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model for pretreatment patient-
specific quality assurance
Xiuwen Yu1†, Jiabin Lin1†, Changfei Gong2†, Minhui Zhang1,
Xianyu Luo1, Qiegen Liu1* and Yun Zhang2*

1Department of Electronic Information Engineering, Nanchang University, Nanchang, China,
2Department of Radiation Oncology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research
Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China
Objectives: Implementing pre-treatment patient-specific quality assurance

(prePSQA) for cancer patients is a necessary but time-consuming task,

imposing a significant workload on medical physicists. Currently, the prediction

methods used for prePSQA fall under the category of supervised learning,

limiting their generalization ability and resulting in poor performance on new

data. In the context of this work, the limitation of traditional supervised models

was broken by proposing a conditional generation method utilizing unsupervised

diffusion model.

Methods: A conditional generation method base on the score-based diffusion

model was proposed, which employed diffusion model for the first time to

predict the predict patients’ therapeutic doses (TherapDose). The proposed

diffusion model TherapDose prediction method (DMTP) learns the data

distribution of dose images. The data distribution contains the quantitative

relationship between the radiotherapy dose (RTDose) derived from the VMAT

plan files of the Treatment Planning System (TPS) and the measured Dose

(MDose, i.e., TherapDose) obtained from the Dolphin Compass physical

system. By sampling from the learnt distribution, efficient prediction of

TherapDose was achieved. The training dataset comprises RTDose, and the

MDose. The three-dimensional information of dose slice was utilized to predict

TherapDose, aiming to enhance the accuracy and efficiency of TherapDose

prediction. Root mean square error (RMSE), mean absolute error (MAE), and

structural similarity (SSIM) metrics were leveraged to validate the effectiveness of

the proposed method. Meanwhile, CT images were further added to test the

impacts of CT images on the prediction effect of MDose.

Results: The DMTP method has demonstrated superior performance in

predicting TherapDose within key anatomical regions including the head and

neck, chest, and abdomen, outperforming existing state-of-the-art methods by

achieving high-quality predictions as measured across different evaluation

metrics. It indicates that the proposed method is highly effective and accurate

in its dose prediction capabilities.
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Conclusions: The proposed method has proven to be highly effective,

consistently outperforming state-of-the-art techniques in MDose prediction

across multiple anatomical regions and evaluation metrics. This method can

serve as a clinical aid to assist medical physicists in diminishing the measurement

workload associated with prePSQA.
KEYWORDS
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1 Introduction

Contemporary radiation therapy stands as a paramount

treatment approach for individuals diagnosed with cancer,

encompassing intensity-modulated radiation therapy (IMRT) and

volumetric-modulated arc therapy (VMAT) (1), which is required

for over 50 percent of patients undergoing cancer treatment (2).

However, quality assurance for radiotherapy planning is often a

tedious, time-consuming, and complex task. Especially

implementing pre-treatment patient-specific quality assurance

(prePSQA) for individual patients. which arises a need for a more

efficient, resource-friendly, and automated method for prePSQA in

dose verification within radiotherapy centers (3, 4).

The advancement in machine learning (ML) and deep learning

(DL), combined with their application in predicting QA outcomes,

is expected to boost the effectiveness of patient–specific QA (5–10).

Valdes et al. developed a Poisson regression model with Lasso

regularization, successfully trained to forecast the gamma passing

rate (GPR) of 3%/3 mm for a dataset consisting of 498 plans (5, 11).

Subsequently, the validation of the predictive model was conducted

across various institutions, employing diverse measurement

approaches (6, 11). Granville employed support vector machines

(SVMs) to categorize plans as cold, hot, or normal, utilizing

parameters related to both plan complexity and accelerator

performance (9, 10). Interian et al. developed a convolutional

neural network (CNN) model (12), utilizing fluence maps from

IMRT plans as its input, which exhibited comparable prediction

accuracy to the previously established Poisson lasso model (8). A

recently introduced prediction model based on ML utilizes a range

of treatment plan parameters, including MLC apertures, gantry/

collimator angles, couch positions and more, as input to predict

dosimetric gamma passing rate (6, 13). This method eliminates the

possibility of inaccuracies linked to the utilization of an unrealistic

surrogate phantom or measurement instruments. Gong et al.

achieved the successful development of a pretreatment prePSQA

for VMAT, incorporating both DL and ML models based on dose–

volume histograms (DVHs) (14). First, they applied a modified

Res–UNet model to anticipate the distribution of the measured dose

(MDose). Subsequently, they employed the XGBoost algorithm for
02
the purpose of determining whether the result qualifies as a pass or

not. Utilizing the MDose distribution enables the complete

reconstruction of DVHs for all structures and facilitates the

visualization of intricate 3D dose variations. Enabling more

accurate detect ion of dose errors cl inical ly relevant,

outperforming the widely utilized gamma indexes (GIs) (14). In

this paper, we refer to MDose–guided DVHs reconstruction for all

structures as the patient therapeutic dose distribution (TherapDose)

more appropriately.

