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Genomic profiling of NSCLC
tumors with the TruSight
oncology 500 assay provides
broad coverage of clinically
actionable genomic alterations
and detection of known
and novel associations
between genomic alterations,
TMB, and PD-L1
Zachary D. Wallen1*, Mary K. Nesline1, Marni Tierno2,
Alison Roos2, Erica Schnettler2, Hatim Husain3,
Pratheesh Sathyan2, Brian Caveney4, Marcia Eisenberg4,
Eric A. Severson1 and Shakti H. Ramkissoon1,5

1Labcorp Oncology, Durham, NC, United States, 2Illumina, San Diego, CA, United States,
3Moores Cancer Center at UC San Diego Health, La Jolla, CA, United States, 4Labcorp, Burlington,
NC, United States, 5Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine,
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Introduction:Matching patients to an effective targeted therapy or immunotherapy is

a challenge for advanced and metastatic non-small cell lung cancer (NSCLC),

especially when relying on assays that test one marker at a time. Unlike traditional

singlemarker tests, comprehensive genomic profiling (CGP) can simultaneously assess

NSCLC tumors for hundreds of genomic biomarkers andmarkers for immunotherapy

response, leading to quicker and more precise matches to therapeutics.

Methods: In this study, we performed CGP on 7,606 patients with advanced or

metastatic NSCLC using the Illumina TruSight Oncology 500 (TSO 500) CGP assay

to show its coverage and utility in detecting known and novel features of NSCLC.

Results: Testing revealed distinct genomic profiles of lung adenocarcinoma and

squamous cell carcinomas and detected variants with a current targeted therapy

or clinical trial in >72% of patient tumors. Known associations between genomic

alterations and immunotherapy markers were observed including significantly

lower TMB levels in tumors with therapy-associated alterations and significantly

higher PD-L1 levels in tumors with ALK, MET, BRAF, or ROS1 driver mutations.

Co-occurrence analysis followed by network analysis with gene module

detection revealed known and novel co-occurrences between genomic

alterations. Further, certain modules of genes with co-occurring genomic

alterations had dose-dependent relationships with histology and increasing or

decreasing levels of PD-L1 and TMB, suggesting a complex relationship between

PD-L1, TMB, and genomic alterations in these gene modules.
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Discussion: This study is the largest clinical study to date utilizing the TSO 500. It

provides an opportunity to further characterize the landscape of NSCLC using

this newer technology and show its clinical utility in detecting known and novel

facets of NSCLC to inform treatment decision-making.
KEYWORDS

non-small cell lung cancer, genomic profiling, immune checkpoint inhibitors, TMB, PD-
L1, clinical utility, targeted therapy, genomics
1 Introduction

Lung cancer is the leading cause of cancer-related death, with an

estimated 1.8 million deaths worldwide (1). Non-small lung cancer

(NSCLC) is the most common type of lung cancer and is comprised

of three major histologic subtypes, including adenocarcinoma,

squamous-cell carcinoma, and large-cell carcinoma in 40-50%,

20-30%, and 5-10% of diagnoses, respectively (2, 3). Although

smoking is a risk factor for all types of lung cancer, squamous-

cell carcinoma is strongly associated with smoking (4). Comparative

sequencing studies have demonstrated distinct genomic profiles

within NSCLC subtypes, with non-squamous NSCLC frequently

harboring more alterations in oncogenes, including KRAS, EGFR,

BRAF, and MET, while squamous cell carcinomas frequently have

TP53 and CDKN2A mutations (5–8). Oncogenic-driven NSCLCs

are typically devoid of other drivers and have distinct patterns of

tumor mutational burden (TMB) and PD-L1 positivity (9, 10).

The clinical application of precision medicine has transformed

the management of patients with NSCLC, especially for patients with

non-squamous NSCLC (11). The identification of oncogenic drivers

in NSCLC, some of which are therapy-associated targets, has enabled

a shift from chemotherapy to genomics-informed targeted therapy (5,

9, 12). Systemic therapy for patients with advanced and metastatic

NSCLC is currently best tailored according to the presence or absence

of genomic alterations in 11 genes that are associated with FDA-

approved therapies (13). FDA-approved therapies are generally

recommended by professional guidelines as first-line treatment of

patients with therapy-associated alterations (13, 14). Patients with

advanced NSCLC that harbor therapy-associated alterations have

improved overall survival when treated with matched targeted

therapies compared to chemoimmunotherapy (15, 16). For patients

without FDA-approved targeted therapy options, clinical trial-

associated alterations can inform alternative therapy options and

clinical trial participation is encouraged by professional

guidelines (13).

The increasing complexity of treatment decision-making for

patients with advanced NSCLC necessitates broad molecular

profiling before first-line therapy (13, 17). Current practice

guidelines recommend establishing histologic subtypes with

adequate tissue for biomarker testing. For patients with non-

squamous NSCLC, molecular testing is recommended for
02
genomic alterations in 11 genes (EGFR, ALK, KRAS, ROS1,

BRAF, NTRK1/2/3, MET, RET, and ERBB2) in addition to PD-L1

immunohistochemistry (IHC) using a broad next-generation

sequencing (NGS) panel to capture oncogenic driver alterations

for matched FDA-approved therapies or clinical trials (13). For

patients with squamous cell carcinoma, guidelines state molecular

testing should be considered (13). Comprehensive genomic

profiling (CGP) is a broad molecular profiling approach that

utilizes NGS to detect known and novel alterations in hundreds

of genes and immune signatures to inform treatment decisions

across all solid cancer types. Some panels include RNA-seq which

can increase the rates of gene fusion detection. As such in real-world

clinical practice, CGP increases successful biomarker testing and

helps avoid potentially missed treatment options in patients with

newly diagnosed, advanced NSCLC (18).

Although biomarker-driven targeted therapy and immunotherapy

have revolutionized the treatment landscape of metastatic NSCLC,

clinicians must be cognizant of the precise sequencing of treatment

and the potential development of resistance and/or co-occurring

alterations that can hinder treatment responses. The effect of

oncogenic drivers on immunotherapy efficacy is an area of active

investigation (10, 17, 19). Although some patients with NSCLC

achieve durable responses with immune checkpoint inhibitors

(ICIs), not all patients benefit, and many tumors are resistant to

treatment (19–21). Studies have demonstrated that upfront ICI

monotherapy has low efficacy in patients with driver-positive

NSCLC, although some exceptions exist (16, 17, 19). Another area

of active clinical investigation is the impact of co-mutations on

targeted therapy response (9, 22, 23). For example, recent

investigations into factors that confer primary resistance to KRAS

G12C inhibitors revealed a diversity of genomic resistance

mechanisms, including co-mutations in STK11, KEAP1, and TP53

(22, 24). Ongoing clinical trials with KRAS G12C inhibitors are

investigating combination approaches to combat resistance (24, 25).

Thus, understanding genomic heterogeneity and the interplay of co-

occurring alterations in NSCLC tumors is becoming increasingly

important in understanding responses to both targeted

and immunotherapy.

