, 112), consisting of gastric

cancer (113), colorectal cancer (114), hepatocellular carcinoma

(115), glioblastoma (116), lung cancer (117), breast cancer (118),

ovarian cancer (119), among others. This explains one of the

reasons why some current clinical treatments against tumor

angiogenesis have not achieved satisfactory efficacy (120, 121).

Epithelial-mesenchymal transition (EMT) and cancer stem cells

(CSCs) are consider significant factors contributing to the relatively

complex process of VM in tumors (122). Molecules essential for

development of VM include: VE-cadherin, phosphatidyl inositol 3-

kinase (PI3K), erythropoietin-producing hepatocellular receptor A2

(EphA2), matrix metalloproteinases (MMPs), and VE growth factor

receptor (VEGFR1) (122–124). Mounting evidence has pointed out

that hypoxia is also inseparable from VM formation in multiple

types of solid tumors (125, 126). In addition, vascular co-option and

glomeruloid angiogenesis function in tumor angiogenesis initiation.

Vascular co-option refers to the process in which tumor cells attach

themselves to host capillaries to obtain a blood supply providing

oxygen and nutrients for tumor growth and development, without

the formation of new blood vessels, and mainly occurs in organs

with an extremely high degree of vascularization, such as the brain,

liver, and lungs (127). Glomeruloid angiogenesis has also been

reported in melanoma, breast cancer, meningioma, and GBM (128–

131). However, there is relatively little research into tumor

angiogenesis and malignant processes in this context, and further

in-depth analysis of the mechanisms involved is needed.
4 Regulation of tumor angiogenesis
by m6A

There is accumulating evidence that m6A modification

regulates tumor angiogenesis in various ways, and the

relationship between them is of great significance for tumor

proliferation, invasion and metastasis (Figure 2; Table 2)
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4.1 Regulation of tumor angiogenesis by
m6A writers

4.1.1 METTL3
Previous publications have well documented that vascular

endothelial growth factor A (VEGFA) plays a pivotal role in the

formation of new blood vessels (132). Colorectal cancer (CRC) is

among the most common types of cancer and presents significant

challenges in terms of morbidity and mortality (133). In CRC,

EphA2 and VEGFA mRNA are transcripts downstream of the

“writer”, METTL3, and undergo METTL3-mediated m6A

modification via different IGF2BP-dependent mechanisms,

resulting in VM formation (134). Urokinase plasminogen

activator (uPA, PLAU) mRNA, a classical molecule of the

plasminogen activation system, contributes to various cancer

processes, including tumor proliferation, invasion, metastasis, and

angiogenesis (135, 136). Yu et al. demonstrated that METTL3 could

facilitate angiogenesis through directly targeting and specifically

catalyzing the m6A binding sites in the 3′-UTR coding region of

PLAU mRNA and modulating its expression (137). m6A

modification not only also functions on mRNAs, but also acts on

some lncRNAs to regulate tumor angiogenesis. For example, m6A

enzyme METTL3 was confirmed to modify targets―LINC00662

and VEGFA to stabilize them and positively regulate their

expression levels, thus promoting angiogenesis in CRC, which

was demonstrated by the levels of CD31, CD34 and VEGF (138).

In addition, METTL3 mediated upregulation of lncRNA HNF1A-

AS1 through influencing its stability in CRC cells, and HNF1A-AS1

overexpression can clearly promoted angiogenesis, while its

deficiency has the opposite effect (139). however, the cited

research was focused on exploring the mechanism underlying

HNF1A-AS1 involvement in CRC cell cycle progression, while

the role of HNF1A-AS1 in angiogenesis in the context of CRC

has not been thoroughly elucidated.

Gastric cancer (GC) is one of the most prevalent malignant

cancers worldwide associated with high morbidity and mortality

(140). Hepatoma-derived growth factor (HDGF) expression is

associated with aggressive biological characteristics, including

cancer cell proliferation, apoptosis, angiogenesis, and metastasis

(141). In GC, METTL3 stimulates m6A modification of HDGF

mRNA, while the m6A “reader”, IGF2BP3 (also known as IMP3 or

KOC), can stabilize HDGF mRNA through direct recognition and

binding with its m6A sites. HDGF can be translocated from the

nucleus to the cytoplasm and contributes to facilitating

angiogenesis, ultimately promoting tumor cell growth and liver

metastasis (142). ADAMTS9 mRNA, which is an independent

prognostic factor in patients with GC (143), is downstream of

METTL3, and ADAMTS9 mRNA m6A levels were clearly

decreased after METTL3 knockdown, while the opposite effect

occurred on METTL3 overexpression. Further, ADAMTS9

mRNA is inhibited by METTL3 via a YTHDF2-dependent

pathway, thus accelerating GC angiogenesis (144). In addition, Xu

et al. revealed that METTL3-mediated m6A modification of

centromere protein F (CENPF) mRNA can enhance GC

angiogenesis both in vitro and in vivo; METTL3-methylated
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TABLE 2 m6A methylation in tumor angiogenesis.

m6A
enzyme

Cancer type
Target
gene

Mechanism Result Refs

METTL3

Colorectal cancer
VEGFA、
EphA2

METTL3 mediates m6A modification of EphA2 and VEGFA to
regulate the PI3K/AKT/mTOR and MEK/ERK1/2 signaling
pathways, respectively.

promotes the VM formation
of CRC

(128)

Colorectal cancer PLAU mRNA
METTL3 catalyzes m6A modification of PLAU mRNA and
modulates its expression

promotes the angiogenesis
of CRC

(131)

Colorectal cancer
LINC00662、
VEGFA
mRNA

METTL3 regulates the stability and expression of LINC00662
and VEGFA.

promotes the angiogenesis
of CRC

(132)

Colorectal cancer
LncRNA
HNF1A-AS1

METTL3 mediates HNF1A-AS1 m6A modification and affects its
RNA stability.

promotes the angiogenesis
of CRC

(133)

Lung cancer
TRPM7
mRNA

METTL3 enhances m6A levels and expression of TRPM7 mRNA,
and enhances the binding of IGF2BP2 and TRPM7.

promotes the angiogenesis
and malignant progression
of NSCLC

(151)

(Continued)
F
rontiers in Onc
ology
 08
 frontie
FIGURE 2

m6A regulate tumor angiogenesis. m6A writers, erasers and readers participate in tumor angiogenesis through regulating angiogenesis-related
targeted proteins or pathways in an array of direct or indirect ways, ultimately influencing the tumorigenesis and development of various human
tumors. ↑ and ↓ indicate upregulation and downregulation of m6A regulators, respectively. Abbreviations: BC, breast cancer; OC, ovarian cancer;
HNSCC, head and neck squamous cell carcinoma; TSCC, tongue squamous cell carcinoma; BCa, bladder cancer; MM, multiple myeloma; RCC, renal
cell carcinoma.
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TABLE 2 Continued

m6A
enzyme

Cancer type
Target
gene

Mechanism Result Refs

Gastric cancer
HDGF
mRNA

METTL3 stimulates m6A modification of HDGF mRNA and
promotes HDGF nuclear export.