With outstanding presentation capabilities, CNN–based

architectures have achieved significant success in various medical

applications. Owing to the intrinsic locality induced by convolution

operations, these models frequently encounter challenges in

explicitly modeling long–range dependency (15), and these

models solely rely on low–dimensional dosimetry data, lacking

the capability to capture the spatial information of volumetric

doses. The radiation therapy administered to the head and neck

(H&N) entails numerous micro–targets and organs at risk (OARs),

the absence of local spatial information in the predictive networks

could result in dosage errors. DVHs between the assessment of

unapproved doses and the measurement of MDose have been

incorporated into clinical practice. MDose can provide useful

spatial information about complex dose distributions, based on

which the DVH of all relevant structures can be completely

reconstructed and detailed three–dimensional dose differences can

be displayed. Therefore, it is more attractive for prePSQA to accept

a full–volume dose image as input and then directly output a three–

dimensional dose differential distribution.

Up to this point, the dose prediction methods applied to

prePSQA fall within the realm of supervised learning. However,

the generalization capability of supervised learning can be

constrained when confronted with new domains or previously

unseen data. Models may excessively fit the training data, leading

to suboptimal performance on novel data. Unsupervised learning,

on the other hand, proves valuable in unveiling latent patterns and

structures within data, this aids in extracting essential information

from the data, proving particularly beneficial for managing high–

dimensional data and mitigating the intricacies of feature spaces. As

the mainstream unsupervised models, a variety of deep generative
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models represented by the generative adversarial network (GAN)

(16, 17), autoregressive model (18, 19), flow (20), variational

autoencoder (VAE) (21, 22), denoising diffusion probabilistic

model (DDPM) (23), and score–based generative model(SBGM)

(24) have shown great advantages in generating high–quality

samples. Within these models, utilizing a more efficient sampling

approach, the score–based generative model further enhances the

generative capabilities. There has been a recent surge in attention

towards diffusion model and SBGM (23–25), with notable interest

reflected in the works of Austin et al. (26–28). This increased

attention has led to significant progress in advancing the

modeling of continuous data. In the domain of speech synthesis,

SBGM has demonstrated comparable human evaluation scores to

state–of–the–art autoregressive models (29, 30). In the context of

the class–conditional ImageNet generation challenge, SBGM has

surpassed robust GAN baselines, as evidenced by superior FID

scores (31, 32). In the realm of image super–resolution, SBGM has

exhibited remarkable achievements in enhancing facial features,

surpassing the performance of GANs (33).

The probability model of dose dataset is acquired by modeling the

probability distribution of the dose dataset, and the TherapDose image

is generated by sampling from probability distribution. Throughout the

process of parameter fitting, the generative model has the capacity to

acquire prior information. Inspired by this, simultaneously motivated

by Gong et al.’s recent groundbreaking research in predicting 3D

TherapDose (14), we proposed a novel unsupervised score–based

diffusion model approach for predicting TherapDose by exploring its

applicability within the realm of prePSQA. The model perturbs the

data distribution through the introduction of Gaussian noise following

the forward stochastic differential equation (SDE), leading to an known

distribution. The relationship between noise disturbed data

distributions with different noise levels, is learnt by a neural network.

While training, deep priori information is acquired using images with

multi–channel. During the prediction phase, the objective of

incorporating the learned prior information as a constraint in the

data consistency term of an optimization problem, which follows the

least–squares method in iterative reconstruction, is to attain the

optimal solution for dose prediction. Qualitative and quantitative

experimental results demonstrate that the DMTP network

outperforms several representative methods in TherapDose

prediction, providing more accurate predictions. Specifically, the

contributions of this work are summarized as follows:
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• For the first time, the diffusion model “DMTP” is

introduced in the field of radiotherapy for pre–treatment

dose prediction, iteratively refining the target dose image

through denoise, and generating samples from the

data distribution.

• A novel conditional generation approach is proposed,

utilizing multi–channel information to train high–

dimensional priors as conditional guidance for target

images, thereby acquiring more valuable prior knowledge

through multi–channel dose learning.

• The effectiveness of DMTP has been demonstrated on dose

map datasets for head and neck, chest, and abdomen. The

results indicate that the DMTP approach surpasses classic

supervised models such as U–Net and Res–UNet, further

enhancing the accuracy of prePSQA.
2 Materials and methods

2.1 The DMTP method based on score–
based diffusion model

For diffusion model, pdata and pT denote the data distribution of

interest (e.g., the distribution of dose image dataset) and the known

distribution (e.g., Gaussian distribution). During the training

process of diffusion model, the forward Stochastic Differential

Equation (SDE) progressively injects Gaussian noise to transform

complex data distributions into a known prior distribution (i.e.,

Gaussian noise), learning the characteristics of data distribution

between two channels, which consist of RTDose and MDose. In the

reverse SDE phases, the dual–channel input consist of RTDose and

Gaussian noise map. The process of denoising Gaussian noise maps

based on scores is essentially the process of sampling from the

learned distribution. Ultimately the prediction process is achieved

from the Gaussian noise map to the predicted dose (PDose, ideally

the PDose is the MDose), illustrated as Figure 1. The DMTP

method encompasses both the forward SDE and the reverse SDE.