Herein, we assessed the spectrum of current FDA therapy-

associated and clinical trial-associated biomarkers, along with

known and novel patterns of co-mutations and co-occurrence
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with biomarkers predictive of immunotherapy response, using the

Illumina TruSight® Oncology 500 (TSO 500) CGP assay (26). The

TSO 500 is an analytically validated, broad-coverage CGP assay that

uses DNA sequencing to detect small variants in the entire exonic

coding region of 523 genes (single and multi-nucleotide

substitutions, insertions, and deletions), copy number alterations

in 59 genes (gains and losses), as well as analysis of microsatellite

instability (MSI) and TMB genomic signatures. RNA sequencing is

concurrently performed to detect fusions and splice variants in 55

genes. In this study, we perform the largest clinical study to date

utilizing the TSO 500, providing an opportunity to further

characterize the landscape of NSCLC and show its clinical utility

in detecting known and novel facets of NSCLC.
2 Methods

2.1 Patient cohort

Approval for this study, including waiver of informed consent,

was obtained from the Western Institutional Review Board

Copernicus Group (WCG protocol # 1340120).

We retrospectively analyzed clinical CGP testing data from

NSCLC FFPE tumor biopsy specimens submitted for CGP testing at

a reference laboratory (OmniSeq/Labcorp, Buffalo, NY) during

standard clinical care from June 2021 - June 2024. Specimens

were collected from 647 provider facilities across the United

States and Alaska. Any cases that were ultra-hypermutated (TMB

> 200 mutations/Mb) and did not have adenocarcinoma or

squamous cell carcinoma histology were excluded from the study.

The total number of cases included in the study was 7,606 (5,523

with adenocarcinoma and 2,083 with squamous cell carcinoma).
2.2 Comprehensive genomic profiling

DNA and RNA were co-extracted from FFPE tissue specimens

and submitted for library preparation and sequencing using the

hybrid-capture-based TSO 500 assay (Illumina, San Diego, CA,

USA) as part of OmniSeq® INSIGHT (OmniSeq/Labcorp, Buffalo,

NY, USA). OmniSeq® INSIGHT is a comprehensive genomic and

immune profiling assay performed in a laboratory accredited by the

College of American Pathologists (CAP) and certified by the Clinical

Laboratory Improvement Amendments (CLIA) (26). OmniSeq®

INSIGHT is an NGS-based in vitro diagnostic device for detecting

genomic variants, signatures, and immune gene expression in FFPE

tumor tissue. Within the OmniSeq® INSIGHT framework, DNA

sequencing with hybrid capture (via TSO 500) detects small

nucleotide variants (SNVs) in exonic regions of 523 genes (single

and multi-nucleotide substitutions, insertions, and deletions), copy

number variants (CNVs) in 59 genes (gains and losses), as well as

analysis of microsatellite instability (MSI) and TMB genomic

signatures. RNA sequencing with hybrid capture (via TSO 500)

detects fusions and splice variants in 55 genes. Variant annotation is

performed using the GenomeOncology Precision Oncology

Platform (GenomeOncology, Cleveland, OH, USA). Only genomic
Frontiers in Oncology 03
alterations annotated as known pathogenic were analyzed in the

current study.
2.3 Immunohistochemical studies

For all tumor types, PD-L1 expression on the surface of tumor

cells was measured by Dako PD-L1 IHC 22C3 pharmDx (Agilent,

Santa Clara, CA). A board-certified anatomical pathologist scored

expression according to published guidelines (27) as tumor

proportion score (TPS), the percentage of tumor cells with

positive linear membranous staining.
2.4 Statistical analysis

Statistical analysis and plot generation were performed in R v

4.4.1 (https://www.r-project.org/). All plotting was performed using

the ggplot2 v 3.5.1 package (https://ggplot2.tidyverse.org/) and

various packages to extend the ggplot2 functionality (ggpubr,

ggtext, GGally, ggraph).

To assess differences between adenocarcinoma and squamous

cell carcinoma NSCLC in patient and tumor characteristics and

genomic alteration prevalence, Fisher’s exact test (via `fisher.test`

function) or linear regression (via `lm` function) was performed for

categorical or quantitative variables, respectively.

To assess differences in the distributions of immunotherapy

markers in tumors with guideline-indicated alterations, non-

guideline-indicated alterations, and tumors without alterations in

any currently known driver genes, we tested for differences in

immunotherapy markers between the different alteration groups

in known NSCLC driver genes (ALK, EGFR, MET, BRAF, ROS1,

KRAS, ERBB2). TMB was treated as a quantitative variable

(mutations/Mb), and PD-L1 22C3 IHC TPS was treated as a

categorical variable with levels of “Negative (<1%)”, “Low (1 -

49%)”, and “High (≥50%)”. Tests for differences in TMB and PD-L1

were performed using linear regression (via the `lm` function) and

penalized likelihood ratio tests (via `logistf` and `logistftest`

functions from the logistf v 1.26.0 package), respectively. Tests

were adjusted for NSCLC histology by adding this variable as a

covariate in the analysis. P-values were corrected for multiple

testing within each driver gene using the `p.adjust` function with

`method=“ bonferroni”`. Distributions of TMB and PD-L1 levels

were plotted for alteration groups within each gene using ggplot2.

To detect co-occurrence or mutual exclusivity of genomic

alterations, pairwise Fisher’s exact tests were performed between

each pair of gene-level summarized genomic alterations using the

`fisher.test` function. P-values were multiple testing corrected using

the Benjamini-Hochberg false discovery rate (FDR) method as

implemented in the `p.adjust` function when `method=“BH”`.

Multiple testing corrected FDR q-values < 0.05 were considered

significant. The proportion of co-occurrence between genomic

alterations was also calculated to discern which pairs had

complete exclusivity (i.e., the proportion of co-occurrence = 0).

Only genomic alterations detected in at least 1% of patient tumors

were included in the analysis.
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To model higher-order co-occurrences or mutual exclusivities

and detect gene modules of tightly co-occurring genomic

alterations, network analysis was applied to co-occurrence results

to generate a network of pairwise interactions between gene-level

summarized genomic alterations. Co-occurrence analysis results

were filtered for significant associations and then imported into the

igraph v 1.3.5 package (https://igraph.org/) to create an igraph

network. The degree and weighted degree for each node of the

network (i.e., the genomic alterations and immunotherapy markers)

were calculated using the `degree` and `strength` functions,

respectively, from the graph specifying `weights` of the weighted

degree to be the absolute odds ratio (OR) from Fisher’s exact test.

The absolute OR was taken to be the OR if the OR was > 1 or the

inverse of the OR if the OR < 1. Gene modules were defined within

the network by how tightly their genomic alterations associated

with one another using the community detection algorithm

implemented in the `cluster_infomap` function in igraph,

specifying the `e.weights` to be the ORs from Fisher’s exact test

and the `v.weights` to be the weighted degree of each node. The R

implementation of the Force Atlas 2 algorithm (from the

ForceAtlas2 v 0.1 package, https://github.com/analyxcompany/

ForceAtlas2) was used to position nodes in the network. The

network was plotted using the graph v 2.1.0 package (https://

bioconductor.org/packages/release/bioc/html/graph.html)

specifying the Force Atlas 2 coordinates as the positions for

the nodes.

To assess if a dose-dependent relationship existed between

histology, immunotherapy markers (TMB, PD-L1), and an

increasing number of genomic alterations within a gene module,

differences in each variable were tested between NSCLC tumors

with none, one, or ≥2 genomic alterations within genes co-

occurring in each network-derived gene module.
3 Results

3.1 Patient and patient
tumor characteristics

We retrospectively analyzed real-world CGP data from 7,606

patients with NSCLC who received CGP testing via TSO 500 and

PD-L1 IHC at a reference laboratory during standard clinical care.

