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Purpose: To create a system to enable the identification of histological variants of

bladder cancer in a simple, efficient, and noninvasive manner.

Material and methods: In this multicenter diagnostic study, we retrospectively

collected basic information and CT images about the patients concerned from

three hospitals. An interactive deep learning-based bladder cancer image

segmentation framework was constructed using the Swin UNETR algorithm for

further features extraction. Radiomic features and deep learning features were

extracted for further stacking ensemble system construction. The segmentation

model’ performance was assessed by using Dice Similarity (Dice) metrics,

Intersection Over Union (IOU), Sensitivity (SEN) and Specificity (SPE). To

evaluate the system’s performance, we used the Receiver Operating

Characteristics (ROC) curve, the Accuracy Score (ACC) and Decision Curve

Analysis (DCA).

Results: 410 patients from one hospital were included in the training set, while 60

patients from two other hospitals were included in the test set. A total of 50

features comprising 46 radiomic features and 4 deep learning features were

finally retained for further stacking ensemble model building. The interactive

segmentation model and system exhibited excellent performance in both

training (Dice = 0.78, IOU = 0.65, SEN = 0.83, SPE = 1.00, AUC = 0.940, ACC

= 0.868) and testing datasets (Dice = 0.80, IOU = 0.67, SEN = 0.89, SPE = 1.00,

AUC = 0.905, ACC = 0.900).

Conclusion:We successfully constructed a stacking ensemble machine learning

model for early, non-invasive identification of histological variants in bladder

cancer which will help urologists make clinical decisions.
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Backgrounds

Bladder cancer is one of the most common malignant tumors in

the urinary system globally, and its incidence is gradually increasing

(1). Approximately 75% of the bladder cancers cases were classified

as pure urothelial carcinoma (PUC), while the remaining 25%

present histological variants (2, 3), such as squamous

differentiation, glandular differentiation, Micropapillary urothelial

carcinoma. As manifested by the WHO 2022 classification of

urothelial tumors of the urinary tract, this classification presented

a subtype of invasive urothelial carcinoma with histological variants

and divergent differentiation encompassing tumors that exhibit a

mix of “typical type” urothelial carcinoma and other morphologies

(4, 5). Correct understanding of bladder cancer’s pathological types

and appropriate treatment is crucial for improving the prognosis of

patients (6, 7). For the vast majority of patients with bladder cancer

(pure urothelial carcinoma, PUC) scheduled for radical cystectomy,

cisplatin-based neoadjuvant therapy has proven significantly

effective in enhancing patients’ postoperative prognosis (8, 9).

However, in the minority of patients with bladder cancer in the

presence of histological variants, they are more prone to early

lymph node metastasis and generally have a poorer prognosis (4,

10). Additionally, they often respond poorly to cisplatin-based

neoadjuvant chemotherapy (11). Therefore, early identification

and tailored treatment adjustments for these patients are

extremely vital to improve their prognosis.

The current gold standard for diagnosing the type of pathology

in bladder cancer patients relies on the pathologist’s correct

identification of surgical or biopsy specimens (12, 13). However,

the whole process suffers from the following challenges: (1) All

tumor tissue after radical cystectomy can be accurately identified by

the pathologist and evaluated for pathological types associated with

histological variants (since the pathological specimen is the entire

bladder), meanwhile, the vast majority of pathological specimens

are obtained by transurethral cystoscopic biopsy or transurethral

resection of bladder tumor (TURBT); This often results in residual

tumor tissue remaining in the patient’s bladder. If there is

histologically variant tumor tissue remaining in the patient that

was not retrieved in the biopsy, the pathologist will make an

incorrect initial determination of the pathologic type of bladder

cancer. This misclassification can subsequently impact the

urologist’s treatment decisions (14, 15). (2) Considering that

survival rate and prognosis of bladder cancer patients with

histological variants are worse, delays in obtaining biopsy or

TURBT results and subsequent pathology analysis can lead to

disease progression and worsen the patient’s condition. (3)

Meanwhile, both biopsy and TURBT are invasive operations,

posing additional risks and discomfort for the patient. Based on

this, there is an urgent need to develop a simple, efficient, and

noninvasive method for early identification of patients with bladder

cancer combined with histologic variants.