promotes the angiogenesis
and liver metastasis of GC

(136)

Gastric cancer
ADAMTS9
mRNA

METTL3 inhibits ADAMTS9 mRNA expression in a YTHDF2-
dependent manner.

accelerates the angiogenesis
and carcinogenesis of GC

(138)

Gastric cancer
CENPF
mRNA

METTL3 mediates high m6A levels in CENPF mRNA and METTL3-
methylated CENPF activates the MAPK signaling pathway by
facilitating FAK nuclear export.

promotes the angiogenesis
of GC

(139)

Liver cancer YAP1 mRNA
METTL3 affects YAP1 mRNA translation efficiency in an m6A-
dependent manner.

stimulates vasculogenic
mimicry (VM) formation of
Hepatocellular carcinoma

(141)

Liver cancer
FOXO3
mRNA

METTL3 mediates the m6A modification of FOXO3 mRNA and
improves its stability.

promotes the angiogenesis
of HCC

(142)

Liver cancer circ-CCT3
Knockdown of METTL3 decreases m6A levels in circ-CCT3 and
upregulates circ-CCT3 expression, activating the circ-CCT3/miR-
378a-3p/FLT1 axis.

suppresses the angiogenesis
and malignant progression
of HCC

(144)

Glioma HOTAIRM1
METTL3-dependent m6A modification stabilizes HOTAIRM1 in
glioma cells.

promotes VM formation
of glioma

(147)

Glioma – –
attenuates of VM formation
of glioblastoma

(148)

Glioma BUD13
METTL3 mediates BUD13 modification and enhances its stability
and expression. The BUD13/CDK12/MBNL1 axis ultimately
stimulates VM in GBM.

promotes of VM formation
of glioma

(149)

Head and neck
squamous
cell carcinoma

CDC25B
mRNA

METTL3 promotes CDC25B expression in an m6A-
dependent manner.

promotes the angiogenesis
and malignant progression
of HNSCC

(153)

Bladder cancer
TEK、
VEGFA

Ablation of METTL3 in bladder cancer stem cells suppresses TEK
and VEGFA expression.

promotes angiogenesis of
bladder carcinoma

(154)

Bladder cancer
BIRC5
mRNA

BIRC5 mRNA undergoes m6A modification by METTL3, and BIRC5
upregulates VEGF expression in bladder cells when exposed
to PM2.5.

facilitates angiogenesis of
bladder carcinoma

(155)

METTL14

Renal
cell carcinoma

LncRNA
IGFL2-AS1

Inhibition of METTL14 expression in the METTL3/METTL14
complex reduces m6A levels in IGFL2-AS1 and upregulates of AR
expression in response to chronic pazopanib treatment.

inhibits VM formation in
pazopanib resistance of
metastatic clear cell renal
cell carcinoma

(152)

Renal
cell carcinoma

TRAF1
mRNA

TRAF1 mRNA is modified with m6A by METTL14 and
overexpression of m6A-modified TRAF1 mRNA activates AKT/
mTOR/HIF1a/VEGFA signaling in sunitinib-resistant cell lines.

facilitates angiogenesis and
promotes sunitinib resistance
of renal cell carcinoma

(156)

Tongue squamous
cell carcinoma

BATF2
mRNA

METTL14 suppresses BATF2 mRNA expression through m6A
modification. Moreover, upregulated BATF2 reduces
VEGFA expression.

promotes the angiogenesis
of TSCC

(158)

WTAP Colorectal cancer
VEGFA
mRNA

WTAP regulates VEGFA mRNA expression in an m6A/YTHDC1-
dependent manner, thereby activating the MAPK signaling pathway.

promotes the angiogenesis
of CRC

(154)

FTO
Intrahepatic
cholangiocarcinoma

– –
inhibits the angiogenesis
of ICC

(160)

ALKBH5

Liver cancer circ-CCT3
ALKBH5 cooperates with the methyltransferase, METTL3, to mediate
m6A modification of circ-CCT3, thereby promoting FLT1 expression
through the circ-CCT3/miR-378a-3p axis.

promotes the angiogenesis
and malignant progression
of HCC

(145)

Glioma – –
promotes of VM formation
of glioblastoma

(148)

Lung cancer
lncRNA
PVT1

Upregulated ALKBH5 slightly enhances stability and expression of
the lncRNA, PVT1, and m6A-modified PVT1 mediates
VEGFA expression.

promotes the angiogenesis of
lung cancer

(163)

(Continued)
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TABLE 2 Continued

m6A
enzyme

Cancer type
Target
gene

Mechanism Result Refs

Lung cancer
VEGFA
mRNA

Loss of ALKBH5 expression effectively increases the m6A
methylation and translation efficiency of VEGFA mRNA.

inhibits the angiogenesis of
lung cancer

(164)

Colorectal cancer Circ3823
Together with YTHDF3, ALKBH5 facilities the rate of
circ3823 degradation.

attenuates the angiogenesis
of CRC

(166)

Multiple myeloma SAV1 mRNA
ALKBH5 induces m6A-demethylation of SAV1 mRNA and increases
SAV1 levels.

promotes the angiogenesis
of MM

(169)

YTHDC1 Colorectal cancer
VEGFA
mRNA

YTHDC1 recognizes m6A sites in WTAP-mediated VEGFA mRNA,
ultimately activating MAPK signaling in CRC cell lines.

promotes the angiogenesis
of CRC

(154)

YTHDC2

Lung cancer
VEGFA
mRNA

YTHDC2 promotes VEGFA mRNA translation in an m6A-
dependent manner.

promotes the angiogenesis of
lung cancer

(160)

Lung cancer
lncRNA
ZNRD1-AS1

YTHDC2 levels are significantly positively correlated with those of
lncRNA ZNRD1-AS1 and regulate its stability to activate the
ZNRD1-AS/miR-942/TNS1 axis and increase TNS1 levels.

suppresses the angiogenesis
of lung cancer

(170)

YTHDF1 Gastric cancer
SCARB1
mRNA

YTHDF1 recognizes m6A modification sites in the 3′-UTR of
SCARB1 to facilitate its translation into SRBI through the HIF-1a/
H19/YTHDF1/SCARB1 axis.

promotes the angiogenesis
and malignant phenotype
of GC

(175)

YTHDF2

Gastric cancer
ADAMTS9
mRNA

YTHDF2 targets ADAMTS9 mRNA and promotes its degradation in
a METTL3-dependent manner.

accelerates the angiogenesis
of GC

(138)

Renal
cell carcinoma

LncRNA
IGFL2-AS1

Release of the YTHDF2 binding protein can stabilize METTL3/
METTL14-demethylated IGFL2-AS1 in pazopanib-resistant cells.

inhibits VM formation in
pazopanib resistance of
metastatic clear cell renal
cell carcinoma

(152)

Renal
cell carcinoma

circPOLR2A

circPOLR2A facilitates UBE3C-induced ubiquitination and
degradation of PEBP1 and inhibits its expression, thus activating the
ERK signaling pathway; however, YTHDF2 plays an inhibitory role
in circPOLR2A expression.

suppresses the angiogenesis
and malignant progression
of clear cell renal
cell carcinoma

(180)

Colorectal cancer circ3823
YTHDF2 levels are positively correlated with those of YTHDF3 and
ALKBH5 and may cooperate with them to promote the rate of
circ3823 degradation.

may attenuate the
angiogenesis of CRC

(166)

Liver cancer
SERPINE2
mRNA

YTHDF2 affects the expression and distribution of
SERPINE2 mRNA.

suppresses the angiogenesis
and malignant phenotype
of HCC

(176)

Glioma
VEGFA
mRNA

YTHDF2 depletion increases the rate of VEGFA decay.
promotes of angiogenesis
of glioma

(179)

YTHDF3

Breast cancer
VEGFA
mRNA

YTHDF3 contributes to the translation and expression of VEGFA
mRNA in an m6A-dependent manner.

promotes breast cancer
brain metastasis.