Testing was performed on FFPE tumor biopsy specimens between

2021 and 2024. Specimens were collected from 647 provider

facilities across the United States and Alaska. Patient and patient

tumor characteristics in the full cohort and when stratified by

histology subtype are provided in Table 1. Most of the cohort was

lung adenocarcinomas (73%), with squamous cell carcinomas

comprising the remaining third (27%). The mean age of patients

was 70.7 ± 9.7 years, with 49% males and 51% females. A

significantly higher frequency of females had tumors with

adenocarcinoma, while males had significantly more tumors with

squamous cell histology (P=4E-35; Table 1). Tissue specimens for

this study came from the primary tumor site in 70.4% of cases and

the advanced or metastatic site in 18.9% and 10.8% of cases,

respectively, with adenocarcinoma cases being significantly
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enriched in the latter (P<3E-21; Table 1). For patients with

known staging information (N=2,631), 16% were stage III and

66.2% were stage IV. The mean number of detected pathogenic

alterations for all NSCLC cases was 3.9 ± 2.4 with adenocarcinoma

cases having significantly less on average than squamous cell

carcinoma (3.8 ± 2.3 vs 4.2 ± 2.5, P=7E-8; Table 1). The mean

TMB level for all NSCLC cases was 11 ± 11.1 mutations/Mb, with

12.5% of cases having a TMB of ≥20 mutations/Mb, 30.2% having a

TMB of 10-19 mutations/Mb, and 57.2% having a TMB of <10

mutations/Mb. The mean PD-L1 TPS score among tumors was 22.2

± 31.1, with 25.1% of cases having a TPS of ≥50%, 37.7% having a

TPS of 1 - 49%, and 37.2% having a TPS of <1%. Most cases were

microsatellite stable, with only 23 MSI high cases (0.3%). Tumors

with adenocarcinoma histology tended to have more cases with

TMB of <10 mutations/Mb (P=1E-22) and negative PD-L1 (P=5E-

8) compared to squamous cell carcinoma cases, however, showed a

slight, but significant, enrichment of tumors with high/very high

levels of these markers (P<0.02; Table 1).
3.2 Prevalence of pathogenic genomic
alterations detected by TSO 500

Of the 7,606 samples tested, 44% were positive for therapy-

associated genomic alterations, and 77% were positive for clinical

trial-associated genomic alterations or genomic alterations with an

accepted therapy in another tumor type (Figure 1A; Table 1).

Adenocarcinomas harbored significantly more therapy- (57.5%)

and clinical trial- (79.4%) associated variants than squamous cell

carcinomas (7.3% and 72.1%, respectively) (P<3E-11; Table 1). The

most prevalent genomic alterations detected in NSCLC tumors were

substitutions (79%) followed by small insertions/deletions (Indels;

45%), splice site variants (26%), gene fusions (14%), larger CNVs

(12%), and other complex types of SNVs (6%) (Figure 1A).

Pathogenic alterations in 296 genes were detected in ≥0.1% of

tested tumors with alterations in TP53, KRAS, or EGFR being

detected in >10% of tested tumors (Figure 1B; Supplementary

Table S1). Adenocarcinoma cases had a higher prevalence of

SNVs, CNVs, and/or fusions/rearrangements in 28 genes

including therapy-associated genes such as KRAS (37.5% vs

4.6%), EGFR (17.1% vs 1.3%), BRAF (5.2% vs 1%), ERBB2 (1.8%

vs 0.8%), RET (0.9% vs 0.3%), and ROS1 (1.2% vs 0.1%) (Figure 1B;

Supplementary Table S1). Squamous cell carcinomas had a

significantly higher prevalence of genomic alterations in 43 genes

including TP53 (81.9% vs 48.7%), CDKN2A (16.3% vs 4.4%),

PIK3CA (11.6% vs 4.2%), RB1 (6.6% vs 4.1%), and NFE2L2 (13%

vs 1.2%) (Figure 1B; Supplementary Table S1). FDA-emerging

biomarkers were present in both histologies, with genes like

STK11, KEAP1, and others more frequently altered in lung

adenocarcinoma (Figure 1B; Supplementary Table S1). The most

prevalent alterations identified by RNA sequencing included

fusions or exon skipping mutations involving therapy-associated

genesMET (2.9%), ALK (1.7%), ROS1 (0.9%), and RET (0.7%), all of

which were detected at a significantly higher frequency in

adenocarcinoma cases (Figure 1C; Supplementary Table S1). Of

note, squamous cell carcinoma cases had enrichment of fusions
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TABLE 1 Patient and patient tumor characteristics.

Variable

All patients Adenocarcinoma
Squamous

cell carcinoma

P
N

Summary
stats

N
Summary

stats
N

Summary
stats

Total number of patients 7606 – 5523 – 2083 – –

Gender (N, %) 7603 5521 2082

Female 3881 (51%) 3058 (55.4%) 823 (39.5%)

Male 3722 (49%) 2463 (44.6%) 1259 (60.5%) 4E-35

Age (Mean ± SD) 7606 70.7 ± 9.7 5523 70.4 ± 10 2083 71.5 ± 8.7 7E-6

Age group (N, %) 7606 5523 2083

≤40 44 (0.6%) 39 (0.7%) 5 (0.2%) 0.017

41-50 153 (2%) 136 (2.5%) 17 (0.8%) 1E-6

51-60 832 (10.9%) 653 (11.8%) 179 (8.6%) 4E-5

61-70 2589 (34%) 1854 (33.6%) 735 (35.3%) 0.17

71-80 2758 (36.3%) 1940 (35.1%) 818 (39.3%) 8E-4

81-90 1145 (15.1%) 837 (15.2%) 308 (14.8%) 0.72

>90 85 (1.1%) 64 (1.2%) 21 (1%) 0.63

Tissue specimen location (N, %) 7606 5523 2083

Primary 5352 (70.4%) 3618 (65.5%) 1734 (83.2%) 4E-55

Advanced 1436 (18.9%) 1203 (21.8%) 233 (11.2%) 7E-28

Metastatic 818 (10.8%) 702 (12.7%) 116 (5.6%) 3E-21

Unknown clinical stage (N, %) 4975 (65.4%) 3513 (63.6%) 1462 (70.2%) –

Known clinical stage (N, %) 2631 (34.6%) 2010 (36.4%) 621 (29.8%) –

Known clinical stage (N, %) 2631 2010 621

Stage I 301 (11.4%) 246 (12.2%) 55 (8.9%) 0.021

Stage II 166 (6.3%) 109 (5.4%) 57 (9.2%) 1E-3

Stage III 422 (16%) 262 (13%) 160 (25.8%) 5E-13

Stage IV 1742 (66.2%) 1393 (69.3%) 349 (56.2%) 3E-9

Number of detected known pathogenic
alterations (Mean ± SD)

5781 3.9 ± 2.4 4190 3.8 ± 2.3 1591 4.2 ± 2.5 7E-8

Genomic variants with known or potential
clinical significance (N, %)

7606 5523 2083

Guideline-indicated 3328 (43.8%) 3176 (57.5%) 152 (7.3%) 0

Clinical trial or therapy in other tumor type 5887 (77.4%) 4385 (79.4%) 1502 (72.1%) 3E-11

Neither above, but known pathogenic 1641 (21.6%) 1064 (19.3%) 577 (27.7%) 5E-15

TMB (Mut/Mb) (Mean ± SD) 6705 11 ± 11.1 4865 10.7 ± 11.3 1840 11.8 ± 10.6 2E-4

TMB level (N, %) 6705 4865 1840

Very high (≥20) 841 (12.5%) 645 (13.3%) 196 (10.7%) 4E-3

High (10-19) 2027 (30.2%) 1258 (25.9%) 769 (41.8%) 1E-35

Not high (<10) 3837 (57.2%) 2962 (60.9%) 875 (47.6%) 1E-22

PD-L1 22C3 TPS (Mean ± SD) 7558 22.2 ± 31.1 5487 22.7 ± 31.5 2071 21.1 ± 29.8 0.049

(Continued)
F
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involving FGFR1 (0.9% vs 0.3%), FGFR3 (0.8% vs 0.2%), and

PIK3CA (0.5% vs <0.01%) (Figure 1C; Supplementary Table S1).