Artificial intelligence has made major advances in the field of

medicine in recent years and is poised to revolutionize the practice

of medicine (16, 17). The most significant advantage of AI over

clinicians is the ability to effectively utilize various medical data to
Frontiers in Oncology 02
assist clinicians in disease diagnosis, prognosis (18–21). In the field

of bladder cancer, previous researches have indicated that it is

feasible to apply radiomics and machine learning to access

pathological grade and muscle invasiveness in bladder carcinoma

(22–25). However, few studies have been conducted to identify

histological variants of bladder cancer by radiomics, especially CT.

And we posit that the application of radiomics combined with

machine learning could also effectively predict histological variants

in bladder cancer.

Therefore, we created a system to enable the identification of

histological variants of bladder cancer in a simple, efficient, and

noninvasive manner (the dependent variable (histological variant)

of the classification task is a binary categorical variable, which can

be divided into non-histological variant and histological variant).

This will be used to guide the clinical practice of urologists,

facilitating the selection of the most suitable treatment for patients.
Materials and methods

Patients

We retrospectively gathered basic information and CT images of

patients who underwent radical cystectomy between 2013 and 2023

from the databases of three completely independent healthcare

institutions, the First Affiliated Hospital of Chongqing Medical

University, the Second Affiliated Hospital of Chongqing Medical

University, and Chongqing University Fuling Hospital. The exclusion

criteria for this study were: (1) absence of CT images or availability of

only plain CT images; (2) poor quality of CT images; and (3) patients

whose final pathology reports did not reveal significant tumor signs due

to neoadjuvant therapy. From the database of the First Affiliated

Hospital of Chongqing Medical University, A total of 410 patients

were finally included, including 55 patients with non-pure urothelial

carcinoma (NPUC). From the databases of the Second Affiliated

Hospital of Chongqing Medical University and Chongqing University

Fuling Hospital, a total of 60 patients were finally included, including 14

patients with NPUC. A detailed distribution of basic information and

pathology type of the included patient cohort across these hospitals is

provided in Table 1. The postoperative pathological results of the

participants will be used as the gold standard to assess whether the

bladder cancer is associated with histological variation. The detailed data

collection and screening process is shown in Figure 1. Data from the

First Affiliated Hospital of Chongqing Medical University will be used

for the model construction, while data from the Second Affiliated

Hospital of Chongqing Medical University and Chongqing University

Fuling Hospital will be used for the external validation which effectively

avoided potential statistical dependence.
Interactive framework and
features extraction

Distinguishing from the traditional manual sketching of regions

of interest (ROI) markers to extract features, we constructed an
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interactive deep learning-based bladder cancer image segmentation

framework. The segmentation framework is built on the Swin

UNETR algorithm, a novel 3D transformer-based architecture

specifically designed for medical image segmentation. Additional

Swin UNETR description can be found in Supplementary Materials.

In our proposed framework, the Swin UNETR model is used to

process raw image information and refine the results through user

interaction. These user’ interactions are translated into geodesic

distance maps, which are then incorporated into the Swin UNETR’s

input (26). Figure 2 provides a comprehensive illustration of the

Swin UNETR model’s structure. For this interactive segmentation

model’s development, two experienced radiologists (more than 5

years working experience) annotated ROI in bladder cancer images

using ITK-SNAP software. They incorporated image data from

three different planes—axial, sagittal, and coronal—when
Frontiers in Oncology 03
delineating tumor margins. In instances of ambiguous sketching,

an additional senior radiologist (Lv Fajin, more than 20 years

working experience) is consulted to discuss and finalize the

results collaboratively. This interactive segmentation model will

be used for subsequent extraction of both radiomic features and

deep learning features.

