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Background and aims: The levels of M2 macrophages are significantly

associated with the prognosis of hepatocellular carcinoma (HCC), however,

current detection methods in clinical settings remain challenging. Our study

aims to develop a weakly supervised artificial intelligence model using globally

labeled histological images, to predict M2 macrophage levels and forecast the

prognosis of HCC patients by integrating clinical features.

Methods: CIBERSORTx was used to calculate M2 macrophage abundance. We

developed a slide-level, weakly-supervised clustering method for Whole Slide

Images (WSIs) by integrating Masked Autoencoders (MAE) with ResNet-32t to

predict M2 macrophage abundance.

Results: We developed an MAE-ResNet model to predict M2 macrophage levels

using WSIs. In the testing dataset, the area under the curve (AUC) (95% CI) was

0.73 (0.59-0.87). We constructed a Cox regression model showing that the

predicted probabilities of M2 macrophage abundance were negatively

associated with the prognosis of HCC (HR=1.89, p=0.031). Furthermore, we

incorporated clinical data, screened variables using Lasso regression, and built

the comprehensive prediction model that better predicted prognosis.

(HR=2.359, p=0.001).

Conclusion: Our models effectively predicted M2 macrophage levels and HCC

prognosis. The findings suggest that our models offer a novel method for

determining biomarker levels and forecasting prognosis, eliminating additional

clinical tests, thereby delivering substantial clinical benefits.
KEYWORDS

deep learning, masked autoencoders, computational pathology, liver cancer,
tumor microenvironment
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1 Introduction

According to the Global Cancer Statistics 2020, liver cancer is

the third leading cause of cancer-related mortality, accounting for

8.3% of deaths globally, and the seventh most commonly diagnosed

malignancy, comprising 4.7% of all cancer cases, causing serious

public health problems and economic burden (1).

Tumor-associated macrophages (TAMs), which originate from

bone marrow-derived blood monocytes (monocyte-derived

macrophages) or yolk sac progenitors (tissue-resident

macrophages), are a specialized subset of immune cells that are

abundantly present in the tumor microenvironment of various solid

tumors (2). There are two polarization types of TAMs. Under the

stimulation of lipopolysaccharide (LPS), IFN-g, etc., TAMs are

activated into classically activated macrophages (M1 type).

Conversely, under the stimulation of anti-inflammatory factors

such as IL-10, TGF-b, etc., TAMs are activated into alternatively

activated macrophages (M2 type) (3). Previous research indicates

that M2 macrophages play a critical role in cancer-related

inflammation and are involved in various aspects of tumor

biology, including immunosuppression, tumor progression,

invasion, and metastasis (2, 4–8).

CIBERSORTX, a bioinformatics tool developed by the Alizadeh

Lab and Newman Lab, can be used to estimate the abundance of

various cell types in a mixed cell population based on gene

expression data (4). However, this approach relies on

transcriptome sequencing, which is not a commonly performed

clinical test and can be expensive. In recent years, image recognition

technology has become increasingly prevalent in the medical field.

Pathological tissues are routinely collected during the diagnosis and

treatment of patients undergoing HCC surgery, and Whole Slide

Images (WSIs) can provide valuable insights into tumor

heterogeneity. Predicting the relative abundance of M2

macrophages directly from WSI images and subsequently

forecasting patient survival would not only be more cost-effective

and resource-efficient than the CIBERSORTx method but also

highly convenient and promotable.

Implementing supervised learning in deep neural networks

requires a substantial amount of labeled data. However, manual

data labeling is both time-consuming and costly. Additionally,

acquiring sufficient data in the medical field remains a significant

challenge. WSIs typically contain more than 100,000 x 100,000

pixels (9), rendering them impractical for direct processing by

convolutional neural networks (CNNs). The conventional

approach involves dividing a WSI into patch-level images, often

numbering over 10,000, and then individually annotating each

image. However, this process also demands considerable human

effort. Some studies have attempted to address this issue using
Abbreviations: AJCC, the American Joint Committee on Cancer; AUC, Area

Under the Curve; CV, Computer Vision; HCC, Hepatocellular Carcinoma;

M2prob, M2 macrophage levels; MAE, Masked Autoencoders; MSE, Mean

Square Error; NLP, Natural Language Processing; NPV, Negative Predictive

Value; PPV, Positive Predictive Value; TAMs, Tumor-associated macrophages;

TCGA, The Cancer Genome Atlas; TPM, Transcripts Per Million; WSI, Whole

Slide Images.
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weakly supervised clustering methods. The main strategies include

increasing the sample size of the training set (10) and employing

transfer learning techniques (11).

Therefore, the primary bottleneck in current computational

pathology is the annotation of labels and the limited quantity of

samples. The key technology employed in this study is the Masked

Autoencoder (MAE), a self-supervised autoencoder that masks a

portion of the input image and attempts to predict the masked tiles

based on the visible tiles (12).

While self-supervised learning methods are widely used in

natural language processing (NLP) (13, 14), the field of computer

vision (CV) predominantly relies on supervised methods. Recent

research by Kaiming He and colleagues has demonstrated that for

visually dense images with high information redundancy,

constructing a challenging task by masking a substantial

proportion of patches can yield results comparable or even

superior to those of supervised training (12).

In our study, we introduce a novel MAE-ResNet modeling

method that integrates MAE with ResNet-32t, presenting a slide-

level, weakly-supervised clustering approach for WSIs. Based on

this, we developed and validated models to determine M2

macrophage levels and further predict patient prognosis.
2 Methods

2.1 Datasets

The data used in this study were sourced fromHenan Provincial

People’s Hospital and The Cancer Genome Atlas (TCGA) database,

a comprehensive multi-center repository containing genomic data,

clinical information, and pathological slides from various hospitals

worldwide (15). The HCC cases from both sources contained

information such as age, gender, stage, grade, T, N, M, surgery

type, and overall survival. On this basis, the inclusion criteria for our

study were: 1) pathologically diagnosed HCC, and 2) availability of

at least one formalin-fixed and paraffin-embedded slide. The

exclusion criteria were: 1) metastatic liver cancer, and 2)

concurrent malignancies. For the TCGA dataset, in addition to

the above criteria, RNA sequencing data were also required.