2.1.1 Forward SDE for model training
Forward SDE implements noise addition to dual–channel dose

images. The continuous diffusion process (implemented by forward
FIGURE 1

Forward and reverse processes of diffusion model.
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SDE), denoted as x(t)f gTt−0 with x(t) ∈ Rn (i.e., the two channel

input of diffusion model in this work), Where t belongs to the

interval [0, T], representing the temporal progression, and n

signifies the dimension of the image. The forward SDE process

can be formulated as follows:

dx = f (x, t)dt + g(t)dw (1)

Where f :Rn ↦Rn represents the drift coefficient, while g :R↦
R denotes the diffusion coefficient, and w represents a standard n–

dimensional Brownian motion.

Different SDEs can be constructed by selecting various

functions for both f and g. First, by choosing

f = −
1
2
b(t)x, g =

ffiffiffiffiffiffiffiffi
b(t)

p
(2)

By using a monotonically increasing function of noise scale,

denoted as 0 < b(t) < 1, the Variance Preserving (VP)–SDE can be

attained (34). In this situation, the signal magnitude gradually

diminishes to 0, while the variances preserved to a fixed constant

as t →∞.

2.1.2 Reverse–time SDE for dose prediction
By commencing with samples of x(T)∼ pT and then reversing

the SDE, samples of x(0)∼ pT can be obtained, as described by

Equation 3:

dx = ½f (x, t) − g(t)2∇x log pt(x)�dt + g(t)d�w (3)

Where �w represents a standard Wiener process as time

progresses backward from T to 0, and dt corresponds to an

infinitesimally small negative time step. After obtaining the ∇x log pt
(x) (i.e., score map) for each marginal distribution, for all time steps t.

The reverse diffusion process can be derived using Equation 3 to

sample from p0, achieving dose prediction.
Frontiers in Oncology 04
2.1.3 The score network for score estimation
The modelling of the probability distribution of the dose data

can be achieved through score estimation (34). Score–based

diffusion models approximate a distribution by training a time–

dependent neural network sQ (x, t) to estimate the score of the

distribution, shown in the upper part of Figure 2. Specifically, a U–

Net serves as the neural network of the score–based generative

model, shown in Figure 3. In the inverse SDE, the dose map

disturbed by Gaussian noise and the RTDose function in a two–

channel fashion as a network input, with feeding the temporal steps

t incrementally into the network, as indicated by the deep blue

arrows in Figure 3. By substituting the estimated scores into

Equation 3, noise–disturbed dose images can be denoised (i.e.,

predicting MDose) given t by implementing score estimation via

score networks.
2.4 The DMTP method specific description

During the training process, to address Equation 3, it’s essential

to have knowledge of the score function ∇x log pt(x) for all time

steps. The unknown ∇x log pt(x) in Equation 3 is substituted with

∇x log pt(xt jx0), which can be estimated by the score network.

Where ∇x log pt(xt jx0) signifies the gradient of the Gaussian

perturbation kernel, with x0 as the center. Throughout the

training process, the parameters of the score network SQ (xt , t) are

fine–tuned in accordance with Equation 6:

Q� = argQ min Et l(t)Ex0Ext jx0 ½ SQ (xt , t) − ∇xt logpt(xt jx0)
�� ��2

2

n o
(6)

Once the score network is trained, MDose prediction can be

accomplished by solving the reverse SDE. The reverse SDE

presented in Equation 3 can be reformulated into Equation 7:
FIGURE 2

Flowchart of Dose prediction. Top: Training process for acquiring knowledge of the noise distribution through denoising score matching. Bottom:
Reconstruction process, iteration using numerical SDE solver for achieving reconstruction. DC, data consistency.
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dx = −d½a2(t)�sQ (xt , t) +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d½a2(t)�

dt
d�w

r
(7)

Based on the aforementioned knowledge, the iterative

generation of PDose on the diffusion model comprises two main

stages: prediction and correction, illustrated in the bottom section

of Figure 2. The prediction of noise is derived by solving the reverse

SDE numerically in the diffusion model. Subsequently, the direction

of gradient ascent is adjusted through the application of the

Langevin Markov Chain Monte Carlo algorithm (35),called

correction. Within the prediction phase, Equation 8 is applied to

forecast the data, and the target image, denoted as x̂ i, is produced

based on the prior distribution that has been acquired through

learning.