Radiomic features are categorized into three types: (1) first-order

statistics, (2) shape features, and (3) second-order features. Image

types for radiomic features fall into three distinct categories: (1)

Original, (2) Log, and (3) Wavelet. Utilizing the default parameters

set from the official Pyradiomics YAML file, we successfully extracted

1231 radiomic features for each subject. For the extraction of deep

learning features, we employed a 3D-cropbox designed to encapsulate

the bladder cancer region. In terms of width and length, the 3D-

cropbox correspond to the maximum cross-sectional area of the
FIGURE 1

Flowchart shows patient selection.
TABLE 1 A detailed distribution of basic information and pathology type of the included patient cohort across these hospitals.

Cohort Hospital Patients Median
Age(IQR)

Male/
Female

Pathological Type Number

Training cohort
The First Affiliated Hospital of
Chongqing Medical University

410 66(60-74) 364/46

Pure urothelial carcinoma (PUC)
UC with squamous differentiation
UC with glandular differentiation
Micropapillary UC
Plasmacytoid UC
Sarcomatoid UC
Poorly differentiated UC
Neuroendocrine lineage UC

355
18
12
7
5
6
3
4

Testing cohort
The Second Affiliated Hospital of
Chongqing Medical University

37 66(62-74) 31/6
Pure urothelial carcinoma(PUC)
UC with squamous differentiation
UC with glandular differentiation

32
1
4

Chongqing University
Fuling Hospital

23 66(55-77) 18/5

Pure urothelial carcinoma(PUC)
UC with squamous differentiation
UC with glandular differentiation
Sarcomatoid UC

14
5
2
2
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bladder cancer, while in terms of height, it aligns with the Z-axis

dimension that encompass the bladder cancer region. Within the 3D-

cropbox, any NumPy array values outside the ROI are set to zero. The

3D-cropbox region is then input into a 3DResnet50 model equipped

with weights that have been pretrained. Through removing the pre-

trained model’s last layer, disabling gradient updates and adding a 3D

maximum pooling layer, we successfully extract 2048 deep learning

features per subject. Further details on the 3DResnet50 structure are

available in Supplementary Table S1. Additionally, Supplementary

Figure S1 displayed the feature screening related processes and

Supplementary Figure S2 provides an in-depth view of the 3D-

cropbox workflow. Radiomic features and deep learning features

(without clinically relevant data) will be used to build subsequent

predictive models.
Reliability assessment of selected features

To assess the reproducibility and reliability of the selected

features, we used the intra-class correlation coefficients and inter-

class correlation coefficients (ICC). The inter-class correlation

coefficients were calculated based on the re-labeling of 25%

participants’ ROIs in both the training and testing cohorts. This

re-labeling was performed with the interactive segmentation model

by two independent readers. Additionally, these participants were

randomly selected by another independent radiologist. As for the

intra-class correlation coefficients, they were determined by a single

reader who randomly plotted the ROIs of the same participants

using the interactive segmentation model in the enrolled datasets

twice, with a one-month interval between sessions (27).
Frontiers in Oncology 04
Quality control procedures

The process of quality control for fusion feature extraction

and model construction in our study is methodically organized into

five distinct sections: (1) quality control of images: ensuring the

integrity and appropriateness of images used; (2) quality control of

ROI: verifying the accuracy and relevance of the selected ROI; (3)

quality control of feature extraction: monitoring the precision

and consistency in extracting features; (4) quality control of

feature selection: evaluating the criteria and methods used

for selecting features; and (5) quality control of machine

learning algorithms: reviewing the application and effectiveness of

machine learning techniques. In accordance with the Image

Biomarker Standardization Initiative (IBSI), we complied with its

recommendations (28). To assess the reliability of our research, we

adopted the Radiomics quality score (RQS) (29). For more detailed

information on our quality control procedures and the results of the

RQS calculation, please refer to the Supplementary Material.
Stacking ensemble learning approach

In our study, we employed a stacking ensemble learning

approach. Specifically, we used XGBoost, Random Forest (RF),

and Decision Tree (DT) as the base models. The predictions from

these base models were then used as inputs (meta-features) for the

LightGBM model, which served as the meta-learner in our stacking

framework. LightGBM was selected for its efficiency and scalability,

particularly in handling large datasets and complex feature

interactions. By leveraging this hierarchical structure, our stacking
FIGURE 2

Detailed structure of the Swin UNETR model.
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ensemble method could capture and combine different levels of

information from each base model , leading to more

accurate stratification.
Statistical analysis

We utilized ITK-SNAP (version 3.6.0) to generate ROIs.