Ultimately, the study included 132 HCC patients from the

hospital and 353 from the TCGA database. This study aims to

establish two models: one model to predict the relative abundance

of M2 macrophages and another to forecast the prognosis of HCC

patients usingWSIs. The TCGA dataset is used to build and validate

M2 macrophage level prediction model, while both the TCGA and

hospital datasets are used for prognosis prediction.
2.2 Calculation of the relative abundance
of M2 macrophages

We first obtained the RNA sequencing profile of HCC from

TCGA database and downloaded the corresponding gff3 file (http://

ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_22/

gencode.v22.anno tation.gff3.gz) from GENCODE (https://
frontiersin.org
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www.gencodegenes.org/human/). Using gene length and gene

count data, we calculated the Transcripts Per Million (TPM) for

each gene. We employed CIBERSORTx to calculate the relative

abundance of M2 macrophages. The tool is available at https://

cibersortx.stanford.edu/. LM22 (22 immune cell types) was used as

signature matrix file. We categorized the relative abundance of M2

macrophages into two groups: high and low. Subsequently, we

developed a ResNet model, which was trained and validated to

effectively distinguish between high and low relative abundances of

M2 macrophages.
2.3 MAE-based weakly supervised
learning method

MAE is a self-supervised autoencoder. We integrated MAE with

ResNet-32t to introduce a slide-level, weakly-supervised clustering

method for WSIs in order to predict the relative abundance of M2

macrophages. MAE demonstrates strong performance when a

significant proportion of the input images are masked (12).

Building on this, we utilized the encoder component of the MAE

architecture to encode pathological images. These encoded images
Frontiers in Oncology 03
were then used to classify the relative abundance of M2

macrophages and to predict survival rates, using slide-level labels.

In this M2 macrophage level prediction model, we randomly

divided the TCGA dataset into training, validation, and testing

sets in a 7:1.5:1.5 ratio. The overall training process was illustrated

in Figure 1. The code for our study is available on GitHub (https://

github.com/MinfanZhao/M2-HCC-Prognosis).

2.3.1 Pre-processing
In the image preparation stage, we initially performed color

standardization using histogram equalization. Due to the large size

of WSI images and video memory limitations, they cannot be

directly processed within the model. To address this issue, we

segmented the images into smaller patches and resize them to 512

× 512 pixels. Additionally, we discarded patches containing more

than 50% background areas.

2.3.2 Model training
The model training process comprises two components: MAE

pre-training and ResNet-32t.

MAE pre-training can be divided into two asymmetrical

components: an encoder and a decoder. The encoder was
FIGURE 1

The model-training process illustration. The model construction consists of two stages: MAE-pretraining and prediction. In the MAE-pretraining
phase, we first divided each slide into patches, and then split each patch into tiles. We randomly masked a portion of the tiles and predicted these
masked tiles. The model was continuously optimized by minimizing the difference between the predicted tiles and the original image, iteratively
improving prediction accuracy. Once the optimal prediction model was identified, we exported the encoder component to serve as the input for
ResNet-32t. We employed CIBERSORTx to calculate the relative abundance of M2 macrophages and, based on these calculations, established a
model to predict the relative abundance of M2 macrophages from WSI. We further employed LASSO regression to select potential prognostic
factors and, by combining these factors with the predicted relative abundance of M2 macrophages, predicted overall survival. Finally, the model was
validated using an external dataset.
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essentially a Visual Transformer (VIT) network, and in this study, the

adopted model was ViT-large. In ViT-large, a random section of the

input image was masked, and subsequently, the missing pixels were

reconstructed. Each patch was further resized into tiles. We randomly

shuffled these tiles, selected 25% for encoding, and masked the

remaining 75%. Positional embeddings, along with 25% of the

encoded tiles, are fed into the decoder to maintain the original

order of the image blocks. The decoder then attempted to

reconstruct the original image using the input information

provided. Ultimately, the output image from the decoder was

compared with the original image to compute the error. This error

was backpropagated to update the model’s parameters. Through

extensive training with WSI patches, the artificial intelligence

model learned the information within the images and reconstructs

them, thereby completing the MAE model training.

Subsequently, we retained only the encoder’s output, which consists

of 1024-dimensional vectors, fed these into ResNet-32t to obtain the final

classification results. This transformation enables the simultaneous

loading of all WSI patches into GPU memory. Considering “Cluster

High” as the positive class, our trained ResNet-32t predicted and

categorized all slides as either “Cluster High” or “Cluster Low”.

2.3.3 Model testing
We used the validation dataset to assess the classification

performance of the proposed method for weight selection during

ResNet-32t training. We evaluated the AUC (Area Under the

Curve) of our method by comparing the predicted levels of M2

macrophages in the testing dataset with the ground truth from liver

histopathological slides.

Additionally, we calculated the ROC curves and AUC for

classifying the relative abundance of M2 macrophages using the

“pROC” package in R. We also computed the sensitivity, specificity,

PPV (Positive Predictive Value), and NPV (Negative Predictive

Value) for the optimal cut-off value and visualized the results using

the ggplot2 package in R.
2.4 Prognosis prediction

Given the well-documented correlation between the relative

abundance of M2 macrophages and tumor prognosis, we used the

predicted probabilities of M2 macrophage levels (M2prob) from our

MAE-ResNet model to predict the overall survival of HCC patients.

Additionally, we aimed to develop a prognostic model using

M2prob in conjunction with clinical data. In this prognosis

prediction model, we used the TCGA dataset as the training set

and the hospital data as the testing set. All statistical analyses were

performed using R version 4.2.3.