In total, 399 specific mutations were detected at a prevalence of

≥0.1% among tested NSCLC tumors (Supplementary Table S2). The

most prevalent single variants detected were therapy-associated

substitutions in KRAS including G12C (11.3%), G12V (5.8%), G12D

(4.2%), and G12A (2%). First-line therapy-associated variants in EGFR

and BRAF were also among the topmost prevalent single variants

including the EGFR L858R substitution (4.6%) and E746-A750

deletion (3.3%) and the BRAF V600E substitution (1.5%). These and

28 other mutations were detected at a significantly higher prevalence in

adenocarcinoma cases including therapy-associated MET exon 14

skipping mutations (3.8% vs 0.8%), EML4-ALK fusions (2% vs 0%),

and KIF5B-RET fusions (0.5% vs 0.1%) (Supplementary Table S2).

Squamous cell carcinoma cases were enriched for 54 specific mutations

compared to adenocarcinoma cases including several substitutions in

PIK3CA, TP53, and NFE2L2 that had current clinical trials in NSCLC

or had an approved therapy in another tumor type (Supplementary

Table S2). The most significantly enriched mutations, however, were

amplifications of PIK3CA (2.9% vs <0.01%) and fibroblast growth

factor (FGF)-associated genes including FGF4 (5% vs 0.7%), FGF3

(5.2% vs 0.8%), CCND1 (5.2% vs 0.8%), FGF19 (4.7% vs 0.8%), and

FGFR1 (3.8% vs 0.2%), some of which (PIK3CA, FGFR1) had current

clinical trials in NSCLC (Supplementary Table S2).
3.3 Associations between biomarkers of ICI
response and oncogenic drivers in NSCLC

We next examined the association between TMB and PD-L1

expression and oncogenic driver mutations in known driver genes

of NSCLC including ALK, EGFR¸ MET, BRAF, ROS1, ERBB2, and

KRAS. To detect associations, we tested for differences in TMB and

PD-L1 between tumors with known driver mutations compared to

tumors with non-driver mutations in the same gene and tumors

without any alterations in any known driver genes of NSCLC
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(driver gene negative) (Figure 2; Supplementary Figure S1;

Supplementary Tables S3, S4).

Overall, significantly lower TMB levels were observed across all

tumors with therapy-associated driver mutations and significantly

higher PD-L1 levels were observed in tumors with ALK, MET,

BRAF, or ROS1 driver mutations (Figure 2; Supplementary Table

S4). Tumors with EML4-ALK and other ALK fusions had a

significantly lower median TMB (3.1 mut/Mb; 3.9 mut/Mb)

compared to those with non-fusion ALK alterations (11.7 mut/Mb)

and driver gene negative tumors (10.2 mut/Mb) yet had a significantly

higher frequency of high PD-L1 TPS scores (scores ≥50%) than the

other tumor groups (36% vs ≤23%) (Figure 2A). Tumors harboring

therapy-associated EGFR alterations had significantly lower TMB

(median 4.6 mut/Mb) and frequency of high PD-L1 scores (15%)

compared to tumors with other EGFR alterations and driver-gene

negative tumors (≥9 mut/Mb and ≥19%) (Figure 2B). Tumors with

MET exon 14 skipping mutations had a significantly lower TMB (5.5

mut/Mb) compared to tumors with MET amplifications, other MET

alterations, and driver gene negative tumors (≥8.5 mut/Mb)

(Figure 2C). Tumors with MET exon 14 skipping and MET

amplifications had significantly higher frequencies of high PD-L1

scores (46% and 70%) compared to tumors with other MET

alterations and driver gene-negative tumors (≤29%) (Figure 2C). Of

note,MET-amplified tumors had the highest frequency of high PD-L1

scores out of all tested tumor groups, with most of these tumors being

detected as PD-L1 high (Figure 2C). Tumors with BRAF V600E

mutations had significantly lower TMB scores (4.6 mut/Mb)

compared to other BRAF alterations and driver gene negative tumors

(≥10.2 mut/Mb) yet had a significantly higher frequency of high PD-L1

scores (46%) than the other tumor groups (≤28%) (Figure 2D).

Similarly, tumors with ROS1 fusions had significantly lower

TMB (4.6 mut/Mb) than driver gene-negative tumors, but

significantly higher frequency of high PD-L1 scores (29%)

(Figure 2E). Tumors with ERBB2 exon 20 insertions (Y772-

A775dup) had significantly lower TMB (5 mut/Mb) than driver

gene-negative tumors and tumors with ERBB2 amplifications or
TABLE 1 Continued

Variable

All patients Adenocarcinoma
Squamous

cell carcinoma

P
N

Summary
stats

N
Summary

stats
N

Summary
stats

PD-L1 level (N, %) 7558 5487 2071

High (≥50%) 1897 (25.1%) 1416 (25.8%) 481 (23.2%) 0.022

Low (1 - 49%) 2848 (37.7%) 1927 (35.1%) 921 (44.5%) 1E-13

Negative (<1%) 2813 (37.2%) 2144 (39.1%) 669 (32.3%) 5E-8

MSI level (N, %) 6708 4863 1845

MSI High 23 (0.3%) 9 (0.2%) 14 (0.8%)

Stable 6685 (99.7%) 4854 (99.8%) 1831 (99.2%) 1E-3
N, number of cases with data for variable; SD, the standard deviation of the mean; TMB, tumor mutational burden, measured as mutations per megabase (Mut/Mb); TPS, tumor proportion score
(i.e., the proportion of tumors positive for PD-L1 immunohistochemistry with 22C3 antibody as observed by a pathologist); MSI, microsatellite instability score; P, uncorrected P-value from
testing differences between adenocarcinoma and squamous cell carcinoma using Fisher’s exact test or linear regression for categorical or quantitative variables, respectively.
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other therapy-associated ERBB2 alterations (≥7 mut/Mb) (Figure 2F).

Tumors with ERBB2 amplifications or other therapy-associated ERBB2

alterations had significantly higher frequencies of PD-L1 negative

scores (≥49%) compared to driver gene negative tumors

(38%) (Figure 2F).

Comparing different KRAS alterations, tumors with KRAS

G12D (6.2 mut/Mb), G12A (8.6 mut/Mb), G12V (8.6 mut/Mb),

and Q61H (7 mut/Mb) alterations had the lowest TMB among
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tumors with KRAS alterations (<10 mut/Mb) and significantly

lower TMB than all other tested KRAS tumor groups (≥10 mut/

Mb) (Supplementary Figure S1A; Supplementary Table S4).