Pyradiomics package (version 3.0.1) was used to extract radiomic

features. The pretrained weights of 3DResnet50 model derived from

23 medical datasets, which included images of various parts of the

human body. The pretrained weights file, along with the related

codes, are openly available in the Tencent Medicalnet project

(https://github.com/Tencent/MedicalNet). The originally chosen

radiomics and deep learning features were analyzed for

redundancy using Pearson correlation coefficients for normal

distributions and Spearman’s rank correlation coefficients for

non-normal distributions. Figure 3 illustrates the entire model

construction procedure. To assess the model’s performance, we

used the Receiver Operating Characteristics (ROC) curve and the

Accuracy Score (ACC). The DeLong test was employed to evaluate

if there was significant heterogeneity in the area under the ROC

curve (AUC). Additionally, a calibration curve was used to assess

the consistency of the final model’s performance in the external

validation dataset. Two-sided p values less than 0.05 were

considered statistically significant.
Frontiers in Oncology 05
The scikit-learn package and “Pycaret” package are used to

develop the final machine learning model. All model building

processes and plot drawings were conducted in Python (version

3.9) environment and R software (version 4.0.5).
Ethical approval and consent to participate

We confirm that all methods were carried out in accordance

with the relevant guidelines and regulations. This retrospective

analysis received approval from the ethics committees of each

participating hospital. The written informed consents were

waived. All patient information enrolled in this research

was anonymized.
Results

The interactive segmentation model exhibited excellent

performance in both training (Dice = 0.78, IOU = 0.65, SEN =

0.83, SPE = 1.00) and testing datasets (Dice = 0.80, IOU = 0.67, SEN

= 0.89, SPE = 1.00).

In the validation set, the Dice of the segmentation model

reaches 0.78; in the test set, the Dice of the segmentation model

reaches 0.80. These results indicate that our interactive

segmentation model exhibits excellent performance in
FIGURE 3

Flowchart presented the step-by-step procedures in machine learning model construction.
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segmentation tasks. Supplementary Table S2 shows the

performance of interactive segmentation model in training and

testing datasets in detail. Figure 4 demonstrates in detail how this

segmentation model works.

We initially extracted a total of 3279 features, comprising 1231

radiomic features and 2048 deep learning features. Utilizing the

Least Absolute Shrinkage and Selection Operator (LASSO) method

for feature screening, we narrowed this down to 64 features. By

using Pearson’s correlation coefficient and Spearman’s rank

correlation coefficients to check whether there is redundancy in

the initial selection of radiomic features and deep learning features,

as well as by using intraclass correlation coefficient and interclass

correlation coefficient to inspect the reproducibility and reliability

of the selected features, 50 features were finally retained, including

46 radiomic features and 4 deep learning features. Supplementary

Table S3 displayed the selected features weights after lasso selection.

Supplementary Table S4 displayed the ICC values in the final

selected 46 radiomic features and 4 deep learning features.

Figure 5 demonstrates a detailed analysis of the performances of

the fusion-features based machine learning algorithm. The AUC

value for the training cohort is 0.940 and the AUC value for the
Frontiers in Oncology 06
testing cohort is 0.905. These values indicate that our model not

only demonstrates excellent performance in standard evaluations

but also maintains robust predictive ability during external

validation. Besides, an ACC value of 0.900 was measured in the

stacking ensemble model, indicating a high level of discrimination

in the diagnosis of urothelial carcinoma with and without

histological variants in this study. A comprehensive comparison

of the final model’s performance against other common machine

learning algorithms is presented in Table 2. Moreover, the decision

curve analysis applied to external validation datasets reveals that

our fusion-feature machine learning model outperforms the “none”

and “all” treatment strategies across various threshold probabilities,

offering a higher net benefit as shown in Supplementary Figure S8.