2.4.1 Data cleaning and clinical features
The independent variables included in the analysis were T (the

range and size of the primary tumor), N (lymph node metastasis), M

(the presence of metastasis), age, gender, stage, grade, surgery, overall

survival, and event. General clinical information of the subjects and

statistical tests for differences between the training and testing datasets

are presented in Table 1. We performed t-tests, Wilcoxon rank-sum
Frontiers in Oncology 04
tests, chi-squared tests, or Fisher’s Exact Test, depending on the data

type. Shapiro-Wilk tests were conducted for continuous variables to

assess normality. For variables that met the criteria for normal

distribution, t-tests were used; for those that did not, Wilcoxon rank-

sum tests were employed. For categorical variables, Fisher’s exact test or

chi-square tests were applied based on theoretical frequencies; for

ordinal variables, the Wilcoxon rank-sum test was used. For missing

values, multiple imputation was employed to fill the gaps. Table 1

displays the original data prior to imputation.

2.4.2 Relationship between M2prob
and prognosis

We utilized a Cox regression model to assess the association

between M2prob and the prognosis of HCC patients in the TCGA

dataset, subsequently validating these findings in the hospital

dataset. Cox regression analysis was conducted using the

“survival” package in R.

2.4.3 Survival prediction model construction
General clinical information is closely associated with the

prognosis of HCC. We contemplated the integration of general

clinical information and M2prob to establish a prediction model.

Lasso regression was employed to preliminarily screen all variables

presented in Table 1, and the model with the smallest mean squared

error (MSE) was selected. Subsequently, we used this model to

calculate the Mscore, predicted the prognosis of HCC, and verified

it in the validation set.
2.5 Ethical declaration

Ethical approval for this study was granted by the Ethical

Committee of Henan Provincial People’s Hospital in 2022. All

procedures performed in this study adhered to the ethical standards

of both the institutional and national research committees, as well

as the Declarations of Helsinki and Istanbul.
3 Results

3.1 Clinical features

In the prognosis prediction section, TCGA patients were employed

for model training, and patients from Henan Provincial People’s

Hospital were used for validation. The following clinical variables

were tested: age, gender, stage, grade, T (tumor size), N (lymph node

involvement), M (metastasis presence), surgery, overall survival, and

event status). The testing results are presented in Table 1. In the TCGA

dataset, the median age of study subjects was 61 years (interquartile

range: 51.00-68.25), with an median overall survival of 601 days

(interquartile range: 348-1189) and an outcome event incidence rate

of 35.80%. In the hospital dataset, the median age of the study subjects

was 57 years (interquartile range: 49.50-66.00), with an median overall

survival of 919.5 days (interquartile range: 729.5-1329.5) and an

outcome event incidence rate of 38.14%. Age (p=0.002), surgery

(p<0.001), and overall survival (p<0.001) showed significant
frontiersin.org
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TABLE 1 The clinical features of the HCC patients.

TCGA dataset Hospital dataset statistics p

Age 61.00 (51.00,68.25) 57.00 (49.50,66.00) W = 188671 0.002

Gender c2 = 1.422 0.234

Male 236 (66.86%) 95 (72.52%)

Female 117 (33.14%) 36 (27.48%)

Stage3 W = 222121 0.192

Stage I 163 (49.24%) 47 (37.60%)

Stage II 81 (24.47%) 49 (39.20%)

Stage III 83 (25.08%) 26 (20.80%)

Stage IV 4 (1.21%) 3 (2.40%)

Grade4 W = 237191 0.198

G1 48 (13.75%) 6 (4.72%)

G2 167 (47.85%) 70 (55.12%)

G3 123 (35.24%) 47 (37.01%)

G4 11 (3.15%) 4 (3.15%)

T5 W =236101 0.1748

T1 172 (49.00%) 47 (37.60%)

T2 88 (25.07%) 50 (40.00%)

T3 77 (21.94%) 19 (15.20%)

T4 14 (3.99%) 9 (7.20%)

N6 Fisher’s Exact Test 1

N0 244 (98.79%) 131 (99.24%)

N1 3 (1.21%) 1 (0.76%)

M7 Fisher’s Exact Test 1

M0 257 (98.47%) 130 (98.48%)

M1 4 (1.53%) 2 (1.52%)

Surgery W=153601 <0.001

Segmentectpmy 32 (12.60%) 8 (8.42%)

Lobectomy 53 (20.87%) 55 (57.89%)

Ectended Lobectomy 169 (66.54%) 32 (33.68%)

Overall survival 601 (348,1189) 919.5 (729.5,1329.5) W = 20879 <0.001

Event c2 = 0.181 0.670

Alive 226 (64.20%) 60 (61.86%)

Dead 126 (35.80%) 37 (38.14%)
F
rontiers in Oncology
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1.Wilcoxon rank-sum tests were performed.
2.Chi-square test was performed.
3 Stage group based on the American Joint Committee on Cancer (AJCC) 8th Edition staging criteria.
4.The levels of the degree of tumor differentiation. G1~G4 represent the degree of differentiation getting worse and worse.
5.The size of the primary tumor according to AJCC 8th staging criteria.
6.The defined absence (N0) or presence (N1) of lymph node metastasis according to the AJCC 8th staging criteria.
7.The defined absence (M0) or presence (M1) of distant spread or metastases according to the AJCC 8th staging criteria.
Bold values indicate p-values less than 0.05.
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differences between the two datasets. All other p-values from statistical

tests were greater than 0.05.
3.2 TAM calculation

The relative abundance of M2 macrophages was determined

using the CIBERSORTx algorithm. The median values

(interquartile ranges) for M2 macrophages were 4.78 (3.86-5.58)

in the training set, 4.70 (3.76-5.63) in the validation set, and 4.84

(4.05-5.86) in the testing set, respectively. HCC patients were

categorized into groups with high and low M2 macrophage

content (M2group).
3.3 WSI classification performance

Based onWSIs, we developed a model using the MAE approach

to predict the relative proportion of M2 macrophages. In the

validation dataset, the AUC (95% CI) was 0.73 (0.59-0.87), with

sensitivity, specificity, PPV, and NPV values of 0.63, 0.83, 0.83, and

0.63, respectively. In the testing dataset, the AUC (95% CI) was 0.73

(0.59-0.87), with sensitivity, specificity, PPV, and NPV values of

0.90, 0.52, 0.71, and 0.80, respectively. ROC curves are shown in

Figures 2A and B. The confusion matrices are presented in Figure 3.
3.4 Prognostic prediction