Tumors with KRAS G13C and G13D had the highest frequency

of PD-L1 scores ≥50% (≥41%) among tumors with KRAS

alterations and had a significantly higher frequency than tumors

positive for Q61H and driver gene negative tumors (≤23%)

(Supplementary Figure S1B; Supplementary Table S4). Tumors
FIGURE 1

Landscape of genomic alterations detected by TSO 500 in 7,606 NSCLC tumors. (A) Overall prevalence of alteration types detected including
clinically informative alterations. (B) Gene-level summarized prevalence of detected genomic alterations. (C) Gene-level summarized prevalence of
fusions and exon skipping mutations detected via RNA components of the TSO 500 assay. For (B, C), the Y-axis shows the prevalence of alterations,
which are visualized via a stacked bar plot and summarized at the gene level. Prevalence was calculated by dividing the number of patient tumors
with detected SNVs, CNVs, or fusions/skipping variants by the total number of patient specimens that passed the corresponding assay component.
Percentages on top of each stacked bar represent the cumulative prevalence of all alterations for a gene. Points were placed above percentages to
note what genomic alterations within each gene had significantly different prevalences between adenocarcinoma and squamous cell carcinoma. The
X-axis shows genes whose combined alterations were detected in ≥2% (B) or ≥0.1% (C) of patient tumors. Genes are sorted based on their
combined alteration prevalence in patient tumors. Gene names are colored red or orange if a guideline-indicated alteration or alteration matched to
a clinical trial or therapy in another tumor type was detected within the gene for one or more patient tumors. A zoomed-in panel within the main
stacked bar plot of (B) shows the prevalence of alterations for genes whose cumulative alteration prevalence was <10%.
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with KRAS Q61H had the lowest frequency of high PD-L1 scores

(18%) and was the only group of KRAS-altered tumors that did not

exhibit significantly different PD-L1 levels from driver gene-

negative tumors (Supplementary Figure S1B; Supplementary

Table S4).
3.4 Co-occurring and mutually exclusive
genomic alterations

Evaluation of co-occurring genomic alterations in NSCLC

revealed co-mutational patterns including alterations with and

without associated targeted therapies and clinical trials

(Figure 3A; Supplementary Table S5). Genes with therapy-

associated alterations were mainly mutually exclusive, with KRAS

and EGFR having the most significant mutual exclusivities with

other genes (23 each) (Figure 3A; Supplementary Table S5). In

contrast, genes with clinical trial-associated alterations or

alterations with therapy in another tumor type had more

significant co-occurrences, with TP53 having the most of all

tested genes (23 co-occurring genes) (Figure 3A; Supplementary
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Table S5). The highest proportion of co-occurrence (i.e., percent of

tumors that harbored genomic alterations from a pair of genes) was

observed between genes involved in the FGF pathway (FGF3/4/19,

CCND1; 80% - 87%) followed by MDM2 and CDK4 (27%) and

STK11 and KEAP1 (15%) (Supplementary Table S5).

To further investigate significantly co-occurring and mutually

exclusive genomic alterations (FDR q-value < 0.05), we performed

network analysis followed by gene module detection to model

higher-order interactions between genomic alterations and detect

modules of tightly associated genes (Figure 3B). Network analysis

highlighted the mutual exclusivity of essential driver genes in

NSCLC including EGFR , KRAS , BRAF , ALK , and MET

(Figure 3B). A tight cluster was formed in the network between

CCND1, FGF19, FGF4, and FGF3, which mirrors our previous

observation of them having the highest proportions of co-

occurrence than any other groups of genes (Figure 3B). Genes in

the network were grouped into 13 modules of tightly associating

genes (including co-occurring and mutually exclusive genes)

(Figure 3B). Most gene modules included a mix of genes with

clinical trial-associated alterations or alterations with therapy in

another tumor type and genes with pathogenic alterations of
FIGURE 2

Associations between the presence of known non-KRAS driver mutations, TMB, and PD-L1 in NSCLC tumors. Differences in tumor mutational
burden (TMB; in mutations/Mb) and PD-L1 tumor proportion score (TPS) were tested between NSCLC tumors with known driver/non-driver
mutations within (A) ALK, (B) EGFR, (C) MET, (D) BRAF, (E) ROS1, and (F) ERBB2. For plots of TMB (top), each dot in the box-violin plots represents an
individual tumor from a unique patient falling into a particular variant group (X-axis) and is plotted along the Y-axis based on its log-transformed
TMB value (non-transformed TMB value of each transformed value shown in parentheses on the Y-axis for clarity). The bottom, middle, and top
horizontal boundaries of each box in the box-violin plots represent the first, second (median), and third quartiles of the data. The lines extending
from the two ends of each box represent 1.5x outside the interquartile. Points beyond the lines are considered outliers. The width of the grey-
shaded regions around the boxes represents the density of the data points, where wider areas correspond to higher data point density. Values listed
under the box-violin plots are the median for the group. For plots of PD-L1 TPS level (bottom), each section of the bar plots represents the percent
of tumors falling in a particular variant group (X-axis) that were deemed to be negative (<1%), low (1 - 49%), or high (≥50%) for PD-L1 TPS.
Differences in TMB and PD-L1 between groups were tested using linear regression and penalized likelihood ratio tests, respectively, adjusting for
NSCLC histology. Results of testing can be found in Supplementary Table S4. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.
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unknown clinical significance. Interestingly, if a gene module

included a gene with therapy-associated alterations, it typically

was the only therapy-associated gene in the module, reinforcing

their mutual exclusivity to other genes with therapy-associated

alterations (Figure 3B).
3.5 Dose-dependent relationships between
the number of genomic alterations in a
gene module, histology, and biomarkers of
ICI response

To further characterize the relationships between co-occurring

genomic alterations in detected gene modules and clinically

important factors of NSCLC including histology and biomarkers

of ICI response (TMB, PD-L1), we tested for dose-dependent

associations between these factors and an increasing number of

genomic alterations within a gene module (Figure 4; Supplementary

Figure S2). For each detected gene module, we calculated the

frequencies of each unique combination of genes with co-

occurring alterations (including single genes) and labeled each

gene module by the gene(s) with the highest frequencies

(Figure 4; Supplementary Figure S2, first column). This resulted

in gene modules being designated the following: ATRX/GRIN2A,

LRP1B/BRCA, DNMT3A/TET2, TP53, NF1, KRAS, BRAF, STK11/

KEAP1, PIK3CA, EGFR, MUTYH/RET, RBM10/MET, and AXIN1 –

associated gene modules. We then tested differences in histology,

TMB, and PD-L1 between tumors with none, one, or ≥2 genomic

alterations within genes co-occurring in each network-derived gene

module (Figure 4; Supplementary Figure S2, columns 2-4).
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Out of the 11 gene modules, 8 showed a clear dose-dependent

association between an increasing number of genomic alterations

and TMB or PD-L1 (Figure 4). Results for the remaining gene

modules can be found in Supplementary Figure S2.

Significant associations between increasing numbers of genomic

alterations and TMB were observed for ATRX/GRIN2A, LRP1B/

BRCA, DNMT3A/TET2, TP53, NF1, and KRAS-associated gene

modules (P ≤ 0.02), starting at a median TMB below 10 mut/Mb

and climbing to medians above 10 mut/Mb (Figures 4A–F). The

most dramatic increases were observed in the ATRX/GRIN2A,

LRP1B/BRCA, and DNMT3A/TET2-associated gene modules,

reaching upwards of 50 mut/Mb for tumors with ≥2 genomic

alterations (Figures 4A–C). Of note, the DNMT3A/TET2-

associated gene module consists of genes involved in clonal

hematopoiesis, so this association may not be directly related to

changes in the tumor itself.