Supplementary Figures S3, S4 displayed the calibration curve in

training and external validation dataset.
Discussion

In our study, we developed and validated a system that

integrates both radiomic and deep learning features extracted
FIGURE 4

Detailed workflow of the Interactive Segmentation Framework (Operate in order of A–D). (A) Initial interactive segmentation process combined with
positive indicator points (green dots). (B) Initial interactive segmentation process combined with negative indicator points (red dots). (C) Initial
segmentation results. (D) Further segmentation refinement.
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from CT images. This system is designed to efficiently and non-

invasively identify histological variants of bladder cancer at an early

stage. The system incorporates a total of 46 radiometric features and

4 deep learning features, achieving an AUC value of 0.940 for the

training cohort, which demonstrates that the model we constructed

has excellent classification performance. To mitigate the risk of

overfitting, we employed a stacking ensemble machine learning

approach coupled with cross-validation methods. This strategy

proved effective in maintaining the model’s robustness during the
Frontiers in Oncology 07
training phase. In addition, we performed external validation of the

model and achieved an AUC value of 0.905 and an ACC value of

0.900 in the test cohort, which indicates that our model has strong

predictive performance beyond the initial training cohort as well.

Not only that, the RQS analysis result of this study yielded a result

of 15, which attests to the study’s high quality, trustworthiness,

and reproducibility.

To enhance the efficiency of identifying ROIs in bladder tumor-

enhanced CT scans, we have employed a deep learning framework
FIGURE 5

The diagnostic efficacy of each model assessed by ROC curve. In (A), the mean cross-validated ROC of stacking ensemble model was 0.94.
In (B), all four models performed excellently in external validation dataset.
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designed for interactive segmentation of tumor areas. The results of

the interactive framework’s segmentation of bladder tumor regions

contain a variety of data such as tumor size, and participate in the

construction of subsequent stacking ensemble system. Meanwhile,

the segmentation model not only delivers superior segmentation

performance, but also achieves a Dice of 0.80 in external validation,

which indicates that our constructed segmentation framework has

robust generalizability. Obviously, traditional manual segmentation

is time-consuming, labor-intensive and often yields unsatisfactory

results; Fully automated segmentation frequently falls short in

accuracy due to poor image quality and the variability among

patients (30). In contrast, our interactive segmentation approach

substantially reduces the time required for manual segmentation by

radiologists while delivering exceptional results. An efficient

interactive segmentation tool is of great importance for practical

applications. Not only that, we used a more powerful deep learning

algorithm, Swin UNETR, in building this segmentation model,

which makes it possible to achieve strong segmentation results

with less user interaction and less user time.

Bladder cancer with histological variants tends to be more

aggressive and responds less effectively to intravesical and

cisplatin-based systemic therapies (11, 31, 32). In non-muscle-

invasive bladder cancer (NMIBC), the standard treatment

typically involves transurethral resection of the bladder tumor

(TURBT) with the subsequent adjuvant intravesical instillation of

Bacillus Calmette-Guérin (BCG) or chemotherapeutic agents, as

needed (33). However, certain bladder cancer with histological

variants has a lower response rate to intravesical bladder therapy

compared to pure urothelial carcinoma (32, 34, 35). Adhering to

standard treatments in such cases may lead to a poorer prognosis.

Therefore, for these patients, early radical cystectomy might be a

more effective treatment option (31, 36, 37). In muscle-invasive

bladder cancer (MIBC), cisplatin-based combination neoadjuvant

chemotherapy followed by radical cystectomy is its main treatment

modality (8). However, for certain histological variants of bladder

cancer, cisplatin-based combination neoadjuvant chemotherapy is

less effective, potentially leading to disease progression if used as the

initial treatment (11, 34, 38). In these situations, incorporating

immune checkpoint inhibitors or other targeted agents into the
Frontiers in Oncology 08
neoadjuvant therapy, or opting for direct radical cystectomy, might

be more beneficial therapeutic approaches (39, 40). Consequently,

the early and accurate identification of histological variants in

bladder cancer is crucial for urologist’s clinical decision-making,

which significantly impact the prognosis of patients with

bladder cancer.