x̂ i = xi+1 + (a2
i+1 − a2

i )sQ (xi+1,ai+1) +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
i+1 − a2

i z
q

(8)

i = N − 1, ˙ ˙ ˙, 0

Where si represents the noise scale, and i indicates the number

of discretization steps for the reverse SDE, essentially denoting the

number of iterations for dose prediction. The z follows a Gaussian

white noise distribution with a mean of zero and a standard

deviation of 1. During the correction step, we employ the

correction algorithm as described in Equation 9 to rectify the

direction of the gradient ascent.

x
∼
i = x̂i + eiSQ (x̂ i,ai+1) +

ffiffiffiffiffiffiffiffi
2eiz

p
(9)

Algorithm 1 presents the pseudo–code for the reconstruction

algorithm, consisting of two loops. In the Training Process, the

dual–channel data is input into the network to learn the dose data

distribution between two channels. For the prediction process, the

number of iterations (N) in the outer loop is determined by the

discrete steps of the reverse SDE. M is the number of corrector

s teps . The inner loop is refined through annea l ing

Langevin iteration.
Frontiers in Oncology 05
Algorithm 1:DMTP for iterative generation.

Training Process.

Dataset: Dose dataset:x

1: Training SQ (xt,t) ≃ ∇x log pt(xt)

2: Output: Trained SQ (xt,t)

Prediction Process

Setting: SQ, ei, ai,T,M

1: xT
1 ∼N(0,a2

max)

2: z∼N(0, 1)
3: For i = T − 1 to 0 do (Outer loop)

4: Update xi
1 ← Prediction (xi+1

1 ,ai ,ai+1);

5: For j=1 to M do (Inner loop)

6: Update xi
1 ← Corrector (xi

1 ,ai , ei);

7: End for

8: End for

Return x0
Algorithm 1. Training for prior learning.
2.5 Data collection

This study has been approved by the medical ethics committee of

our hospital (2022KY012) and conducted in accordance with the

principles embodied in the Declaration of Helsinki, as well as local

statutory requirements. The requirement for informed consent was

waived by the ethics committee because of the study’s retrospective

nature. And this study only uses imaging and plan data from the

patient’s previous treatment for analysis and will not have any impact

on the patient’s treatment. In addition, there is no commercial

purpose or action in this study. Thereby informed consent from

the patient is not required. Between 2018 and 2021, a cohort of 300

patients underwent VMAT. After integrating the data from head and

neck (H&N), chest, and abdominal tumors to achieve a more

comprehensive feature representation and enhance the predictive
FIGURE 3

The score network structure for the score–based generative model.
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robustness during the training phase, a 4:1 ratio was subsequently

applied to randomly select 240 cases for training purposes, while

designating the remaining 60 cases specifically for testing. Table 1

presents a summary of the clinical characteristics observed in these

patients. CT scans were conducted with the Somatom Confidence

imaging system (Siemens Healthcare, Forchheim, Germany). Senior

radiation oncologists utilized magnetic resonance imaging and

positron emission tomography images to aid in contouring the

target volumes. The VMAT plans were created using the Monaco

TPS (clinical version 5.11) employing the Monte Carlo algorithm.

These plans utilized a 6–MV photon beam and were administered on

an Elekta Infinity machine equipped with an agility MLC. Each plan

underwent optimization to achieve coverage of the target volume that

is deemed clinically acceptable, while also ensuring the sparing of

OARs. The Dolphin–Compass system (version 3.0, IBA Dosimetry,

Schwarzenbruck, Germany) was utilized for the measurement of

prePSQA. Rigorous commissioning of the Dolphin–Compass system,

which included validating accuracy for array measurement, beam

modeling, and dose reconstruction, was carried out beforehand in

accordance with the manufacturer’s specified standards.
2.6 Experiment setup

To assess and measure the effectiveness of the current DMTP

method, three alternative DL methodologies were employed for

comparison, namely U–Net (3, 36, 37), Res–UNet (14), and

TransQA (38). The approaches can be outlined as follows: (1) U–

Net, a conventional encoder–decoder network, has been recently

applied in dose prediction. (2) ResU–Net, utilized for prePSQA,

predicts dose distribution using input data comprising CT

structure, and RTDose obtained from TPS, along with dose

distributions measured by the Dolphin Compass system and

ArcCHECK–3DVHs system. (3) TransQA, this network combines

a Transformer based on a self–attention mechanism with an

improved U–Net for predicting TherapDose of prePSQA. In this
Frontiers in Oncology 06
study, we assessed the proposed model through two input

modalities: A) predicting from RTDose to TherapDose (RTDose

→ TherapDose), B) predicting from both RTDose and CT to

TherapDose (RTDose + CT → TherapDose).