3.4.1 M2prob and overall survival
We calculated predicted M2 macrophages proportion based on

the WSIs. In the TCGA dataset, we included the M2 macrophages

proportion, multiplied by 10 (M2prob), as an independent variable
Frontiers in Oncology 06
in the Cox regression equation to assess the impact of every 10%

increase in M2 macrophages on prognosis. The results of the Cox

regression analysis showed that M2 macrophage proportion was

significantly associated with overall survival (HR=1.242, P=0.004),

indicating statistical significance and suggesting that M2prob may

influence the prognosis of liver cancer patients. Specifically, for

every 10% increase in M2 macrophage proportion, the risk of death

for patients increased by 24.2%. In the hospital dataset, M2prob

remained significantly associated with prognosis (HR=1.89,

P=0.031), with the risk of death for patients increasing by 89%

for every 10% increase in M2 macrophage proportion. These results

further supports its potential value as a prognostic factor.

3.4.2 Mscore and overall survival
Lasso regression was employed to identify risk factors. The

coefficients of factors that finally enter the equation were shown in

Table 2. Figure 4A showed the variation traits of the coefficient of

factors. Ten-fold cross-validation method was used in the screening

process, and a model with the smallest mean square error (MSE)

were finally chosen (Figure 4B). Mscores were further calculated

based on the screened risk factors and their coefficients in the Cox

regression equation. The association between Mscore and survival

prognosis in both the training and validation sets were calculated

and Kaplan-Meier survival curves was constructed (Figures 5A, B).
4 Discussion

This study predicts M2 macrophage levels from WSIs using

only global labels, and forecasts prognosis based on M2prob. To our

knowledge, this is the first report of cell-level WSI prediction using

the MAE-ResNet model. This study shows that using a deep

learning method on WSIs can predict M2 macrophage levels.
FIGURE 2

ROC curves of M2 relative abundance in internal (A) and external validation (B). TP, True Positive; TN, True Negative; FP, False Positive; FN, False
Negative; Sensitivity = TP/(TP + FN); Specificity = TN/(TN + FP); PPV = TP/(TP + FP); NPV = TN/(TN + FN); AUC, Area under the curve.
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This capacity enables the prognosis of HCC patients without the

need for additional clinical tests. Although further validation is

needed through prospective studies, constructing an MAE-ResNet

model shows promise for extracting vital clinical information

from WSIs.

Tumor microenvironment plays a crucial role in tumor

progression, comprising a diverse array of cells including tumor-

associated macrophages, cancer-associated fibroblasts, endothelial
Frontiers in Oncology 07
cells, dendritic cells, B cells, T cells, and lymphocytes, etc. (16, 17)

Macrophages are the most abundant of these (18). M2

macrophages, often called anti-inflammatory macrophages, are

characterized by their production of anti-inflammatory mediators

such as IL-10, transforming growth factor-beta, and arginase 1 (19).

M2 macrophages are induced through several key signaling

pathways. TGF-b binds to its receptors on macrophages,

activating the PI3K/Akt/mTOR and TGF-b/Smad pathways. The

PI3K/Akt/mTOR pathway regulates protein translation and

transcription, while the TGF-b/Smad pathway controls gene

expression by activating Smad proteins. IL-4 and IL-6 binding to

their receptors trigger the JAK/STAT pathway, activating STAT3

and STAT6, which induce M2 gene expression. Notch ligand-

receptor interactions activate the Notch pathway, leading to the

expression of M2-related genes like Arg-1 and IL-10. The Wnt/b-
catenin pathway also contributes by stabilizing b-catenin, which
regulates genes involved in inflammation resolution. Hypoxia-
FIGURE 3

Confusion matrix for internal (A) and external validation (B). TP, True Positive; TN, True Negative; FP, False Positive; FN, False Negative; Sensitivity =
TP/(TP + FN); Specificity = TN/(TN + FP); PPV = TP/(TP + FP); NPV = TN/(TN + FN); Accuracy = (TP + TN)/(TP + TN + FP + FN); F1 = 2 * (PPV *
Sensitivity)/(PPV + Sensitivity). “Negative” refers to cases where the relative abundance of M2 macrophages is less than or equal to the median, and
“positive” refers to cases where the relative abundance of M2 macrophages exceeds the median.
TABLE 2 Multiple cox regression model in the training set.

OR 95%CI P

M2prob 1.186 1.021-1.377 0.026

t 1.594 1.324-1.919 <0.001

surgery 1.323 1.064-1.645 0.012
Rick factors were selected by Lasso regression analysis.
Bold values indicate p-values less than 0.05.
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inducible factor-2a (HIF-2a) plays a role in both the Notch and

Wnt/b-catenin pathways under low-oxygen conditions, promoting

an anti-inflammatory phenotype. Together, these pathways drive

M2 macrophage polarization and contribute to their pro-

tumorigenic functions, such as immune suppression and tissue

remodeling (20). Specifically, M2 macrophages suppress the host’s

anti-tumor immunity by increasing the expression of

immunosuppressive surface proteins, producing reactive oxidants,

secreting T cell inhibitory cytokines, and releasing chemokines that

attract regulatory T cells, thereby diminishing the anti-tumor

activity of effector T cells. Moreover, M2 macrophages could

promote angiogenesis and enhance tumor invasion and metastatic

potential through mechanisms such as VEGF and MMP (21).