(181)

Colorectal cancer circ3823
YTHDF3 cooperates with the demethylase, ALKBH5, to promote the
rate of circ3823 degradation, stimulating the circ3823/miR-30c-5p/
TCF7 axis.

attenuates the angiogenesis
of CRC

(166)

IGF2BPs Ovarian cancer circNFIX
IGF2B1/2/3 may promote ovarian cancer angiogenesis through
mediating m6A modification of circNFIX.

may promotes the
angiogenesis of
ovarian cancer

[188、
189]

IGFBP2 Glioma HOTAIRM1

HOTAIRM1 can positively regulate IGFBP2 expression, and IGFBP2
binds with HOTAIRM1 via METTL3-mediated m6A binding-
domains and increases its stability and expression in glioma tissues
and cells.

promotes vasculogenic
mimicry formation of glioma

(147)

IGF2BP2

Lung cancer
TRPM7
mRNA

IGF2BP2 is positively regulated by the lncRNA, DGUOK-AS1, and
functions as a bridge to provide contact between DGUOK-AS1 and
TRPM7 mRNA. The METTL3/IGF2BP2 axis enhances TRPM7
mRNA stability.

promotes the angiogenesis
and malignant progression
of non-small cell lung cancer

(150)

Lung cancer FLT4 mRNA
IGF2BP2 mediates m6A modification of FLT4, improving its stability
and expression. In addition, FLT4 activates the PI3K-Akt
signaling pathway.

promotes the angiogenesis of
lung adenocarcinoma

(183)

(Continued)
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CENPF mRNA had increased stability after combining with the

m6A “reader”, HNRNPA2B1. Moreover, CENPF mRNA can

promote focal adhesion kinase (FAK) nuclear export, leading to

MAP kinase (MAPK) signaling pathway activation, and thereby

inducing angiogenesis in GC (145).

Liver cancer is a highly aggressive tumor in humans that

contributes to significant cancer-related mortality and morbidity

in the world (133). Activation of yes-associated protein (YAP)

mRNA has been demonstrated to contribute to tumor cell

proliferation, angiogenesis and invasion in various types of

tumors (146). In HCC, Qiao et al. found that YAP1 mRNA

stimulates VM in an m6A-dependent manner, both in vitro and

in vivo, where METTL3 mediates YAP1 m6A modification,

affecting its translation efficiency (147). Lin et al. found that,

under hypoxia, decreased METTL3 leads to increased expression

of angiogenic markers, including FGF, PDGF-B, STAT3, and

VEGFA. The mechanism underlying angiogenesis in liver

cancer involves METTL3-mediated m6A modification of FOXO3

mRNA to increase its stability through a YTHDF1-dependent

mechanism, which ultimately enhances sorafenib resistance of

HCC (148). Further, an oncogenic role of circ−CCT3 was

validated in HCC cells (149). Qian et al. conducted tube

formation assays, demonstrating human umbilical vein EC

(HUVEC) angiogenesis inhibition after circ-CCT3 knockdown.
Frontiers in Oncology 11
Mechanistically, circ-CCT3 functions as a sponge for miR-378a-

3p, thereby regulating the expression of FLT1, which acts as a cell-

surface receptor for VEGFA, participating in angiogenesis (150),

and has a critical role in promoting HCC progression. Knockdown

of the m6Amethyltransferase, METTL3, caused elevated circ-CCT3

expression and a decrease of its m6A levels (151).

Glioma is the most common malignant primary brain tumor

(152). Wu et al. found that HOXA transcript antisense RNA

myeloid-specific 1 (HOTAIRM1), as an oncogene, is highly

expressed in both glioma tissues and cell lines (the higher grade,

the more expression). METTL3-dependent m6A modification

imparts HOTAIRM1 stability in glioma cells, and m6A-modified

HOTAIRM1 transcript plays a vital role in the promotion of VM

formation (153). Tao et al. analyzed data from The Cancer Genome

Atlas (TCGA) database and found that patients with relatively high

METTL3 expression had prolonged overall survival (OS). Further,

METTL3 downregulation, resulting in decreased RNA m6A

methylation, strengthened VM formation in GBM (154). In

another study, METTL3 was found to be important in enhancing

the stability and expression of target BUD13 mRNA. Methylated

BUD13 was bound by the downstream target, CDK12, to regulate

its stability and expression, thereby promoting MBNL1

phosphorylation by CDK12, and ultimately stimulating VM in

GBM (155).
TABLE 2 Continued

m6A
enzyme

Cancer type
Target
gene

Mechanism Result Refs

Lung cancer TK1 mRNA
The miR-320b/HNF4G axis regulates IGF2BP2 expression.
Upregulated IGF2BP2 enhances TK1 mRNA stability and expression.

promotes the angiogenesis of
lung cancer

(195)

Renal
cell carcinoma

TRAF1
mRNA

IGF2BP2 enhances METTL14-mediated TRAF1 mRNA stability and
improves the expression of TRAF1. m6A-mediated TRAF1 activates
AKT/mTOR/HIF1a/VEGFA signaling pathway in sunitinib-resistant
cell lines.

facilitates angiogenesis and
promotes sunitinib resistance
of renal cell carcinoma

(156)

Colorectal cancer EphA2
IGF2BP2 participates in PI3K/AKT/mTOR signaling pathway
activation by recognizing and binding to METTL3-
methylated EphA2.

promotes the VM of CRC (160)

Breast cancer
ZNF281
mRNA

LncSNHG5 upregulates transcription and secretion of CCL2 and
CCL5, and stimulates the P38 MAPK signaling pathway through the
IGF2BP2/ZNF281 axis.

promotes the angiogenesis
and malignant progression
of BC

(192)

IGF2BP3

Gastric cancer
HDGF
mRNA

IGF2BP3 enhances HDGF mRNA stability in an m6A-
dependent manner.

promotes the angiogenesis
and liver metastasis of GC

(136)

Gastric cancer
HIF-
1a mRNA

Under hypoxic conditions, IGF2BP3 binds to m6A modification sites
in HIF-1a mRNA and modulates its expression.

promotes the angiogenesis of
stomach cancer

(193)

Colorectal cancer
VEGFA
mRNA

IGF2BP3 is involved in recognition of and binding to METTL3-
methylated VEGFA, activating the ERK1/2 pathway.