In this study, we employed the Structural Similarity Index

(SSIM) and Mean Absolute Error (MAE) as the evaluation

metrics for assessing the accuracy of prePSQA. SSIM was chosen

due to its ability to capture the structural similarity between the

predicted and actual dose distributions, providing a comprehensive

assessment of the spatial and structural fidelity. Meanwhile, MAE

quantifies the absolute differences between predicted and actual

dose values, offering precise insights into prediction accuracy. To

ensure equity and uniformity, irrespective of the prediction method

employed in this investigation, the data grouping, preprocessing,

and training procedures remained consistent.

In this study, we performed four comprehensive ablation

experiments to gain insight into the functioning of the proposed

DMTP method and confirm its effectiveness under various

parameter configurations. In order to analyze the influence of

noise scale division on the structural characteristics of fractional

network learning dose distribution, experiments were set up for

different iterations (1000 steps, 1500 steps and 2000 steps) and the

same dataset was used for training and testing. According to Part

(b) of Figure 4, when the number of model iterations is 1000, the

fractional network cannot fully learn the image distribution of the

training dataset and reconstruct the dose image within a small noise

scale. When the number of iterations is set to 2000, the extraction of

image features during training is too high, and some unnecessary

image structure details of the training set data are learnt by the

model, which produces a pathological output during the test

reconstruction, and the overfitting leads to the decline of the test

index. Due to the fixed time of one iteration of the model,

considering the cost of time computing power and the effect of

image reconstruction, the model with a noise scale of 1500 is

selected. Since the fractional network is a visual convolutional

neural network, the pixels between different channels are summed

and calculated with multiple convolutional kernels to obtain the

output with different structural information, so controlling the data

information input of each channel is of great significance for the

model to learn the dose distribution. In order to determine the most

suitable channel information input, the two–channel and three–

channel mode control inputs were used for model training and

testing. We trained in 2–channel mode, and in order to compare the

impact of adding CTmode on model performance, we increased the

number of channels and added CT to another channel for training.

Then we tried the model performance of the three–channel model

without CT mode, and found that the model training effect of the

three–channel model was better. And the DMTP starts sampling

the image in the target distribution from the known prior

distribution, i.e., the pure noise map, and the selection of the

initial noise distribution can also affect the quality of the

generated image. We set up different initial noise test models to

better understand the sensitivity of the models to noise. The

fractional network is based on the visual neural network of

convolutional kernels to estimate scores, and the study of the

number of convolutional kernels is also of great significance for
TABLE 1 Clinical attributes of cancer patients included in
this investigation.

Characteristics Sample number Percentage

Gender,no.

Male 191 63.7%

Female 109 36.3%

Age (years)

<20y 25 8.3%

20y–60y 96 32.0%

>60y 179 59.7%

Cancer sites

H&N 115 38.3%

Chest 87 29.0%

Abdomen 98 32.7%
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predicting the reconstruction dose map. For the first convolution

operation of the model, when the number of convolution kernels is

small, the model cannot extract enough structural features for

training, and the model training cannot converge. When the

number of convolution kernels is large, the model is prone to

overfitting and learning unnecessary structural features. At the

same time, the number of initial convolution kernels is

proportional to the number of model parameters, and the

number of convolution kernels is 64 and 128, respectively, to

compare the performance impact of the model, considering the

computing power limitation and the training and testing time. The

results show that a better effect can be achieved with a convolution

kernel of 128.

3 Results

The quantitative results for all test cases are presented in Table 2.

It is evident that our method surpasses other three methods in terms

of three–dimensional dose distribution in two input modes of the

three quantitative indicators. Among these, the DMTP method of

mode A performed the best, with SSIM, RMSE and MAE of 0.9965,

0.0046 and 0.0017, respectively, and the efficacy of this model

significantly surpassed that of U–Net and marginally exceeded that

of Res–UNet. Moreover, in mode B, TransQA exhibits better

performance than both U–Net and Res–UNet, it still does not

exceed the DMTP. For input mode A, the RMSE and MAE values

of DMTP are 56.96% and 54.79% lower than those of Res–UNet,
Frontiers in Oncology 07
respectively, and for mode B, the RMSE and MAE values of DMTP

are 20.72% and 13.56% lower than those of TransQA, respectively.

Figure 5 displays the qualitative outcomes of four distinct cancer

scenarios: cervical cancer, bone metastasis, nasopharyngeal cancer,

and lung cancer. The first, third, fifth, and seventh rows depict the

transverse dose distribution, while the second, fourth, sixth, and last

rows illustrate the disparities between the actual and predicted

values. In visual observation, the dose difference plot of DMTP was

significantly better than that of U–Net, TransQA and Res–UNet,

and in addition, the results with CT input were similar to those

without CT input, and even from the picture, the residual plot with

CT input was better than without CT.

Figure 6 illustrates a comparison of SSIM and MAE predicted by

Res–UNet and DMTP in 60 test patients. We found that the current

DMTP was superior to Res–UNet in SSIM and MAE in all patients.