Previous studies have shown that M2 macrophages are closely

related to the prognosis of tumors. Regulating the polarization level

through certain molecules can affect tumor progression. Research by

Z. He et al. showed that exosome-derived FGD5-AS1 can promote

the malignant behaviors of pancreatic cancer cells by promoting M2

polarization (22). Furthermore, the study by Rui Xu et al. highlights

the significant role of M2 macrophages in HCC prognosis by

identifying M2 macrophage-related genes through weighted gene

co-expression network analysis (WGCNA), and establishing a 5-gene

signature associated with immune infiltration for reliable prognostic

assessment (23). In terms of disease treatment, trying to promoteM1-

type polarization or inhibit M2-type polarization to achieve anti-

tumor purposes has also become a prominent research focus.

Researches have been conducted on various tumors, such as

ovarian cancer (24), Colorectal Cancer (25), Glioblastoma (26), etc.

The research results of Bufu Tang et al. showed that xCT-specific

knockout can limit HCC metastasis risk in transgenic mouse models

by inhibiting M2-type polarization (27). There are also studies
Frontiers in Oncology 08
showing that Cancer treatment strategies that reprogram M2-like

TAMs into M1-like cells have also yielded encouraging results (28).

In general, it is widely acknowledged that M2 macrophages

facilitate tumor growth and migration (5, 29–32). Therefore, a

convenient and effective method to predict M2 macrophage levels

in daily diagnosis and treatment would provide a solid foundation

for clinical decision-making and prognosis prediction. However,

conventional detection methods like flow cytometry (33) and

transcriptome-based CIBERSORTx continue to pose challenges in

routine clinical diagnosis and treatment. In recent years, with the

development of computer vision, the use of WSIs has broadened

beyond pathology teaching and remote diagnosis (34). An

increasing number of studies focused on directly diagnosing or

classifying tumors through WSI. This research field, known as

“computational disease” (35), is expected to profoundly change

cancer diagnosis methods. Previous studies have demonstrated that

deep learning methods using WSI can predict gene-level features

(36–40) and cell-level features (41–43), thus, we believe extracting

biomedical information from WSI holds significant research

potential. Unfortunately, existing methodologies fall short in

addressing the significant challenges presented by the high

resolution of WSIs (44), a situation exacerbated by the shortage

of comprehensively annotated datasets (45). In order to address this

problem, numerous studies have segmented WSIs into patches and

utilized the Multiple Instance Learning paradigm pretrained on

ImageNet (9, 46, 47). However, models pretrained on ImageNet

might not effectively identify distinctive medical features. In 2022,

He et al. introduced a self-supervised learning method for computer

vision called MAE (12). This method, which includes an encoder

and a decoder, randomly masks parts of the input image and then

reconstructs it.
FIGURE 4

The Lasso regression process. The variation traits of the coefficient of factors (A) and the screening process of the Lasso regression model by 10-
fold cross-validation (B).
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In our study, we present a new MAE-ResNet modeling method,

which uses the encoder part of MAE to extract WSI features, thus

avoiding patch-level manual annotation work and predicting the

relative abundance of M2 macrophage based only on slide-level

labels. Our model offering the following advantages: (1) Compared

to traditional CNN models, it eliminates the need for extensive

work of manual annotation. The pixel size of WSIs is too large to be

directly processed by CNN models under the constraints of the

current GPU memory conditions. Traditional CNN models address

this by dividing a WSI into thousands of smaller patches for

annotation. However, this task is often unfeasible for busy

pathologists, limiting many valuable studies in practice. The

MAE-ResNet model we use, through a self-supervised

autoencoder, eliminates this large-scale annotation workload. It

employs an unsupervised approach by masking parts of the image

and continuously attempting to predict the masked portions,

thereby extracting image features. This innovative solution to the

large pixel size problem eliminates the need for extensive

annotation efforts. By simplifying the workload, it also paves the

way for future studies with larger sample sizes. (2) Compared to

traditional biological methods, such as flow cytometry and

transcriptome-based CIBERSORTx, the model used in our study

is more cost-effective and easier to implement in clinical settings, as

it requires only routine clinical pathology sections and does not add

extra workload or costs, providing a significant advantage for future

clinical translation.

After developing the MAE-ResNet model to predict M2

macrophage levels, we further explored whether M2 macrophage

levels and clinical characteristics could predict the prognosis of
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HCC patients. At this stage, data from the TCGA database were

used for training and internal validation, while data collected from

our hospital were used for external validation. The internal

validation set (TCGA dataset) was used to assess the

reproducibility of the model, while data from our hospital were

used to evaluate the transportability of the initial model’s

predictions. The following cox regression analysis indicated that

the predicted probabilities of M2 macrophages was negatively

associated with the prognosis of HCC. To enhance the

generalizability of the model, we incorporated common covariates

related to HCC prognosis into the predictive model. CIBERSORT

deconvolution algorithm, weighted gene co-expression network

analysis (WGCNA), and the LASSO algorithm are frequently

used for dimensionality reduction (48), in this study, we

employed the LASSO regression algorithm. Based on TAM

prediction probability and clinical data, the prognostic prediction

model we constructed also achieved satisfactory results in internal

and external validation data sets, indicating good reproducibility

and transportability for this model.

Despite the promising results of our study, several limitations

must be acknowledged. First, ensuring the consistency and quality

of pathological slides presents a significant challenge. To address

this, we employed color standardization through histogram

equalization during the image preparation stage, which helped

reduce variations in color intensity and brightness caused by

differences in slide sources or laboratory conditions. Additionally,

our external validation set, sourced from Henan Provincial People’s

Hospital, showed strong predictive performance. This may be partly

due to the fact that the TCGA database contains slides from
FIGURE 5

K-M survival curve of Mscore for predicting HCC prognosis in TCGA dataset (A) and hospital dataset (B). The curves illustrate the survival differences
between high and low Mscore groups, with statistical significance assessed by the log-rank test. Below each curve, the "number at risk" table is
displayed, indicating the number of patients remaining at each time point in both groups.
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different institutions, which allowed our training set to learn the

technical differences between these institutions. Another limitation

is that the number of pathological images used in this study is

relatively small, and a larger dataset is necessary to obtain more

robust and generalizable results.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by The Ethical

Committee of Henan Provincial People’s Hospital. The studies were

conducted in accordance with the local legislation and institutional

requirements. Written informed consent for participation was not

required from the participants or the participants’ legal guardians/

next of kin in accordance with the national legislation and

institutional requirements.
Author contributions

HT: Conceptualization, Methodology, Visualization, Writing –

original draft. YT: Formal Analysis, Validation, Writing – original

draft. DL: Data curation, Methodology, Writing – review & editing.