promotes the VM of CRC (160)

Colorectal cancer VEGF mRNA IGF2BP3 activates the stability and expression of VEGF mRNA.
facilitates angiogenesis of
colon cancer

(182)

Bladder cancer
BIRC5
mRNA

IGF2BP3 improves METTL3-modified BIRC5 mRNA stability, to
upregulate VEGF expression in bladder cells on exposure to PM2.5.

facilitates angiogenesis of
bladder carcinoma

(155)

HNRNPA2B1 Gastric cancer
CENPF
mRNA

METTL3-mediated CENPF combines with HNRNPA2B1 to increase
its stability. Moreover, CENPF promotes FAK nuclear export to
activate MAPK signaling.

promotes the angiogenesis
of GC

(139)

HNRNPC Lung cancer – –
promotes the angiogenesis of
NSCLC cells

(196)
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Lung cancer is a significant cause of cancer-associated deaths,

imposing a substantial health burden (133). Feng et al. showed that

METTL3 increases m6A levels and expression of transient receptor

potential melastatin 7 (TRPM7) mRNA, and enhances the binding

of IGF2BP2 and TRPM7, ultimately facilitating angiogenesis in

non-small cell lung cancer (NSCLC) (156). Renal cell carcinoma

(RCC) is a common urological malignant cancer and represents a

leading threat to healthcare (157). Cheng et al. demonstrated that

METTL3/METTL14 complex-mediated lncRNA IGFL2-AS1 m6A

methylation results in VM formation in pazopanib resistant

metastatic clear cell RCC (ccRCC) (158). METTL3-mediated

m6A modification of CDC25B is upregulated in head and neck

squamous cell carcinoma (HNSCC), and promotes HNSCC

malignant characteristics, including cell proliferation, migration,

and invasion, as well as angiogenesis (159). In bladder cancer (BCa),

Wang and coworkers found that METTL3 ablation in BCa CSCs

suppressed tumor angiogenesis by regulating TEK and VEGFA

(160). Liu et al. proposed that PM2.5 exposure may induce m6A

methylation levels in BCa. Following exposure to PM2.5, aberrantly

upregulated METTL3 modifies the 3′-UTR of BIRC5 with m6A,

and IGF2BP3 combines with BIRC5 to improve its stability,

ultimately accelerating angiogenesis in BCa in VEGF-dependent

manner (161).

Overall, these studies illustrate the close connection between

METTL3 and tumor angiogenesis, and demonstrate that METTL3

has potential as a target for cancer diagnosis and treatment.

However, the differential expression of METTL3 in various

cancers and its dual regulatory effect on tumor angiogenesis

suggest that we should pay attention to the development and

application of METTL3 activators and inhibitors.
4.1.2 METTL14
In RCC, tumor necrosis factor receptor-associated factor 1

(TRAF1) mRNA is modified with m6A by METTL14, and its

stability is enhanced after binding with IGF2BP2. m6A-modified

TRAF1 mRNA overexpression obviously activated AKT/mTOR/

HIF-1a/VEGFA signaling pathway to facilitate angiogenesis, thus

promoting sunitinib resistance in RCC (162). Cheng et al. reported

that IGFL2-AS1 is an m6A-modified lncRNA in pazopanib

sensitive ccRCC cells. Chronic pazopanib treatment reduced the

m6A level of IGFL2-AS1 and increased its expression through

inhibiting METTL14 expression in METTL3/METTL14 complex.

IGFL2-AS1 binds the 5′-UTR of androgen receptor (AR) mRNA

and promoted AR expression, ultimately leading to VM formation

and pazopanib resistance in ccRCC (158). In tongue squamous cell

carcinoma (TSCC), Wen et al. found that low protein expression of

basic leucine zipper ATF-like transcription factor 2 (BATF2), also

termed as a suppressor of AP-1 regulated by interferon (SARI)

(163), was correlated with poor patient OS duration. The m6A

methylase METTL14 mediates m6A modification of BATF2 mRNA

to suppress its expression. BATF2 mRNA can constrain TSCC cell

angiogenesis through downregulating VEGFA (164). Further,

METTL14 and the demethylase, ALKBH5, can control the

expression of one another, block the demethylase activity of the

m6A reader, YTHDF3, and regulate m6A modification levels of
Frontiers in Oncology 12
angiogenesis-associated transcripts, resulting in tumor angiogenesis

and malignant processes (165). As an important component of an

m6A MTC, the mechanisms underlying the effects of METTL14 on

angiogenesis in other cancers warrant further investigation.

4.1.3 WTAP
The methyltransferase WTAP acts as an oncogene and tumor

promoter, and is significantly elevated in patients with CRC. WTAP

has a pivotal role in regulation of VEGFA mRNA expression in an

m6A/YTHDC1-dependent manner, which subsequently activates

the MAPK signaling pathway to influence angiogenesis in CRC cell

lines (166).

Whether other m6A methyltransferases are also involved in

tumor angiogenesis, or affect tumor angiogenesis through other

regulatory mechanisms, remains to be explored.
4.2 Regulation of tumor angiogenesis by
m6A erasers

4.2.1 FTO
Through Kaplan-Meier analysis, Rong et al. found that low

levels of FTO expression were associated with inferior OS of

patients with intrahepatic cholangiocarcinoma (ICC). Unlike

previous studies, which reported that FTO is highly expressed in

various cancers (167), levels of FTO were reported to be

downregulated in clinical ICC samples and cell lines. It was

detected that CD34, an indicator representing angiogenesis ability

and micro-vessel density (MVD), was highly expressed in low FTO

expression samples (168). However, the specific functional

mechanism of m6A modification involved requires further

exploration. Although the roles of FTO in tumor occurrence and

development, self-renewal of CSCs, immunity, and metabolism

have been extensively explored, its function in tumor angiogenesis

is still poorly understood.

4.2.2 ALKBH5
In lung cancer, Shen et al. demonstrated that upregulated

ALKBH5 slightly enhances the stability and expression of

lncRNA plasmacytoma variant translocation 1 (lncRNA PVT1).

Overexpression of PVT1 partially recuperates the lung cancer

angiogenesis constrained by ALKBH5 knockdown through

mediating VEGFA expression (169). In contrast, Zhang et al.

found that loss of ALKBH5 promotes lung cancer angiogenesis in

an m6A-dependent manner. Levels of ALKBH5 are negatively

correlated with those of VEGFA in patients with lung cancer, and

effectively decrease the m6A methylation and translation efficiency

of VEGFA mRNA, but had no effect on its mRNA levels (170).