In addition, Figure 7 displays the transverse profiles of four distinct

cancer patients. The local amplification results show that the curve

matching results of DMTP and MDose are very close, and the other

methods are highly volatile. Compared with Res–UNet, the matching

results of the DMTP method are closer. In other words, the current

method offers more favorable benefits compared to others.

Figure 4 shows the iteration curves of the model for different

iteration steps and different channel numbers, and Figures 4A, B

show that the model with 1500 iterations is better than 1000 and

2000 times. Figure 4C shows that the model performance tends to

decrease with the increase of the number of iteration steps in the 2–

channel mode, while the model training is more stable in the 3–
FIGURE 4

Iteration curves of the model with different iteration steps and different number of channels.
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channel mode. Therefore, we chose a three–channel mode with an

iteration of 1500 steps.

Table 3 shows the performance of DMTP at different noise

scales and convolution kernel counts. The quantitative results

show that the network performance is slightly improved when the

noise scale is 6e*–1 in the non–CT input mode, while the SSIM is

almost the same when the noise scale is 6e*5 in the CT input

mode, however, the MAE of the model is slightly lower when the
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noise scale is 6e*5. At the same time, we observe that as the scale of

noise is added, the time required for the network becomes

progressively longer, and the memory used by the model

becomes larger. When the number of convolution kernels is 64,

the SSIM without CT input is slightly better than that of the model

with 128 convolution kernels, but its MAE will become higher,

while in the CT input mode, when the convolutional kernel is 64,

the SSIM of the model decreases significantly, and the MAE
FIGURE 5

Visualization outcomes of various comparison methods. The first, third, fifth, and seventh rows illustrate the PDose distributions across four distinct
patients, i.e., Cervical case, bone case, NPC case and lung case. The second, fourth, sixth, and eighth rows portray the disparities between the
ground truth and the predictions.
TABLE 2 Comparison of predictions with three advanced methods in terms of SSIM, RMSE, and MAE (MEAN+STD).

Tasks A:RTDose → TherapDose B:RTDose+CT → TherapDose

Metrics SSIM RMSE(%) MAE(%) SSIM RMSE(%) MAE(%)

U–Net 0.9721 ± 0.0227 2.0448 ± 2.0028 0.8226 ± 0.8374 0.9793 ± 0.0270 1.5367 ± 1.6036 0.5524 ± 0.6167

TransQA 0.9837 ± 0.022 1.2231 ± 1.4969 0.3999 ± 0.4908 0.9907 ± 0.1712 0.9792 ± 1.243 0.343 ± 0.4516

Res–UNet 0.9846 ±0.017 1.0750 ± 1.2734 0.3896 ± 0.4593 0.9874 ± 0.0184 1.1144 ± 1.2607 0.4049 ± 0.4708

DMTP 0.9965 ± 0.0031 0.4626 ± 0.3292 0.1761 ± 0.1298 0.9949 ± 0.0039 0.7763 ± 0.6268 0.2965 ± 0.2453
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decreases slightly. After comprehensive consideration, we chose a

noise scale of 6e*–1 and a convolution kernel number of 128

for experiment.

In addition, Figure 8 shows box plots of SSIM and MAE values for

abdominal cases, chest cases, andH&N cases for the fourmethods. It can

be found that the other threemethods have the worst effect in abdominal

cases and the best effect in H&N cases, while DMTP has a more stable

prediction effect on each case and has achieved very good results, and the

numerical outcomes further show that the proposed DMTP surpasses

other methods in predicting TherapDose distribution.
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4 Discussion

In this study, we developed a new unsupervised dose prediction

method based on a diffusion model, in which all three channel data

are diffused into the noise during training to learn the gradient of

the data distribution, and the score is matched by the score

estimation, and the image is recovered from the noise by

spreading backwards during the test phase. To the best of our

knowledge, DMTP is the first unsupervised prePSQA prediction

framework for TherapDose prediction based on diffusion models.
FIGURE 6

(A)Comparison of SSIM for each patient. (B)Comparison of MAE for each patient.
FIGURE 7

The horizontal dose difference profiles at various cancer sites for comparison between measured dose and predicted dose using four different methods. The
“blue line” represents the measured dose., the “black line” represents the TransQA predicted prePSQA dose, the “green line” represents the U–Net predicted
prePSQA dose, the “red line” represents the Res–UNet predicted prePSQA dose, and the “cyan line” represents the DMTP predicted prePSQA dose.
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PrePSQA plays a crucial role as a validation stage within the

IMRT/VMAT regimen. However, the tasks associated with

prePSQA are intricate and demand a significant amount of time.