MZ: Formal Analysis, Validation, Writing – review & editing. QL:

Data curation, Writing – review & editing. LK: Supervision, Writing

– review & editing. TQ: Conceptualization, Supervision, Writing –

review & editing.
Frontiers in Oncology 10
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Henan Province Medical Science and

Technology Research Plan Project (Project No. LHGJ20220052),

which provided financial support for the publication fees.
Acknowledgments

During the preparation of this work the author(s) used

ChatGPT by OpenAI in order to improve the text's readability.

After using this tool/service, the author(s) reviewed and edited the

content as needed and take(s) full responsibility for the content of

the publication.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Sung H, Ferlay J, Siegel RL. Global cancer statistics 2020: GLOBOCAN estimates
of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin.
(2021) 71:209–49. doi: 10.3322/caac.21660

2. Komohara Y, Fujiwara Y, Ohnishi K, Takeya M. Tumor-associated macrophages:
Potential therapeutic targets for anti-cancer therapy. Adv Drug Delivery Rev. (2016)
99:180–5. doi: 10.1016/j.addr.2015.11.009

3. Qiu SQ, Waaijer SJH, Zwager MC, de Vries EGE, van der Vegt B, Schröder CP.
Tumor-associated macrophages in breast cancer: Innocent bystander or important
player? Cancer Treat Rev. (2018) 70:178–89. doi: 10.1016/j.ctrv.2018.08.010

4. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al.
Determining cell type abundance and expression from bulk tissues with digital
cytometry. Nat Biotechnol. (2019) 37:773–82. doi: 10.1038/s41587-019-0114-2

5. Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, et al. Tumor-derived exosomal
miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal
cancer. J Hematol Oncol. (2020) 13:156. doi: 10.1186/s13045-020-00991-2

6. Xiao M, Bian Q, Lao Y, Yi J, Sun X, Sun X, et al. SENP3 loss promotes M2
macrophage polarization and breast cancer progression.Mol Oncol. (2022) 16:1026–44.
doi: 10.1002/1878-0261.12967

7. Cheng Y, Zhong X, Nie X, Gu H, Wu X, Li R, et al. Glycyrrhetinic acid suppresses
breast cancer metastasis by inhibiting M2-like macrophage polarization via activating
JNK1/2 s ignal ing . Phytomedic ine . (2023) 114:154757. doi : 10 .1016/
j.phymed.2023.154757
8. Lu Y, Han G, Zhang Y, Zhang L, Li Z, Wang Q, et al. M2 macrophage-secreted
exosomes promote metastasis and increase vascular permeability in hepatocellular
carcinoma. Cell Commun Signal. (2023) 21:299. doi: 10.1186/s12964-022-00872-w

9. Sun C, Xu A, Liu D, Xiong Z, Zhao F, Ding W. Deep learning-based classification
of liver cancer histopathology images using only global labels. IEEE J Biomed Health
Inf. (2020) 24:1643–51. doi: 10.1109/JBHI.2019.2949837

10. Mahmood F, Borders D, Chen RJ, McKay GN, Salimian KJ, Baras A, et al. Deep
adversarial training for multi-organ nuclei segmentation in histopathology images.
IEEE Trans Med Imaging. (2020) 39:3257–67. doi: 10.1109/tmi.2019.2927182

11. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, et al.
Classification and mutation prediction from non-small cell lung cancer histopathology
images using deep learning. Nat Med. (2018) 24:1559–67. doi: 10.1038/s41591-018-
0177-5

12. He K, Chen X, Xie S, Li Y, Dollár P, Girshick R. Masked autoencoders are
scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (USA: IEEE) (2022) pp. 16000–9.

13. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, et al. BioBERT: a pre-trained
biomedical language representation model for biomedical text mining. Bioinformatics.
(2020) 36:1234–40. doi: 10.1093/bioinformatics/btz682

14. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR, Le QV. Xlnet:
Generalized autoregressive pretraining for language understanding. Adv Neural Inf
Process Syst. (2019) 32.
frontiersin.org

https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.addr.2015.11.009
https://doi.org/10.1016/j.ctrv.2018.08.010
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1186/s13045-020-00991-2
https://doi.org/10.1002/1878-0261.12967
https://doi.org/10.1016/j.phymed.2023.154757
https://doi.org/10.1016/j.phymed.2023.154757
https://doi.org/10.1186/s12964-022-00872-w
https://doi.org/10.1109/JBHI.2019.2949837
https://doi.org/10.1109/tmi.2019.2927182
https://doi.org/10.1038/s41591-018-0177-5
https://doi.org/10.1038/s41591-018-0177-5
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.3389/fonc.2024.1474155
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tian et al. 10.3389/fonc.2024.1474155
15. Cancer Genome Atlas Research Network. Comprehensive and integrative
genomic characterization of hepatocellular carcinoma. Cell. (2017) 169:1327–
1341.e1323. doi: 10.1016/j.cell.2017.05.046

16. Zhang G, Gao Z, Guo X, Ma R, Wang X, Zhou P, et al. CAP2 promotes gastric
cancer metastasis by mediating the interaction between tumor cells and tumor-
associated macrophages. J Clin Invest. (2023) 133. doi: 10.1172/jci166224