Additionally, Jin et al. demonstrated that expression of the

angiogenesis-related protein, YAP, is negatively associated with

that of ALKBH5, and that ALKBH5 inhibits the malignant

progression of NSCLC cells by reducing YTHDFs-mediated YAP

expression and suppressing miR-107/LATS2-mediated YAP

activity in a HuR-dependent manner (171). In colorectal cancer,

Guo and his colleagues found that ALKBH5 was significantly
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decreased and promoted the degradation rate of circ3823 along with

YTHDF2 and YTHDF3 (172). Mechanistically, circ3823, which is

closely associated with inferior patient prognosis, inhibits

expression of miR-30c-5p through functioning as a competing

endogenous RNA, as widely reported in various cancers (173,

174), subsequently promoting the expression of TCF7 and

regulating the downstream targets, MYC and CCND1. Tube

junction formation of HUVEC observation indicated that the

circ3823/miR-30c-5p/TCF7 axis might facilitate the ability of

angiogenesis in CRC (172). In HCC, the ALKBH5 demethylase

cooperates with the methyltransferase, METTL3, in regulating circ-

CCT3 m6A levels and expression, contributing to HCC growth,

migration, and angiogenesis (151). In GBM, Tao et al. conducted

Kaplan-Meier survival analysis demonstrating that ALKBH5

overexpression was associated with reduced patient OS duration.

Further, ALKBH5 upregulation enhances VM by reducing target

RNA m6A methylation (154). Yu et al. found that angiogenesis was

restrained in multiple myeloma (MM) after knockdown of the

demethylase, ALKBH5, both in vivo in and vitro, as demonstrated

by VEGF secretion ability. Mechanistically, ALKBH5 promotes

MM angiogenesis by inducing m6A-demethylation of SAV1

mRNA (175). In summary, ALKBH5 has a dual regulatory effect

on tumors angiogenesis.
4.3 Regulation of tumor angiogenesis by
m6A readers

4.3.1 YTHDC1/2
In CRC, m6A “reader” YTHDC1 recognized specific m6A sites

on VEGFA mRNA to activate WTAP/YTHDC1/VEGFA/MAPK

axis, thus promoting the CRC angiogenesis (166). In lung cancer,

Zhang et al. demonstrated that the m6A regulators, YTHDC2 and

eIF4G, trigger angiogenesis by promoting VEGFA mRNA

translation (170). Moreover, m6A “reader” YTHDC2, as a tumor

suppressor that is significantly positively correlated with lncRNA

zinc ribbon domain-containing 1-antisense 1 (lncRNA ZNRD1-

AS1) and regulates its stability. The ZNRD1-AS1/miR-942/TNS1

axis participates in lung cancer angiogenesis regulation via

YTHDC2 (176). In the early stage, the team has demonstrated

that YTHDC2 was downregulated in lung cancer cells and

contributed to cell proliferation, migration and the EMT process

(76). In GC, YTHDC2 recognized at 5′-UTR of m6A-modified YAP

mRNA, resulting in the enhancement of YAP translation efficiency,

thus promoting the malignant progression of GC (177).

4.3.2 YTHDF1/2/3
It is established that HIF-1a mRNA is highly expressed in

cancers (178) and that HIF-1a mRNA overexpression supports

cancer progression through various mechanisms, including tumor

cells proliferation, invasive, metastasis, as well as angiogenesis (179,

180). In GC, Bai et al. found that the HIF-1a/H19/YTHDF1/

scavenger receptor class B member 1 (SCARB1) axis is involved

in angiogenesis and malignant phenotype. Mechanistically, m6A

“reader” YTHDF1, functions as a bridge between lncRNA H19 and
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SCARB1 mRNA, and can recognize m6A modification sites on 3′-
UTR of SCARB1 to facilitate its translation into scavenger receptor

class B type I (SR-BI), ultimately promoting GC cells angiogenesis

(181). Further, the m6A “reader”, YTHDF2, targets ADAMTS9

mRNA by recognizing its m6A motifs and promotes its degradation

in a METTL3-dependent manner. Suppression of ADAMTS9

expression facilitates angiogenesis and carcinogenesis in GC

(144). In CRC, YTHDF3 cooperates with the demethylase,

ALKBH5, to promote the rate of circ3823 degradation,

contributing to CRC growth, metastasis and angiogenesis through

the circ3823/miR-30c-5p/TCF7 axis. Although it has been

confirmed that interaction between YTHDF2 and YTHDF3 can

promote target mRNA degradation, whether YTHDF2 participates

in circ3823 degradation along with YTHDF3 and ALKBH5 requires

verification (172). Additionally, YTHDF2 in HCC specimens was

downregulated in contrast to normal liver histiocytes. YTHDF2

deficiency resulted in the escalation of vessel abnormity and

angiogenesis of HUVECs, while overexpression of YTHDF2

reduced vessel density and permeability (182). Moreover, serpin

family E member 2 (SERPINE2) mRNA, which induces

angiogenesis in breast cancer and oral squamous cell carcinoma

(183, 184), is upregulated after YTHDF2 knockdown and

responsible for the disruption of normal vascularization (182). In

glioma, Dixit et al. reported that YTHDF2 was upregulated in

mesenchymal GBM and its depletion increased the VEGFA

transcript decay rate in GBM stem cells in an m6A-dependent

manner, thus affecting tumor angiogenesis (185). In ccRCC,

circPOLR2A acts as an oncogene closely correlated with

malignancy, and YTHDF2 suppresses circPOLR2A expression in

an m6A-dependent manner, where the circPOLR2A/PEBP1 axis

positively affects angiogenesis in ccRCC (186). Moreover, Cheng

et al. demonstrated that IGFL2-AS1 was demethylated by the

METTL3/METTL14 complex and stabilized by release of the

binding-protein YTHDF2 in pazopanib-resistant cells. Stabilized

and highly expressed IGFL2-AS1 favored AR mRNA translation

and expression, leading to VM formation and development in

ccRCC (158). Chang and colleagues found that the YTHDF3

upregulates its own protein expression through automatic

regulation and then binds to m6A-enriched VEGFA mRNA to

increase VEGFA expression and angiogenesis in brain metastases of

breast cancer in humans (187). Furthermore, In NSCLC cells,

YTHDFs have a crucial role in regulation of YAP expression;

YTHDF3 can bind YAP pre-mRNA, while YTHDF1 and

YTHDF2 regulate YAP mRNA expression through competitively

interacting with YTHDF3. Further, YTHDF2 promotes YAP

mRNA decay by recruiting the AGO2 degradation system,

whereas YTHDF1 interacts with eIF3a to facilitate YAP

translation (171). Taken together, YTHDFs represent promising

potential diagnostic biomarkers and therapeutic targets.

4.3.3 IGF2BPs
In CRC, both LINC00662 and VEGFA contribute to

angiogenesis mediated through m6A by the enzyme METTL3.

Interestingly, although high expression of IGF2BP1 in CRC was

confirmed by analyzing data from TCGA CRC and the CPTAC
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protein prediction database, it has no effect on stabilization of RNAs

(138). In patients with CRC, the m6A “reader” IGF2BP3 activates

VEGF mRNA stability and expression by recognizing and

combining with its m6A modification sites in an m6A-dependent

manner. Moreover, interfering with IGF2BP3 represses

angiogenesis in colon cancer, which was confirmed by HUVECs

assay (188). Additionally, IGF2BP3 and IGF2BP2 are involved in

recognition and binding to METTL3-methylated EphA2 and

VEGFA, respectively, thereby enhancing the stability of these

target genes and preventing their degradation. Subsequently,

EphA2 and VEGFA activate the PI3K/AKT/mTOR and ERK1/2

signaling pathways, respectively, stimulating VM formation (166).