In recent times, numerous researchers have introduced diverse

approaches aimed at mitigating the complexity and time–

consuming nature of prePSQA work (6–11, 13, 14, 36, 37). The

unsupervised dose prediction network based on the diffusion model

proposed in this study can predict the TherapDose distribution of

multiple cancers based on TPS information. Gong et al. introduced

a newmethod for VMAT prePSQA, incorporating a combination of

DL and ML models based on the DVHs. In a similar fashion, they

utilized TPS information to predict the dose distribution for

prePSQA in cancer cases. Taking inspiration from the work of

Gong et al., we enhanced the input data to enable predictions

transitioning from RTDose to TherapDose (14). Jia et al. introduced

an fGAN (39–42), which relied on radioluminescence imaging for

the validation of radiotherapy dose. To evaluate the performance of

our proposed method qualitatively and quantitatively, we compared

DMTP with U–Net, TransQA, and Res–UNet. The discrepancy

between the predictions of U–Net, TransQA, and Res–UNet in the

high–dose area compared to MDose is evident from Figure 5. For

cervical cancer patients, they have the worst prediction effect, while

DMTP achieves very accurate prediction for all four cancer cases.

It is observed that the method in this paper has obvious

advantages in predicting the main structural features after CT,
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but there is a large noise in the background, which may be the

reason for the low overall index. This background noise is random

in nature and is not correlated with the dose distribution. It

interferes with the denoising score matching process of the

diffusion model during training and inference, leading to

increased noise in the final dose predictions. This contributes to

the lower overall performance metrics, despite the improvement in

capturing the main structural features provided by the inclusion of

CT images. As a result, while CT images offer useful prior

information, their random noise can adversely affect prediction

accuracy in some instances.

Generating a predicted dose map from a pure noise map with a

known distribution is a unique part of this work. According to

Table 3, the choice of the initial noise scale for image generation can

slightly affect the dose prediction, but the lower initial noise can

speed up the iterative process. The results of CT showed that the

generation stability of high noise was relatively improved after CT

was added, suggesting that high initial noise could remove the

instability factors in the image and improve the stability of pixel–

level prediction of dose. It is speculated that high noise reduces the

background noise introduced by CT and improves the stability of

prediction. The number of convolutions at the beginning

significantly affects the model’s ability to extract image features in

the first step. The experimental data analysis in Table 3 shows that a

higher number of convolution kernels can yield more stable
TABLE 3 The effects of different noise scales and number of convolution kernels on DMTP.

Metrics

A:RTDose → TherapDose B:RTDose+CT → TherapDose

SSIM RMSE(%) MAE(%) SSIM RMSE(%) MAE(%)

6e*–1 0.9965 ± 0.0031 0.4626 ± 0.3292 0.1761 ± 0.1298 0.9949 ± 0.0039 0.7763 ± 0.6268 0.2965 ± 0.2453

6e*2 0.9955 ± 0.0066 0.4780 ± 0.4524 0.1866 ± 0.1646 0.9914 ±0.0330 0.9746 ± 3.1825 0.4028 ± 1.5727

6e*5 0.9952 ± 0.0124 0.4790 ± 0.3115 0.1910 ± 0.1274 0.9948 ± 0. 0059 0.4859 ± 0.3778 0.2250 ± 0.1910

64 0.9971 ± 0.004 1.0407 ± 0.9947 0.3584 ± 0.3830 0.9919 ± 0.009 0.6503 ± 0.4467 0.2748 ± 0.2175

128 0.9965 ± 0.0031 0.4626 ± 0.3292 0.1761 ± 0.1298 0.9949 ± 0.0039 0.7763 ± 0.6268 0.2965 ± 0.2453
FIGURE 8

The SSIM and MAE values from three methods for abdominal cases, chest cases and H&N cases. The box represents the interquartile range (IQR),
with the upper and lower boundaries of the box denoting the first quartile (Q1) and the third quartile (Q3), respectively, reflecting the interquartile
range. The horizontal line in the middle of the box represents the median. The figure displays the distribution of experimental results for each group,
as well as the detected outliers (marked with plus signs).
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outputs, and empirically, the training of the model can

be accelerated.

As for hyper–parameter configuration, we utilized a 3x3

convolutional kernel, a standard choice in convolutional neural

networks (CNNs) In this work, known for its balance between

computational efficiency and performance. This configuration was

adopted in line with the default settings of Song et al. (24)’s diffusion

model code. Given its widespread use and proven effectiveness in

various diffusion models, we opted not to conduct an ablation study

on kernel size. However, we acknowledge that exploring different

kernel sizes may further optimize model performance, and this will

be a focus of future investigations.

As can be seen from Figure 6, our DMTP method is better than

Res–UNet for each case in the test set. As can be seen from Figure 7,

the prediction results of U–Net, TransQA and Res–UNet are jagged

and volatile, and there is a certain error with the prediction results

of TherapDose, while the prediction results of our DMTP method

almost match the prediction results of MDose, and there is no

jagged plot line. This suggests that several other methods may have

lost some details during training. As can be seen from Figure 8, the

three methods such as U–Net are not as effective in abdominal

cases, while DMTP has achieved very good predictive results in

abdominal cases, H&N cases, and chest cases, even if the difference

in divorce values is good.