The gold standard for identifying histological variants in

bladder cancer relies on the pathologist’s judgment of the

pathology specimen (12, 13). However, most of these specimens

are obtained through transurethral cystoscopic biopsy or TURBT.

This leads to the possibility that the pathology specimens obtained

are not all bladder tumor, which in turn affects the pathologist’s

ability to accurately identify the presence or absence of histological

variants. Furthermore, considering that bladder cancer with

histological variants tends to be more aggressive, and the long

process of conducting the preoperative examination and waiting for

pathological results may lead to tumor progression, which in turn

affects patient’s prognosis. In addition, transurethral cystoscopic

biopsy or TURBT is an invasive procedure, which in itself is also a

harm to the patient. Clearly, the conventional method of

determining histological variants of bladder cancer by means of

routine pathological biopsy is flawed. There is a pressing need for a

simpler, more efficient, and noninvasive method to identify these

histological variants of bladder cancer. And the classification model

we constructed in this study is just enough to fulfill the existing

needs. Moreover, because the AI algorithm can identify a lot of

information about the tumor area on CT images, the percentage of

histological variants in bladder cancer does not affect the accuracy

of the model.

Currently, in the realm of bladder cancer research, there have

been a large number of studies evaluating the pathological grading,

muscle invasiveness, efficacy and prognosis of bladder cancer

through models constructed by machine learning algorithms (22–

25, 41, 42), but fewer studies have been conducted in the field of

histological variants. Jingwen Huang et al. (43) constructed a

machine-learning model based on radiomic features of MRI to

predict whether urothelial carcinoma is accompanied by squamous

differentiation. Despite the model ultimately achieved excellent

predictive performance, only being able to differentiate between
TABLE 2 The performance of four classifier models.

Model AUC (95%CI) ACC (95%CI) Sensitivity Specificity

train cohort 5-fold cross-
validation

stacking ensemble 0.940(0.893-0.978) 0.868(0.868-0.869) 0.945(0.885-1.000) 0.856(0.820-0.893)

xgboost 0.950(0.916-0.983) 0.937(0.936-0.937) 0.836(0.739-0.934) 0.952(0.930-0.974)

decision tree 0.825(0.758-0.893) 0.910(0.909-0.910) 0.709(0.589-0.829) 0.941(0.916-0.965)

random forest 0.939(0.901-0.977) 0.910(0.909-0.910) 0.873(0.785-0.961) 0.915(0.887-0.944)

test cohort

stacking ensemble 0.905(0.801-1.000) 0.900(0.897-0.903) 0.857(0.674-1.000) 0.913(0.832-0.994)

xgboost 0.907(0.822-0.991) 0.883(0.880-0.887) 0.714(0.478-0.951) 0.935(0.863-1.000)

decision tree 0.825(0.679-0.970) 0.817(0.812-0.822) 0.786(0.571-1.000) 0.826(0.717-0.936)

random forest 0.873(0.768-0.977) 0.850(0.846-0.854) 0.857(0.674-1.000) 0.848(0.744-0.952)
AUC, Area under the receiver operating characteristic curve; ACC, accuracy score; 95%CI: 95% confidence interval.
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urothelial carcinoma with or without squamous differentiation was

the primary limitation of the study, as the histological variants of

bladder cancer are diverse. For example, when the model is

confronted with an MRI image of a urothelial carcinoma with

sarcomatoid differentiation, it is bound to give the wrong answer.

Moreover, the study only included a sample of 119 cases from a

single institution, so the effect of external validation of the model’s

performance is uncertain. Sehnaz Evrimler et al. (44) developed a

machine learning model using Computed Tomography (CT) to

predict histological variants in bladder cancer. However, only a

sample of 37 cases of radical cystectomy was included in this study.