AKT signaling pathway can be provoked to participate cancer

angiogenesis. In RCC, In RCC, METTL14 activity modifies

TRAF1 mRNA by m6A modification, and its stability was

enhanced after binding with IGF2BP2. Further, m6A-modified

TRAF1 mRNA overexpression obviously activated AKT/mTOR/

HIF-1a/VEGFA signaling pathway to facilitate angiogenesis, thus

promoting sunitinib resistance in RCC (162). In lung cancer, Shen

and colleagues demonstrated that IGF2BP2 permeates ECs in the

microenvironmental via lung adenocarcinoma (LUAD) cell-derived

exosomes, subsequently mediating the m6A modification of FLT4

to improve its stability and expression. Then, FLT4 activates the

PI3K-Akt signaling pathway, eventually promoting angiogenesis in

LUAD cells (189).

Besides AKT effector, several factors are also involved in the

regulation of angiogenic process, including p38 MAPK (190), FAK

(191), signal transducer and activator of transcription 1 (STAT1)

(192)and Rho GTPases (193). In ovarian cancer (OC), Ye et al.

found that OC-derived exosomal circRNA nuclear factor IX

(circNFIX) regulates the Janus-activated kinase (JAK)/STAT1

pathway via the miR-518a-3p/TRIM44 axis, thereby promoting

tumor angiogenesis (194). The team further validated that

IGF2BP1/2/3 recognizes m6A modification sites in circNFIX,

leading to increased circNFIX expression in OC cells (195).

Therefore, IGF2BP1/2/3 may promote OC angiogenesis by

regulating circNFIX; however, the specific mechanism involved

requires further in-depth investigation. Moreover, Zeng et al.

showed that the LncSNHG5/ZNF281 axis upregulates

transcription and secretion of CCL2 and CCL5, thereby activating

P38 MAPK signaling in HUVECs, ultimately stimulating

angiogenesis and vascular permeability in a VEGF-independent

manner (196). Mechanistically, LncSNHG5 is highly increased in

breast cancer-associated fibroblasts, which are an important subset

of stromal fibroblasts in the tumor microenvironment (197).

Enhanced LncSNHG5 has a key role in regulating angiogenesis

and vascular leakiness by mediating recruitment of IGF2BP2 to

augment ZNF281 mRNA stabilization, thus inducing lung

premetastatic niche formation, which is reported to be essential

for malignant tumor progression (198).

VEGF is key for tumor angiogenesis and is upregulated by HIF

and other oncogenic factors. In GC, Jiang et al. demonstrated that

IGF2BP3 binds to m6A sites on HIF-1a mRNA in stomach cancer

(SC) cells to positively modulate HIF-1a mRNA expression in an

m6A-dependent manner and promote angiogenesis in SC through

the IGF2BP3/HIF-1a pathway under hypoxic conditions (199).
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Further, the HIF-1a/VEGF axis can contribute to mediation of

angiogenesis and GC cell malignant growth in a hypoxic

microenvironment (200). Inhibition of VEGF secretion by

IGF2BP3 deficiency can be alleviated by HIF-1a mRNA

overexpression (199). However, further exploration is needed to

determine whether a methylase or demethylase regulates the

IGF2BP3/HIF-1a/VEGF axis. In BCa, Liu et al. found that

IGF2BP3 combines with METTL3-modified BIRC5 mRNA to

improve its stability, ultimately accelerating angiogenesis in BCa

exposed to PM2.5 in a VEGF-dependent manner (161). Wang and

his colleagues verified that m6A “reader” IGF2BP3 recognized and

bound m6A sites on METTL3-mediated HDGF mRNA to stabilize

it and the subsequent GC angiogenesis and malignant

progress (142).

Ma et al. found that hepatocyte nuclear factor 4 gamma

(HNF4G) is a target of miR-320b, where HNF4G expression is

reduced on miR-320b overexpression. HNF4G upregulates the m6A

reader, IGF2BP2, by combining with its promoter region, and

upregulation of IGF2BP2 enhances the thymidine kinase 1 (TK1)

stability and expression, thus facilitating angiogenesis in lung

cancer (201). IIGF2BP2 functions as a bridge between the

lncRNA, deoxyguanosine kinase antisense RNA 1 (DGUOK-AS1)

and TRPM7 mRNA, where TRPM7 is positively regulated by

DGUOK-AS1 in NSCLC; hence, the DGUOK-AS1/IGF2BP2/

TRPM7 axis promotes angiogenesis in NSCLC (156). In glioma,

IGFBP2 is closely associated with METTL3-mediated HOTAIRM1

via its m6A binding-domains and positively regulated by

HOTAIRM1, thus promoting VM (153). Collectively, IGF2BPs

appear to promote tumor angiogenesis, and targeted inhibition of

IGF2BP expression may suppress tumor angiogenesis to

some extent.
4.3.4 HNRNPs
In gastric cancer, m6A reader HNRNPA2B1 directly bound

m6A sites of METTL3-methylated CENPF mRNA and promoted

the mRNA stability, ultimately GC angiogenesis and metastasis

through activating the FAK/MAPK axis (145). Additionally, Gu

et al. reported that HNRNPC predicted poor prognosis in patients

with NSCLC, and was associated with NSCLC angiogenesis by Gene

Ontology and Gene Set Enrichment Analysis, although the exact

mechanism involved remains unclear (202).
4.3.5 Others
He et al. analyzed 24 main m6A RNA methylation regulators

from the TCGA breast cancer dataset, divided them into two

subsets according to the height of RNA methylation modification-

RNA methylation 1 (RM1) and RM2, and identified that

angiogenesis was significantly comfortable in RM1 (203). Further,

Li et al. showed that m6A modification in glioma stem cells is

mainly distributed around sites of neovascularization in hypoxic

environments. Further, the overall interaction between

angiogenesis-related genes(ARGs) and m6A regulators(MAGs) is

significantly correlated in low-grade gliomas (LGGs) (204). These

findings provide potential new research directions for investigation

of the relationship between m6A and angiogenesis, including
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deeper studies to generate more valuable and practical guidance that

can inform cancer treatment. In summary, VEGF is the main factor

involved in promotion of tumor angiogenesis, while other factors,

such as Ang, can coordinate with VEGF in this context. Enzymes

involved in m6A methylation modification and regulation play

crucial roles in tumor angiogenesis, not only by direct regulation of

VEGF expression, but also through mediating angiogenesis-related

signaling pathways, such as PI3K/AKT, MAPK, and JAK/STATA,

to affect VEGF expression (Figure 3). Nevertheless, numerous m6A

regulators have not been investigated in the context of tumor

angiogenesis and study of mechanisms involving such m6A

regulators may be a fruitful research direction. Further,

exploration of the interactions between the three types of m6A

enzymes during tumor angiogenesis is of interest.
5 The clinical significance of m6A
methylation in tumor angiogenesis

m6A modification has become a hot topic of current research,

attracting various researchers who have focused on in-depth

investigation into its roles in pathogenesis and malignant

phenotypes. As described above, numerous studies have shown

that m6A-regulated tumor angiogenesis and VM have crucial roles
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in tumor occurrence and development. In this section, we discuss