For PD-L1, increasing number of genomic alterations in the

BRAF-associated gene module was associated with higher

frequencies of PD-L1 positive tumors (P ≤ 0.02; Figure 4G), while

increasing number of genomic alterations in the STK11/KEAP1-

associated gene module was associated with lower frequencies of

PD-L1 positive tumors (P ≤ 0.02; Figure 4H). The KRAS-associated

gene module also showed a significant association with PD-L1

levels; however, no difference was found between tumors with

one or ≥2 genomic alterations within this gene module suggesting

that the more prevalent KRAS alterations were driving this signal as

additional genomic alterations within this module did not affect

PD-L1 levels (Figure 4F).

In addition to the TMB and PD-L1 associations, we observed

significant associations between increasing numbers of genomic
FIGURE 3

Co-occurrence analysis followed by network analysis with gene module detection to assess co-occurrences and mutual exclusivities between
genomic alterations in NSCLC. (A) Co-occurrence or mutual exclusivity of genomic alterations were assessed at the gene level using pairwise
Fisher’s exact tests and visualized via heatmap where red cells indicate co-occurrence (Fisher’s exact test odds ratio > 1), and blue cells represent
mutual exclusivity (odds ratio < 1). Cells marked with a dot indicate co-occurrences/mutual exclusivities that reached significance (multiple testing
corrected false discovery rate q-value < 0.05). Cells marked with an “x” indicate complete mutual exclusivity (i.e., no alterations were found in the
same tumor for those genes). Only genes with alterations detected in at least 1% of patient tumors were included in the analysis. Gene names are
colored red or orange if a guideline-indicated alteration or alteration matched to a clinical trial or therapy in another tumor type was detected within
the gene for one or more patient tumors. (B) Odds ratios of significant co-occurrences/mutual exclusivities were extracted and used to construct a
gene network where red and blue connecting lines denote a co-occurring or mutually exclusive association, respectively. The shape of nodes in the
network relates to the highest clinical evidence of genomic alterations detected in each gene and each node is sized based on the number and
strength of its connections. A community detection algorithm was used to detect gene modules within the network, and each node was colored
based on its module membership. Nodes in the networks were positioned using the force-directed algorithm ForceAtlas2.
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alterations and higher frequencies of squamous cell carcinoma

within the TP53 and PIK3CA-associated gene modules (P<0.0001;

Figure 4D; Supplementary Figure S2A). KRAS, BRAF, STK11/

KEAP1, MUTYH/RET, and RBM10/MET-associated modules

showed the opposite trend, having significantly higher frequencies

of adenocarcinoma cases as genomic alterations increased (P ≤ 0.02;

Figures 4F–H; Supplementary Figures S2C, D).
4 Discussion

Comprehensive biomarker testing using NGS is recommended

at diagnosis for patients with advanced or metastatic NSCLC to

identify driver alterations with targeted therapies available or under

investigation in clinical trials (13). Here, we retrospectively analyzed

the CGP results of over 7,000 NSCLC tumors from patients who
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received testing with the TSO 500 CGP assay during routine clinical

care to further characterize the landscape of NSCLC using this newer

technology and show its clinical utility in detecting both known and

novel facets of NSCLC. Utilizing the broad coverage of the TSO 500,

we were able to provide (1) a comprehensive view of the landscape

and prevalence of treatment- or clinical trial-associated genomic

alterations across NSCLC (Figure 1; Supplementary Tables S1, S2),

(2) show associations of known driver mutations with biomarkers of

ICI response (Figure 2; Supplementary Tables S3, S4), and (3) model

higher-order interactions between co-occurring and mutual

exclusive genomic alterations (Figure 3; Supplementary Table S5).

These findings recapitulate previous findings (9) (14, 28), and add

additional insights with regards to associations between driver gene

mutations in tumors with very high PD-L1 expression (TPS ≥ 50%)

or TMB (TMB ≥20) (Figure 2; Supplementary Tables S3, S4).

Additionally, we identified modules of tightly associated genes and
FIGURE 4

Dose-dependent influences of gene module alteration number on histology, TMB, and PD-L1 in NSCLC. Differences in histology, tumor mutational burden
(TMB; in mutations/Mb), and PD-L1 tumor proportion score (TPS) were tested between NSCLC tumors with none, one, or ≥2 genomic alterations within
genes co-occurring in each network-derived gene module. Analyses were performed for all gene modules and results for (A) ATRX/GRIN2A, (B) LRP1B/
BRCA, (C) DNMT3A/TET2, (D) TP53, (E) NF1, (F) KRAS, (G) BRAF, and (H) STK11/KEAP1 - associated gene modules are shown here. Results for all other gene
modules are presented in Supplementary Figure S2. The first column for each gene module shows the unique combinations of genes that had co-occurring
alterations in the gene module. For clarity, only gene combinations detected in at least 4 patient tumors are shown. The remaining plots show differences in
the distribution of histology (adenocarcinoma vs squamous cell carcinoma), TMB, and PD-L1 between tumors that had none, one, or ≥2 genomic alterations
in genes of the gene module. For plots of TMB (third column), each dot in the box-violin plots represents an individual tumor from a unique patient falling
into a particular variant group (X-axis) and is plotted along the Y-axis based on its log-transformed TMB value (non-transformed TMB value of each
transformed value shown in parentheses on the Y-axis for clarity). The bottom, middle, and top horizontal boundaries of each box in the box-violin plots
represent the first, second (median), and third quartiles of the data. The lines extending from the two ends of each box represent 1.5x outside the
interquartile. Points beyond the lines are considered outliers. The width of the grey-shaded regions around the boxes represents the density of the data
points, where wider areas correspond to higher data point density. Values below each box-violin plot is the untransformed median TMB of the group. For
plots of PD-L1 TPS level (last column), each section of the bar plots represents the percent of tumors falling in a particular variant group (X-axis) that were
deemed to be negative (<1%), low (1 - 49%), or high (≥50%) for PD-L1 TPS. Differences in histology, TMB, and PD-L1 were tested using Fisher’s exact test, t-
test, and chi-squared test, respectively.
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characterized dose-dependent relationships between the increasing

number of genomic alterations within these modules, histology, and

biomarkers of ICI response (Figure 4). While gene module detection

and characterization in NSCLC has been attempted previously using

RNA-seq (29–38), it has yet to be done using genomic results from a

broad coverage CGP assay such as the TSO 500.

For the remainder of the discussion, we summarize our findings

in the context of current clinical evidence to further show the

clinical utility of performing CGP testing using targeted, broad

coverage assays, such as the TSO 500, and highlight novel findings

with lesser-known clinical evidence.
4.1 Mutual exclusivity of therapy-
associated alterations

Mutual exclusivity of strong oncogenic driver gene variants (i.e.

KRAS, EGFR, ALK) in NSCLC tumors is well described (39) and was

observed in the current study. Identification of this driver oncogene in a

patient’s tumor is critical to ensuring they receive the correct therapy.