Regarding iteration steps, they refer to the progressive

refinement of the model from a pure noise distribution to the

target data distribution. According to Song et al. (24), increasing the

number of noise levels enhances the model’s capacity to learn a

more accurate representation of the data space by improving

denoising score matching. While a higher number of iterations

can lead to improved performance, this also introduces a trade–off

in terms of longer training times and increased computational cost

during inference. Our study conducted ablation experiments to

identify a balance between the number of iterations and

computational efficiency as shown in Figure 6. Future work will

delve deeper into optimizing iteration steps to minimize overfitting

while maintaining computational feasibility.

Regarding evaluation metrics, although the DICE score is

widely used to assess volumetric overlap, particularly in studies

focusing on the Planning Target Volume (PTV) and Organs at Risk

(OAR), we found SSIM and MAE to be more appropriate for our

analysis. This is because our model focuses on accurately predicting

the spatial details and structural features of dose distributions,

which are better captured by these metrics. Furthermore, by

reconstructing dose–volume histograms (DVHs) based on

predicted dose distributions, as demonstrated in (14), we can

more effectively visualize and quantify clinically significant dose

variations, surpassing the capabilities of the commonly used gamma

index (GI).

Additionally, as isodose lines are essential for clinical dose

assessments, particularly in evaluating PTV coverage and

ensuring proper dose delivery to the target while minimizing

exposure to healthy tissues. However, this study primarily

focuses on the overall accuracy of predicted dose distributions

compared to actual distributions, using metrics like SSIM and

MAE. Since our model assesses broader dose prediction accuracy
Frontiers in Oncology 11
rather than specific prescription doses around the PTV, isodose

line analysis was not a key focus and falls outside the scope of

this evaluation.

Unlike the end–to–end network, which uses a single network to

encode and decode all features and make predictions, the diffusion

model uses a t–dependent fractional network to learn the dose

structure features of different sizes at different noise scales, which

has higher stability. There is limited literature on directly predicting

TherapDose from MDose. Nevertheless, extensive research has

been conducted on dose reconstitution for automated planning

purposes. Building upon Gong et al.’s work, we focused solely on

utilizing RTDose from the TPS as input to train the DMTP network.

The quantitative findings presented in Table 2 also indicate that

more precise predictions can be achieved using RTDose as the sole

input data. In addition, our ablation experiments show that the

number of iteration steps when generating the prediction results

will also have an impact on the generation effect of the model, and

the effect of model generation cannot be optimal when the number

of iteration steps is small, and the model cannot converge well when

the number of iteration steps is too large, thus affecting the

prediction effect. We also compare the model effect of the two–

channel and three–channel models, as shown in Figure 4C, in the

two–channel mode, the model is unstable, and with the increase of

the number of iteration steps, the model first rises and then

decreases, while the three–channel mode will be more stable and

finally converge. According to the results in Table 3, the model has

better results when it starts to reconstruct the image with a small

initial noise.

Owing to the inherent constraints associated with patient data

and DL networks, certain discrepancies between predicted and

measured results are unavoidable. Addressing these discrepancies

in the future involves augmenting the dataset size or refining DL

networks through optimization. Regarding the potential

computational demands of multi–channel inputs and iterative

reconstruction processes, we have implemented several

optimization strategies within the model architecture to enhance

computational efficiency and reduce inference time. For example,

we adjusted the number of convolution kernels and the number of

iterations to balance computational load and prediction accuracy.

Additionally, during hyperparameter tuning, we weighed the trade–

off between computational capacity and model precision to find the

optimal balance. In future work, we plan to explore further

optimization strategies, such as model compression techniques

(e.g., pruning and quantization) and more efficient inference

acceleration methods (e.g., GPU–based parallelization), to achieve

faster real–time predictions. This will be a key focus of our future

efforts to ensure the practical feasibility of the model in clinical

settings. However, with the rapid advancement of computing and

specialized hardware, improving the computational efficiency of the

current DMTP method may become a less pressing issue.

Nonetheless, the 3D TherapDose prediction of prePSQA, coupled

with diffusion models, holds the potential to drive enhancements in

prePSQA surpassing current or historical clinical practices.

Furthermore, with ongoing refinement of our method, its

adaptability to various radiotherapy scenarios is invaluable and

plays a substantial role in clinical applications.
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5 Conclusion

This research introduces a novel dose prediction method

utilizing an unsupervised diffusion model. The experimental

findings indicate a high concordance between the predicted

TherapDose distribution and the actual scenario. DMTP emerges

as a valuable tool, demonstrating effectiveness in dose validation

and contributing to enhanced efficiency in prePSQA.
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