the potential clinical significance of targeting m6A-regulated

tumor angiogenesis.
5.1 Anti-angiogenesis therapy

Currently, the clinical therapeutic strategy of anti-angiogenesis

is among the most commonly used treatment schemes to control

tumor proliferation and distant metastasis. Since the concept of

targeted angiogenesis was proposed, the US Food and Drug

Administration has approved numerous anti-angiogenic drugs

(93), which can be divided into three main categories: first,

monoclonal antibodies, including bevacizumab and ramucirumab;

second, fusion proteins, of which Ziv-aflibercept is an example; and

third, VEGFR-targeting small molecules, including sorafenib,

sunitinib, pazopanib, lenvatinib, and tivozanib, among others

(205). For example, sunitinib is a tyrosine kinase inhibitor that

shows potent anti-angiogenic activity, and was recommended as a

first-line targeted drug for patients with recurrent and unresectable

RCC (206–208). However, the majority of patients with RCC

eventually develop drug resistance and malignant tumor

progression, resulting in inability of sunitinib to effectively

prolong their survival (209, 210). Angiogenesis switch is among

the mechanisms elucidated as involved in the development of
FIGURE 3

m6A enzymes participate in the regulation of signaling pathways and proteins related to tumor angiogenesis. The red font indicates that m6A
enzymes positively regulate proteins, while the black font indicates that m6A enzymes negatively regulate proteins.
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resistance to sunitinib (211), and is also associated with high

expression of TRAF1 mRNA; increased TRAF1 expression

contributes to activation of downstream anti-apoptotic and anti-

angiogenic pathways in sunitinib-resistant cells, leading to drug

resistance in patients with RCC (162). In combination with

standard first-line chemotherapy drugs (including cisplatin and

carboplatin), the monoclonal antibody, bevacizumab, can

significantly prolong progression-free survival (PFS) and OS in

patients with advanced NSCLC, as demonstrated by a meta-analysis

of randomized studies (212). other drugs are currently under

investigation and are expected to be used in clinical anti-

angiogenesis treatment of tumors in the future. For example,

using xenograft and chorioallantoic membrane angiogenesis

models, as well as detection of CD31 via IHC assay, Wei et al.

demonstrated that tumor angiogenesis is inhibited after treatment

with verteporfin, which downregulates angiopoietin-2 (Ang2) by

suppressing YAP activity (213). The correlation between Ang2 and

YAP has also been clarified in previous studies, where Ang2 was

reported as an important biomarker of vasculogenic events (214),

and YAP also functions to promote angiogenesis through regulating

angiogenic germination and remodeling of HUVECs (215).

Verteporfin can also repress VM by downregulating MMP2, VE-

cadherin, and a-SMA expression (216). In addition, RSK and TTK

were identified as novel modulators of angiogenesis and potential

targets for anti- angiogenic therapy (217). In accordance with the

findings of these studies, resistance of tumors to anti-angiogenic

drugs is a complex process involving multiple genes, factors,

mechanisms, and the tumor microenvironment. Changing the

expression of certain key transcripts in angiogenesis and

activating or inhibiting specific signaling pathways may enhance

the sensitivity of tumors to treatment. Hence, identification of new

targets for anti-angiogenesis treatment and combining them with

other drugs could provide new avenues for exploration.
5.2 m6A-targeted therapy

Tumor anti-angiogenesis therapy has not achieved optimal

therapeutic effects, due to the development of resistance over

time, raising concerns regarding whether the combination of

m6A and anti-angiogenic drugs will contribute to improved

antitumor therapy. Some recent studies have discussed

mechanisms involving m6A-regulated tumor angiogenesis or VM

in drug treatment and resistance, and suggested that targeting m6A-

regulated tumor angiogenesis also has therapeutic potential.

VEGFR-targeted treatment is a common method of inhibiting

tumor angiogenesis. The IGFL2-AS1/AR signaling axis is

clinically associated with VM formation, and is strongly increased

during pazopanib resistance of metastatic ccRCC. Mechanistically,

the lncRNA, IGFL2-AS1, interacts with the 5’UTR of AR mRNA to

regulate the activity of the upstream open reading frame and

enhance translation of AR mRNA, which was demethylated by

METTL3/METTL14, during pazopanib resistance (158).Chen et al.

manifested that a novel pharmaceutical intervention strategy for the

treatment of patients with sunitinib might be targeting TRAF1

mRNA and its pathways in the near future. Mechanistically,
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METTL14-mediated m6A modification of TRAF1 enhances its

stability in an IGF2BP2-dependent manner, upregulating TRAF1

expression in sunitinib resistant cells. In addition, TRAF1

overexpression significantly stimulates AKT/mTOR/HIF-1a/
VEGFA signaling, while silencing TRAF1 increases sunitinib-

induced anti-apoptotic and anti-angiogenic effects (162). Further,

Lin et al. found that the methyltransferase, METTL3, is dramatically

down-regulated in human sorafenib-resistant HCC. METTL3

depletion decreases the stability of its downstream target, FOXO3,

in a YTHDF1-dependent manner and reduces FOXO3 expression

levels, ultimately promoting sorafenib resistance (148). hence,

targeting METTL3 expression may enhance treatment response to

sorafenib. In many types of cancer, tumor angiogenesis is also

accompanied by increased YAP mRNA expression levels and

activity. The m6A demethylase, ALKBH5, decreases YTHDF-

mediated YAP expression to suppress tumor growth and

metastasis in NSCLC cells (171). Further, IGF2BP2 recognizes

m6A sites on YAP mRNA and facilitates its translation efficiency

in CRC cells. The IGF2BP2/YAP/ErbB2 axis promotes CRC cells

proliferation, invasion, and migration and represses CRC cell

apoptosis (218). Therefore, targeting m6A enzymes which

mediate YAP expression and activity could be a promising

therapeutic strategy. This suggests the new idea that m6A can

increase the sensitivity of anti-angiogenic drugs through targeted

regulation; therefore, combination therapy using m6A inhibitors or

activators together with angiogenesis inhibitors, is expected to

improve anti-tumor efficacy.

Nevertheless, there has been relatively little research to date on

the mechanism underlying targeting of m6A combined with anti-

angiogenesis approaches, and further in-depth research is needed to

determine the clinical value of such methods, in terms of anti-tumor

therapy and survival improvements for patients with cancer.