In a recent study, overall survival was significantly compromised in

NSCLC patients who received genomic test results after starting first-

line therapy compared to those who received results before starting on

the appropriate matched therapy (40). Overall survival was also

impacted in patients whose treatment was initiated before receiving

results and then switched to the matched targeted therapy once the

corresponding driver gene variant was identified. This further enforces

the importance of obtaining CGP results before first-line therapy to

identify the true driver mutation and matched targeted therapy.
4.2 Co-occurring gene alterations and
potential resistance

We confirmed gene alterations that have significant co-occurrence

with key therapy-associated genes and created a network of genes

across the entire NSCLC cohort to model higher-order interactions in a

novel way (Figure 3B). Several closely associated genes were identified

in the current study that have been previously described across multiple

individual analyses with varying levels of evidence (9). However, less is

known about the clinical significance of other gene-to-gene

associations we observed including co-occurring alterations in

MDM2, CDK4, and MET (41) or the impact of co-occurring

CTNNB1 and EGFR alterations that may contribute to resistance to

tyrosine kinase inhibitors (TKIs) (42, 43) (Figure 3; Supplementary

Table S5).
4.3 Therapy-associated oncogenic driver
alterations, PD-L1 expression, and TMB

4.3.1 EGFR alterations and resistance to ICI
There are varying levels of evidence to describe associations

between oncogenic driver gene mutations and biomarkers

predictive of ICI benefit in patients with NSCLC, including PD-

L1 expression and tumors with high TMB. Several reports have
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shown that EGFR-driven NSCLC tumors are associated with low

median TMB levels and a higher percentage of tumors with low

(TPS 1 - 49%) or negative PD-L1 expression, resulting in a cold

immune microenvironment and lack of response to ICI therapy (16,

22). We also observed that EGFR-driven tumors are less frequently

PD-L1 positive and have a lower median TMB as compared to

tumors with no mutations in any driver gene (Figure 2B;

Supplementary Table S4).

4.3.2 Variable associations of ICI biomarkers in
KRAS mutant tumors based on variant type and
co-mutations

In our analysis, NSCLC tumors with KRAS mutations are

associated with a higher frequency of PD-L1 expression (TPS 1 -

49%) compared to other driver mutations, except for BRAFV600E and

MET exon 14 skipping mutations, and mutation-dependent

associations with TMB (Figures 2C, D; Supplementary Figure S1),

consistent with previous findings (22). The prevalence of NSCLC

patients with tumors having PD-L1 expression TPS ≥50% or high

TMBwas previously shown to be significantly higher with KRASG12C

mutations compared to all other KRAS mutations (G12A/D/V, G13,

Q61), with the highest prevalence of TMB high seen in tumors with

G13 mutations and lowest in G12D tumors (44). Interestingly, our

analysis found KRAS G13C/D tumors to have the highest frequency of

PD-L1 TPS ≥50% (42% and 41%, respectively) with KRAS G12C

tumors following next (38%), having no significant difference in PD-L1

scores (Supplementary Figure S1B). We also observed a lower median

TMB for G12D tumors (6.2 mut/Mb) compared to all other KRAS

mutations (i.e., KRAS G12C median TMB = 10.1 mut/Mb)

(Supplementary Figure S1A). These findings are aligned with a

previous study that also observed significantly decreased immune cell

infiltration that was magnified in tumors with KRAS G12D and TP53

mutations, implying this co-mutation signature could be a negative

predictor of ICI benefit (45). KRAS G12D tumors are also more

frequent in never or light smokers whereas KRAS G12C frequency is

highest among current smokers, which can further explain the

significant difference in median TMB between these subtypes that

we, and others, have observed (44).

Identifying heterogeneous subtypes of KRAS mutant NSCLC

tumors with varying co-mutations and associations with TMB and

PD-L1 may better inform the responsiveness of these tumors to

ICIs. There have now been several meta-analyses as well as real-

world retrospective studies to determine the predictive impact of

KRAS mutations in advanced or metastatic NSCLC patients (46,

47). Most studies did not demonstrate any differences in survival

based on KRASmutational status when patients received ICIs alone

or in combination with chemotherapy. In contrast, a large meta-

analysis including 386 KRAS-mutant and 927 KRAS wild-type

NSCLC patients saw significant improvements in overall and

progression-free survival in KRAS-mutant NSCLC patients

receiving ICIs in first or second-line with or without

chemotherapy compared to chemotherapy alone and significantly

longer overall survival in KRAS-mutant compared to KRAS wild-

type NSCLC (48). There are far fewer investigations into the

heterogeneous KRAS subtypes that include different KRAS

mutations, additional co-mutations, and responsiveness to ICIs.
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STK11 and KEAP1 mutations are often co-occurring and enriched

in KRAS mutant tumors as seen here (Figure 3; Supplementary

Table S5) (49). In a study of 1,194 KRAS-mutant NSCLC patients

comparing KRAS G12C versus KRAS non-G12C mutations, co-

mutation patterns of STK11 and KEAP1 were similar, and no

significant differences were observed in median overall survival to

single-agent ICI (50). Additional studies are warranted to determine

the effectiveness of ICIs with these unique KRAS mutant

heterogeneous subtypes, particularly in KRAS G12C mutant

tumors where the efficacy of ICI therapy in comparison to

targeted therapies remains unknown.

4.3.3 Strong associations between BRAF V600E
and PD-L1 expression compared to non-BRAF
V600E and high TMB

Upon review of guideline-recommended driver genes with FDA-

approved therapies (Figure 1B), we observed that some of the highest

percentage of PD-L1 TPS ≥50% tumors harbored BRAF V600E

mutations (46%) (Figure 2D) compared to other driver gene variants

(KRAS, EGFR, ALK, ERBB2, ROS1). In contrast, these tumors had very

low median TMB (4.6 mut/Mb). These correlations between BRAF

mutant tumors, high PD-L1 expression, and low TMB levels have been

witnessed in other studies (16, 22, 51–54). When comparing by variant

type, tumors with non-BRAF V600E mutations were among the

highest median TMBs (10.9 mut/Mb), compared to other guideline-

recommended gene variants, including BRAF V600E tumors

(Figure 2D). Negrao et al. (22) examined response to ICIs given

alone or in combination with chemotherapy in patients with tumors

harboring BRAFV600E, BRAF non-V600E, or other driver alterations,

and showed that BRAF V600E and non-BRAF V600E driven tumors

had superior progression-free and overall survival compared to EGFR,

ALK, HER2, KRAS, MET, ROS1 or RET driven tumors. Results in

other studies found favorable responses to ICI therapy in BRAF

mutant tumors, but equivalent survival to BRAF wild-type or

NSCLC patient tumors with no driver mutations; however, specific

BRAF variant types were not always included, many only examined the

effects of ICI monotherapy, and/or correlation with variant type and

PD-L1/TMB biomarkers was not examined with these cross-

comparisons. A recent retrospective study by Wang et al. (52)

determined that BRAF-mutant NSCLC patients treated with ICI plus

chemotherapy resulted in better outcomes than those treated with

chemotherapy or targeted therapy alone, suggesting ICI/chemo

combinations could be given as first-line therapy for BRAF-mutant

patients. Given the high PD-L1 expression found in BRAF V600E

mutant tumors and the very high TMB levels in non-BRAF V600E

mutant tumors, ICI/chemotherapy may be a highly effective choice as

first-line therapy, with the option to provide approved targeted

therapies for BRAF V600E NSCLC patients after progression.

4.3.4 Genomic heterogeneity among tumors with
MET amplified versus MET exon 14
skipping mutations

It is believed that genomic heterogeneity with regards to co-

mutations and associations with ICI predictive biomarkers is vastly

different among tumors withMET amplifications versusMET exon
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14 skipping mutations, leading to differences in response to ICIs.