17. Qin R, Ren W, Ya G, Wang B, He J, Ren S, et al. Role of chemokines in the
crosstalk between tumor and tumor-associated macrophages. Clin Exp Med. (2023)
23:1359–73. doi: 10.1007/s10238-022-00888-z

18. Cassetta L, Pollard JW. A timeline of tumour-associated macrophage biology.
Nat Rev Cancer. (2023) 23:238–57. doi: 10.1038/s41568-022-00547-1

19. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Taghadosi
SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and
disease. J Cell Physiol. (2018) 233:6425–40. doi: 10.1002/jcp.26429

20. Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti
E. Deciphering the performance of macrophages in tumour microenvironment: a call
for precision immunotherapy. J Hematol Oncol. (2024) 17:44. doi: 10.1186/s13045-024-
01559-0

21. Liu YT, Mao ZW, Ding Y, Wang WL. Macrophages as targets in hepatocellular
carcinoma therapy. Mol Cancer Ther. (2024) 23:780–90. doi: 10.1158/1535-7163.Mct-
23-0660

22. He B, Wang L, Zhu M, Xu JA, Chen M, Jiang E, et al. Exosome-derived FGD5-
AS1 promotes tumor-associated macrophage M2 polarization-mediated pancreatic
cancer cell proliferation and metastasis. Cancer Lett. (2022) 548:215751. doi: 10.1016/
j.canlet.2022.215751

23. Xu R, Wu Q, Gong Y, Wu Y, Chi Q, Sun D, et al. A novel prognostic target-gene
signature and nomogram based on an integrated bioinformatics analysis in
hepatocellular carcinoma. Biocel l . (2022) 46:1261–88. doi : 10.32604/
biocell.2022.018427

24. An Y, Yang Q. Tumor-associated macrophage-targeted therapeutics in ovarian
cancer. Int J Cancer. (2021) 149:21–30. doi: 10.1002/ijc.33408

25. Wang H, Tian T, Zhang J. Tumor-associated macrophages (TAMs) in colorectal
cancer (CRC): from mechanism to therapy and prognosis. Int J Mol Sci. (2021) 22.
doi: 10.3390/ijms22168470

26. Khan F, Pang L, Dunterman M, Lesniak MS, Heimberger AB, Chen P.
Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy. J
Clin Invest. (2023) 133. doi: 10.1172/jci163446

27. Tang B, Zhu J, Wang Y, Chen W, Fang S, Mao W, et al. Targeted xCT-mediated
Ferroptosis and Protumoral Polarization of Macrophages Is Effective against HCC and
Enhances the Efficacy of the Anti-PD-1/L1 Response. Adv Sci (Weinh). (2023) 10:
e2203973. doi: 10.1002/advs.202203973

28. Zheng H, Peng X, Yang S, Li X, Huang M, Wei S, et al. Targeting tumor-
associated macrophages in hepatocellular carcinoma: biology, strategy, and
immunotherapy. Cell Death Discovery. (2023) 9:65. doi: 10.1038/s41420-023-01356-7

29. Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, et al. Macrophage polarization
and its role in liver disease. Front Immunol. (2021) 12:803037. doi: 10.3389/
fimmu.2021.803037

30. Lin SC, Liao YC, Chen PM, Yang YY, Wang YH, Tung SL, et al. Periostin
promotes ovarian cancer metastasis by enhancing M2 macrophages and cancer-
associated fibroblasts via integrin-mediated NF-kB and TGF-b2 signaling. J BioMed
Sci. (2022) 29:109. doi: 10.1186/s12929-022-00888-x

31. Qiu S, Xie L, Lu C, Gu C, Xia Y, Lv J, et al. Gastric cancer-derived exosomal miR-
519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-
mediated angiogenesis. J Exp Clin Cancer Res. (2022) 41:296. doi: 10.1186/s13046-022-
02499-8

32. Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor
microenvironment. Int J Mol Sci. (2021) 22. doi: 10.3390/ijms22136995
Frontiers in Oncology 11
33. Xu W, Wu Y, Liu W, Anwaier A, Tian X, Su J, et al. Tumor-associated
macrophage-derived chemokine CCL5 facil itates the progression and
immunosuppressive tumor microenvironment of clear cell renal cell carcinoma. Int J
Biol Sci. (2022) 18:4884–900. doi: 10.7150/ijbs.74647

34. Dangott B, Parwani A. Whole slide imaging for teleconsultation and clinical use.
J Pathol Inf. (2010) 1. doi: 10.4103/2153-3539.65342

35. Abels E, Pantanowitz L, Aeffner F, Zarella MD, van der Laak J, Bui MM, et al.
Computational pathology definitions, best practices, and recommendations for
regulatory guidance: a white paper from the Digital Pathology Association. J Pathol.
(2019) 249:286–94. doi: 10.1002/path.5331

36. Zeng Q, Klein C, Caruso S, Maille P, Laleh NG, Sommacale D, et al. Artificial
intelligence predicts immune and inflammatory gene signatures directly from
hepatocellular carcinoma histology. J Hepatol. (2022) 77:116–27. doi: 10.1016/
j.jhep.2022.01.018

37. Chen Z, Li X, Yang M, Zhang H, Xu XS. Optimization of deep learning models
for the prediction of gene mutations using unsupervised clustering. J Pathol Clin Res.
(2023) 9:3–17. doi: 10.1002/cjp2.302

38. Erak E, Oliveira LD, Mendes AA, Dairo O, Ertunc O, Kulac I, et al. Predicting
prostate cancer molecular subtype with deep learning on histopathologic images.
Modern pathology: an Off J United States Can Acad Pathology Inc. (2023) 36:100247.
doi: 10.1016/j.modpat.2023.100247

39. Bourgade R, Rabilloud N, Perennec T, Pécot T, Garrec C, Guédon AF, et al. Deep
learning for detecting BRCA mutations in high-grade ovarian cancer based on an
innovative tumor segmentation method from whole slide images.Modern pathology: an
Off J United States Can Acad Pathology Inc. (2023) 36:100304. doi: 10.1016/
j.modpat.2023.100304