Overall, m6A regulatory factors are of great significance in tumor

prognosis and diagnosis. Some m6A-related molecules are currently

in clinical trials, and m6A is expected to become a drug target for

clinical anti-cancer treatment in the future (Table 3).
6 Conclusions

The connections between tumors and angiogenesis have been

explored for more than five decades, since they were first proposed

by Professor Folkman. The rapid development of high-throughput

sequencing technologies, popularization of bioinformatics, and

emergence of highly specific antibodies, have led to verification

that m6A methylation is involved in various tumor malignant

processes, including proliferation, invasion, metastasis, and

immune escape, as well as angiogenesis. At present, there is an

increasing research focus on the relationship between m6A and

tumor angiogenesis, and m6A modification has been found to

directly or indirectly regulate tumor cell angiogenesis. In different

types of tumor, m6A modification influences biological behaviors

through affecting the stability and expression of target mRNAs and

activating or repressing angiogenesis-related signaling pathways, to

regulate tumor angiogenesis. Further, m6Amodification also occurs

in ncRNAs, including lncRNAs, miRNAs, and circRNAs, and m6A-
frontiersin.org

https://doi.org/10.3389/fonc.2024.1467850
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qin et al. 10.3389/fonc.2024.1467850
modified ncRNAs can impact their downstream signaling axes,

thereby regulating tumor angiogenesis in an m6A-dependent

manner. There is a growing body of evidence suggesting that

m6A modification regulates tumor angiogenesis and malignant

phenotypes through an extremely complex interaction network,

resulting in influences on the occurrence, development, treatment,

and prognosis of cancer. Further study of the potential mechanisms

underlying the relationships between m6A methylation and tumor

angiogenesis will improve understanding and provide novel

possibilities for tumor diagnostic methods and therapeutic

strategies in the near future. At present, the effectiveness of anti-

angiogenic drugs for treating patients with cancer is suboptimal.

The strategy of targeting m6A in combination with anti-angiogenic

drugs or vascular mimicry inhibitors is predicted to open a

promising new frontier for future tumor treatment; however,

enormous research challenges remain. According to existing

research, it is clear that only a proportion of m6A regulators have

been investigated, and the relationships between other m6A

regulators and tumor angiogenesis remains unclear. Further

exploration is needed to determine whether other factors that

promote or suppress m6A deposition contribute to tumor
Frontiers in Oncology 17
angiogenesis. Additionally, m6A regulators have a dual regulatory

effect on tumor angiogenesis in different cancers; and even within

the same cancer, different researchers hold opposite views.

Differences among tumor microenvironments and upstream and

downstream genes may be important factors affecting the

expression and function of m6A regulators. Therefore, multi-

center, large-scale research could provide deeper and more

comprehensive understanding of mechanisms involving m6A in

tumor angiogenesis, and facilitate screening and development of

specific inhibitors or activators targeting m6A. Given the extensive

research on the mechanisms underlying the role of m6A

modification in tumor angiogenesis, the development of specific

m6A-targeted drugs will be of great significance for achieving

personalized and precise treatment and, combined with other

approaches, such drugs may improve malignant tumor therapy

sensitivity, reduce drug resistance and side effects, and achieve

superior therapeutic effects. Although there have been numerous

reports indicating that various m6A regulators have potential

diagnostic, prognostic, and therapeutic value in the context of

anti-tumor angiogenesis, research on the regulation of tumor

angiogenesis by m6A remains in its infancy. The development of
TABLE 3 Clinical trials of m6A regulators related to cancer. (Data from ClinicalTrials.gov).

Study title
Condition
(identifier)

Status Interventions Phase
Study
design

N

Oral Administration of STC-15 in Subjects With
Advanced Malignancies

Advanced Solid
Tumor or
Cancer
(NCT05584111)

Recruiting Drug: STC-15 I
I; NR;
SA; OL

66

Peptide Vaccination in Treating Patients With
Esophageal Cancer

Esophageal
Cancer
(NCT00682227)

Unknown
Biological: TTK, LY6K, and

IMP-3 peptides
I

I;
SGA; OL

10

Imiquimod Treatment of CIN Lesions

Cervical
Intraepithelial
Neoplasia
(NCT02329171)

Terminated
Drug: Imiquimod;
Procedure: LLETZ

III
I; R;
PA; OL

9

Histocompatibility Leukocyte Antigen (HLA)-A*2402
Restricted Peptide Vaccine Therapy in Patients With
Esophageal Cancer

Esophageal
Cancer
(NCT00681330)

Completed Biological: URC10, TTK, KOC1 I、II
I;
SGA; OL

14

Safety Study of Cancer Specific Epitope Peptides Cocktail
for Cervical, GI, and Lung Tumors (peptidevac)

Metastatic
Tumors
(NCT00676949)

Completed
Biological: 5 peptide vaccines of

KOC1, TTK, CO16,
DEPDC1, MPHOSPH1

I
I;
SGA; OL

18

Histocompatibility Leukocyte Antigen (HLA)-A*2402
Restricted Peptide Vaccine Therapy in Patients With
Non-Small Cell Lung Cancer

Non Small Cell
Lung Cancer
(NCT00674258)

Unknown
Biological: URLC10, TTK

and KOC1
I、II

I;
SGA; OL

14

Histocompatibility Leukocyte Antigen (HLA)-A*2402
Restricted Peptide Vaccine Therapy in Patients With
Gastric Cancer

Gastric Cancer
(NCT00681577)

Completed
Biological: URLC10, KOC1,
VEGFR1 and VEGFR2

I、II
I;
SGA; OL

14

Combination of Chemoradiation Therapy and Epitope
Peptide Vaccine Therapy in Treating Patients With
Esophageal Cancer

Esophageal
Cancer
(NCT00632333)

Unknown
Biological: URLC10, TTK,
KOC1, VEGFR1, VEGFR2,

cisplatin, fluorouracil
I

I;
SGA; OL

9

Peptide Vaccination in Treating Patients With Esophageal
Cancer (STF-II)

Esophageal
Cancer
(NCT01267578)

Unknown Biological: vaccination II
I;
SGA; OL

60
fro
I, interventional; NR, non-randomized; SA, sequential assignment; OL, open label; SGA, single group assignment; R, randomized; PA, parallel assignment.
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specific m6A-targeted activators or inhibitors suitable for clinical

application and the translation of scientific research into clinical

practice will require considerable further efforts.
Author contributions

LQ: Writing – original draft, Writing – review & editing. XZ:

Writing – review & editing. XQ: Writing – review & editing. XC:

Writing – review & editing. SL: Resources, Writing – review

& editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by the National Natural Science Foundation of
Frontiers in Oncology 18
China (82260579) and the Natural Science Foundation of

Guangxi, China, (2020GXNSFAA159056)
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Kretschmer M, Rüdiger D, Zahler S. Mechanical aspects of angiogenesis. Cancers.
(2021) 13:4987. doi: 10.3390/cancers13194987

2. Kumari R, Syeda S, Shrivastava A. Nature’s elixir for cancer treatment: targeting
tumor-induced neovascularization. Curr Med Chem. (2024) 31:5281–304. doi: 10.2174/
0109298673282525240222050051

3. Zhou Z, Lv J, Yu H, Han J, Yang X, Feng D, et al. Mechanism of RNA
modification N6-methyladenosine in human cancer. Mol Cancer. (2020) 19:104.
doi: 10.1186/s12943-020-01216-3

4. Shi H, Chai P, Jia R, Fan X. Novel insight into the regulatory roles of diverse RNA
modifications: Re-defining the bridge between transcription and translation. Mol
Cancer. (2020) 19:78. doi: 10.1186/s12943-020-01194-6

5. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR.
Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and
near Stop Codons. Cell. (2012) 149:1635–46. doi: 10.1016/j.cell.2012.05.003
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