Here, we show MET exon 14 skipping mutations frequently have

high PD-L1 expression (TPS ≥50%), but low median TMB (5.5

mut/Mb) (Figure 2C). In comparison, tumors with MET

amplifications have the highest frequency of PD-L1 TPS ≥50%

expressing tumors out of all the driver mutations tested (70%) and a

high median TMB (10.2 mut/Mb) (Figure 2C). Findings from other

studies of MET-amplified tumors show varying correlations with

PD-L1 and TMB depending on the method used to detect MET

amplification (55). Though some studies of NSCLC patients with

MET alterations have shown modest response to ICI therapy, a

recent analysis found MET amplified tumors, but not those with

MET exon 14 skipping mutations, had significantly improved

overall survival compared to chemotherapy when given ICI after

progression on first-line chemotherapy (56). Though there are no

approved targeted therapies for NSCLC patients with MET

amplifications, this alteration has been recognized as an emerging

biomarker due to evidence of clinical activity against MET-

amplified tumors with TKIs approved for MET exon 14 skipping

mutations (13). For MET-amplified tumors with very high PD-L1

(TPS ≥50%) and high TMB (>10 mut/Mb), ICIs could be an

effective treatment strategy for first-line therapy. However, co-

mutations and inhibition of key immune signaling genes by MET

alterations that impact tumor immunogenicity must be considered

as they can impact response to ICIs (57, 58). In addition, studies

with combined MET and EGFR TKIs to overcome acquired MET

amplification in tumors resistant to EGFR TKIs have shown varying

levels of response and toxicity profiles (56). ICI therapy in

combination with EGFR TKIs in tumors with acquired MET-

amplification may be an interesting alternative to combat resistance.

4.3.5 Less frequent driver gene alterations
(ERBB2, ROS1) and association with biomarkers
of ICI response

There are far fewer investigations into the associations between

ERBB2 and ROS1 driver genes with ICI biomarkers, co-mutations,

and their influence on ICI response. One recent study assessing

ROS1 fusions using whole-transcriptome (59) suggested a large

percentage of tumors harboring ROS1 fusions are high expressers of

PD-L1 (TPS ≥50%), while another study utilizing targeted NGS

assays (60) suggested a frequency (35%) closer to what we observed

in our study (29%; Figure 2E). ERBB2-altered NSCLC tumors with

high PD-L1 expression are infrequent and typically have low TMB

(10, 16), but evidence suggests the clinical characteristics, genomic

landscape of co-mutations, response to TKIs, and associations with

ICI predictive biomarkers are distinctly different among NSCLC

tumors with ERBB2 mutations versus amplifications (61–63). Here,

ERBB2 amplified tumors had one of the highest median TMBs (10.9

mut/Mb) compared to all other guideline-recommended oncogenic

driver genes and ERBB2 Y772-A775dup (5 mut/Mb) (Figure 2F),

the most frequent ERBB2 mutation found in NSCLC tumors.

ERBB2 amplified NSCLC tumors with high TMB were

corroborated in a small study of metastatic NSCLC patients,

however, minimal response to ICI therapy was observed (64). The

limited data available suggests modest to poor responses for patients
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with NSCLC ERBB2 and ROS1-driven tumors receiving ICI

monotherapy or combination therapy, regardless of PD-L1

expression or TMB status, indicating additional co-mutations and

other factors may play a role.
4.4 Importance of identifying oncogenic
drivers before first-line ICI therapy

Broad coverage CGP has become increasingly important for

patients with advanced NSCLC tumors with targetable oncogenic

drivers considering evidence supporting lack of efficacy and even

harm to NSCLC patients receiving ICI. Response to ICI or ICI plus

chemotherapy is often limited or still under investigation in the

presence of a therapy-associated oncogenic driver, regardless of PD-

L1 expression or TMB status (8). CGP is even more important in

advanced NSCLC patients who are non-smokers, as they are more

likely to have tumors with targetable driver alterations.

ICI, with or without chemotherapy, is now routinely used as

first-line therapy in advanced NSCLC patients with PD-L1 tumor

expression ≥1%. Our analysis reveals that most tumors with

therapy-associated driver mutations have low/intermediate (1 -

49%) PD-L1 expression, with 8% to 70% having high (≥50%) PD-

L1 expression depending on the underlying driver mutations

(Figure 2; Supplementary Figure S1). If CGP is not ordered, or

test results have not been received before first-line treatment

decision making, there is an increased risk of advanced NSCLC

patients with tumors containing driver mutations receiving ICI

therapy that would be ineffective or potentially dangerous. This is

particularly concerning in advanced NSCLC patients with EGFR

tumor mutations receiving sequential ICI therapy followed by

osimertinib, as they experienced severe immune-related adverse

events requiring hospitalization (65). Timing of osimertinib or ICI

therapy for those with EGFR exon 19 deletions or exon 21 L858R

mutations and high (≥50%) PD-L1 expression is complex, as these

patients have worse progression-free and overall survival when

receiving osimertinib as first-line therapy (66). Further studies are

indicated in this cohort of patients to determine if the combination

of osimertinib plus chemotherapy can combat potential resistance.

Finally, a small subset of NSCLC patients can experience rapid

accelerations of tumor growth or hyper-progressive disease upon

receipt of ICI therapy (67). Though evidence of predictive

biomarkers for this phenomenon is limited, some studies suggest

co-occurrence between MDM2 amplification or EGFR mutations,

which we also saw evidence of (Figure 3; Supplementary Table S5),

could be contributing to the progression.

Additionally, as shown by our final analysis, more complex

relationships exist between the increasing number of tightly co-

occurring alterations and increasing or decreasing levels of PD-L1

and TMB (Figure 4), which may have certain implications for

guiding clinical decisions regarding ICI treatment. Although some

of the TMB changes were found to be subtle (e.g., Figures 4F, H), the

addition of one (Figure 4H) or two (Figure 4F) variants in these

gene modules seems to push TMB levels from below 10 (i.e., low

TMB) to ≥10 (i.e., high TMB). This subtle change may or may not

on its own have a significant influence on the immunogenicity of
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the tumor itself. Still, it places patients in the high TMB category,

making them eligible for certain ICI treatments (68). However,

TMB levels do not tell the full story and a better clinical guide for

ICI response involves looking at changes in TMB and PD-L1

together, which was a goal of this analysis. For the KRAS–

associated gene module (Figure 4F), we detected a subtle change

in increasing TMB in conjunction with a 10-12% increase in high

PD-L1 IHC cases, which together may signify that patients with

more variants in this gene module might benefit from ICI

treatment. Alternatively, for the STK11/KEAP1–associated gene

module (Figure 4H), although we see subtle changes in increasing

TMB, we see the opposite trend for PD-L1 with a 15-22% reduction

in high PD-L1 cases, suggesting that more variants in this gene

cluster might influence TMB levels, but may potentially be reducing

the immunogenicity of the tumor, making the patient less likely to

benefit from ICI treatment. These are just a couple of examples of

the complex relationships we observed between tightly co-occurring

alterations and increasing or decreasing levels of PD-L1 and TMB,

and further investigation is warranted to tease apart the

mechanisms of these interactions.
5 Conclusion

In this study, we retrospectively analyzed real-world CGP data

from 7,606 advanced and metastatic NSCLC tumors > using the

broad coverage TSO 500 assay. We revealed heterogeneity in tumor

genomic alterations and associations with biomarkers of ICI

response. Co-occurrence analysis followed by network analysis with

gene module detection revealed the presence of tightly co-occurring

genomic alterations and allowed further characterization of their

relationships with PD-L1 and TMB. Altogether, this data provides

further characterization of NSCLC at the genomic and ICI response

biomarker level and shows the clinical utility of broad coverage CGP

testing, as performed by the TSO 500, in detecting both known and

novel facets of NSCLC to inform treatment decision-making.

Additionally, it produced evidence for future studies to determine if

the findings presented here influence actual clinical response data to

ICIs and molecular monotherapy agents.
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