The authors indicated that the small sample size was attributed to

the exclusive focus on patients who underwent radical cystectomy

and the absence of preoperative CT-enhanced abdominal scans in

some patients. Obviously, our study bridges the gaps existing in

previous studies as much as possible. We focus not only on

maintaining model performance but also on expanding the

sample size and diversifying the sources of our samples, thus

enhancing the robustness and applicability of our findings in this

critical area of bladder cancer research.

Despite our constructed model demonstrates strong diagnostic

performance, the following restrictions exist throughout the study.

Firstly, while this study achieved external validation as well as

secured an adequate sample size, it’s evident that larger sample sizes

could further enhance the construction and generalizability of

machine learning models. Secondly, our study solely relied on

imaging data for model construction. Therefore, additional

research is necessary to determine if integrating clinical and

genetic data into the model could enhance its diagnostic

performance. Thirdly, our study incorporated data from multiple

institutions, where variations in Computed Tomography

specifications across these organizations may have influenced the

model’s construction. Fourthly, due to the sample size of various

types of histological variants, our study was temporarily unable to

identify a specific type of histological variants. This is also a key

direction of our follow-up research.
Conclusion

In summary, we constructed a stacking ensemble system for

early, non-invasive identification of histological variants in bladder

cancer and its model performance achieved excellent results in an

external validation set, which will help urologists make

clinical decisions.
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European association of urology guidelines on muscle-invasive and metastatic bladder
cancer: summary of the 2023 guidelines. Eur UROL. (2023) 85:17–31. doi: 10.1016/
j.eururo.2023.08.016

9. Advanced Bladder Cancer (ABC) Meta-analysis Collaboration. Neoadjuvant
chemotherapy in invasive bladder cancer: update of a systematic review and meta-
analysis of individual patient data advanced bladder cancer (ABC) meta-analysis
collaboration. Eur UROL. (2005) 48:202, 205. doi: 10.1016/j.eururo.2005.04.006

10. Fu M, Klose C, Sparks A, Whalen M. Impact of variant histology on occult nodal
metastasis after neoadjuvant chemotherapy for muscle-invasive bladder cancer: A
review of the national cancer database. Clin Genitourin Cancer. (2022) 20:e135.
doi: 10.1016/j.clgc.2021.11.011

11. Vetterlein MW, Wankowicz S, Seisen T, Lander R, Löppenberg B, Chun FK,
et al. Neoadjuvant chemotherapy prior to radical cystectomy for muscle-invasive
bladder cancer with variant histology. CANCER-AM Cancer Soc. (2017) 123:4346.
doi: 10.1002/cncr.30907

12. Powles T, Bellmunt J, Comperat E, De Santis M, Huddart R, Loriot Y, et al.
Bladder cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-
up. Ann Oncol. (2022) 33:244. doi: 10.1016/j.annonc.2021.11.012

13. Dyrskjøt L, Hansel DE, Efstathiou JA, Knowles MA, Galsky MD, Teoh J, et al.
Bladder cancer. Nat Rev Dis Primers. (2023) 9:58. doi: 10.1038/s41572-023-00468-9

14. Mantica G, Tappero S, Parodi S, Piol N, Spina B, Malinaric R, et al. Bladder
cancer histological variants: which parameters could predict the concordance between
transurethral resection of bladder tumor and radical cystectomy specimens? Cent Eur J
Urol. (2021) 74:355. doi: 10.5173/ceju.2021.140.R1

15. La Croce G, Naspro R, Finati M, Pellucchi F, Sodano M, Manica M, et al. The
accuracy of transurethral bladder resection in detecting bladder cancer histological
variants and their prognostic value at radical cystectomy. J Clin Med. (2022) 11:550.
doi: 10.3390/jcm11030550

16. Kulkarni S, Seneviratne N, Baig MS, Khan A. Artificial intelligence in medicine:
where are we now? Acad Radiol. (2020) 27:62. doi: 10.1016/j.acra.2019.10.001
17. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare.
Future Healthc J. (2019) 6:94. doi: 10.7861/futurehosp.6-2-94

18. Loftus TJ, Tighe PJ, Filiberto AC, Efron PA, Brakenridge SC, Mohr AM, et al.
Artificial intelligence and surgical decision-making. JAMA Surg. (2020) 155:148.
doi: 10.1001/jamasurg.2019.4917

19. Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial intelligence in
cancer research and precision medicine. Cancer Discovery. (2021) 11:900. doi: 10.1158/
2159-8290.CD-21-0090

20. Elemento O, Leslie C, Lundin J, Tourassi G. Artificial intelligence in cancer
research, diagnosis and therapy. Nat Rev Cancer. (2021) 21:747. doi: 10.1038/s41568-
021-00399-1

21. Zhu XH, Wu CL, Zu XB, Lu J. Editorial: The application of artificial intelligence
in diagnosis, treatment and prognosis in urologic oncology. Front Oncol. (2022)
12:1118442. doi: 10.3389/fonc.2022.1118442

22. Wang H, Hu D, Yao H, Chen M, Li S, Chen H, et al. Radiomics analysis of
multiparametric MRI for the preoperative evaluation of pathological grade in bladder
cancer tumors. Eur Radiol. (2019) 29:6182. doi: 10.1007/s00330-019-06222-8

23. Zheng J, Kong J, Wu S, Li Y, Cai J, Yu H, et al. Development of a noninvasive tool
to preoperatively evaluate the muscular invasiveness of bladder cancer using a
radiomics approach. CANCER-AM Cancer Soc. (2019) 125:4388. doi: 10.1002/
cncr.v125.24

24. Wang H, Xu X, Zhang X, Liu Y, Ouyang L, Du P, et al. Elaboration of a
multisequence MRI-based radiomics signature for the preoperative prediction of the
muscle-invasive status of bladder cancer: a double-center study. Eur Radiol. (2020)
30:4816. doi: 10.1007/s00330-020-06796-8

25. Song H, Yang S, Yu B, Li N, Huang Y, Sun R, et al. CT-based deep learning
radiomics nomogram for the prediction of pathological grade in bladder cancer: a
multicenter study. Cancer Imaging. (2023) 23:89. doi: 10.1186/s40644-023-
00609-z

26. Wang G, Zuluaga MA, Li W, Pratt R, Patel PA, Aertsen M, et al. DeepIGeoS: A
deep interactive geodesic framework for medical image segmentation. IEEE Trans
Pattern Anal Mach Intell. (2019) 41:1559. doi: 10.1109/TPAMI.34

27. Pleil JD, Wallace M, Stiegel MA, Funk WE. Human biomarker interpretation:
the importance of intra-class correlation coefficients (ICC) and their calculations based
on mixed models, ANOVA, and variance estimates. J Toxicol Environ Health B Crit
Rev. (2018) 21:161. doi: 10.1080/10937404.2018.1490128

28. Zwanenburg A, Vallières M, Abdalah MA, Aerts H, Andrearczyk V, Apte A,
et al. The image biomarker standardization initiative: standardized quantitative
radiomics for high-throughput image-based phenotyping. RADIOLOGY. (2020)
295:328. doi: 10.1148/radiol.2020191145

29. Lambin P, Leijenaar R, Deist TM, Peerlings J, de Jong E, van Timmeren J, et al.
Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev
Clin Oncol. (2017) 14:749. doi: 10.1038/nrclinonc.2017.141

30. Sharma N, Aggarwal LM. Automated medical image segmentation techniques. J
Med Phys. (2010) 35:3. doi: 10.4103/0971-6203.58777

31. Shapur NK, Katz R, Pode D, Shapiro A, Yutkin V, Pizov G, et al. Is radical
cystectomy mandatory in every patient with variant histology of bladder cancer. Rare
Tumors. (2011) 3:e22. doi: 10.4081/rt.2011.e22

32. Gofrit ON, Yutkin V, Shapiro A, Pizov G, Zorn KC, Hidas G, et al. The response
of variant histology bladder cancer to intravesical immunotherapy compared to
conventional cancer. Front Oncol. (2016) 6:43. doi: 10.3389/fonc.2016.00043

33. Babjuk M, Burger M, Zigeuner R, Shariat SF, van Rhijn BW, Compérat E, et al.
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