40. Pizurica M, Larmuseau M, Van der Eecken K, de Schaetzen van Briene L,
Carrillo-Perez F, Isphordin S, et al. Whole slide imaging-based prediction of TP53
mutations identifies an aggressive disease phenotype in prostate cancer. Cancer Res.
(2023) 83:2970–84. doi: 10.1158/0008-5472.Can-22-3113

41. Mu Y, Tizhoosh HR, Dehkharghanian T, Campbell CJV. Whole slide image
representation in bone marrow cytology. Comput Biol Med. (2023) 166:107530.
doi: 10.1016/j.compbiomed.2023.107530

42. Hu G, Wang B, Hu B, Chen D, Hu L, Li C, et al. From WSI-level to patch-level:
Structure prior-guided binuclear cell fine-grained detection. Med image Anal. (2023)
89:102931. doi: 10.1016/j.media.2023.102931

43. Haq F, Bychkov A, Jung CK. A matched-pair analysis of nuclear morphologic
features between core needle biopsy and surgical specimen in thyroid tumors using a
deep learning model. Endocr Pathol. (2022) 33:472–83. doi: 10.1007/s12022-022-
09733-1

44. Lin H, Chen H, Graham S, Dou Q, Rajpoot N, Heng PA, et al. Fast scanNet: fast
and dense analysis of multi-gigapixel whole-slide images for cancer metastasis
detection. IEEE Trans Med Imaging. (2019) 38:1948–58. doi: 10.1109/tmi.2019.2891305

45. Ben Hamida A, Devanne M, Webe J, Truntzer C, Derangère V, Ghiringhelli F,
et al. Deep learning for colon cancer histopathological images analysis. Comput Biol
Med. (2021) 136:104730. doi: 10.1016/j.compbiomed.2021.104730

46. Silva-Rodrıǵuez J, Schmidt A, Sales MA, Molina R, Naranjo V. Proportion
constrained weakly supervised histopathology image classification. Comput Biol Med.
(2022) 147:105714. doi: 10.1016/j.compbiomed.2022.105714

47. Ghaffari Laleh N, Muti HS, Loeffler CML, Echle A, Saldanha OL, Mahmood F,
et al. Benchmarking weakly-supervised deep learning pipelines for whole slide
classification in computational pathology. Med image Anal. (2022) 79:102474.
doi: 10.1016/j.media.2022.102474

48. You JA, Gong Y, Wu Y, Jin L, Chi Q, Sun D. WGCNA, LASSO and SVM
algorithm revealed RAC1 correlated M0 macrophage and the risk score to predict the
survival of hepatocellular carcinoma patients. Front Genet. (2021) 12:730920.
doi: 10.3389/fgene.2021.730920
frontiersin.org

https://doi.org/10.1016/j.cell.2017.05.046
https://doi.org/10.1172/jci166224
https://doi.org/10.1007/s10238-022-00888-z
https://doi.org/10.1038/s41568-022-00547-1
https://doi.org/10.1002/jcp.26429
https://doi.org/10.1186/s13045-024-01559-0
https://doi.org/10.1186/s13045-024-01559-0
https://doi.org/10.1158/1535-7163.Mct-23-0660
https://doi.org/10.1158/1535-7163.Mct-23-0660
https://doi.org/10.1016/j.canlet.2022.215751
https://doi.org/10.1016/j.canlet.2022.215751
https://doi.org/10.32604/biocell.2022.018427
https://doi.org/10.32604/biocell.2022.018427
https://doi.org/10.1002/ijc.33408
https://doi.org/10.3390/ijms22168470
https://doi.org/10.1172/jci163446
https://doi.org/10.1002/advs.202203973
https://doi.org/10.1038/s41420-023-01356-7
https://doi.org/10.3389/fimmu.2021.803037
https://doi.org/10.3389/fimmu.2021.803037
https://doi.org/10.1186/s12929-022-00888-x
https://doi.org/10.1186/s13046-022-02499-8
https://doi.org/10.1186/s13046-022-02499-8
https://doi.org/10.3390/ijms22136995
https://doi.org/10.7150/ijbs.74647
https://doi.org/10.4103/2153-3539.65342
https://doi.org/10.1002/path.5331
https://doi.org/10.1016/j.jhep.2022.01.018
https://doi.org/10.1016/j.jhep.2022.01.018
https://doi.org/10.1002/cjp2.302
https://doi.org/10.1016/j.modpat.2023.100247
https://doi.org/10.1016/j.modpat.2023.100304
https://doi.org/10.1016/j.modpat.2023.100304
https://doi.org/10.1158/0008-5472.Can-22-3113
https://doi.org/10.1016/j.compbiomed.2023.107530
https://doi.org/10.1016/j.media.2023.102931
https://doi.org/10.1007/s12022-022-09733-1
https://doi.org/10.1007/s12022-022-09733-1
https://doi.org/10.1109/tmi.2019.2891305
https://doi.org/10.1016/j.compbiomed.2021.104730
https://doi.org/10.1016/j.compbiomed.2022.105714
https://doi.org/10.1016/j.media.2022.102474
https://doi.org/10.3389/fgene.2021.730920
https://doi.org/10.3389/fonc.2024.1474155
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Artificial intelligence model predicts M2 macrophage levels and HCC prognosis with only globally labeled pathological images
	1 Introduction
	2 Methods
	2.1 Datasets
	2.2 Calculation of the relative abundance of M2 macrophages
	2.3 MAE-based weakly supervised learning method
	2.3.1 Pre-processing
	2.3.2 Model training
	2.3.3 Model testing

	2.4 Prognosis prediction
	2.4.1 Data cleaning and clinical features
	2.4.2 Relationship between M2prob and prognosis
	2.4.3 Survival prediction model construction

	2.5 Ethical declaration

	3 Results
	3.1 Clinical features
	3.2 TAM calculation
	3.3 WSI classification performance
	3.4 Prognostic prediction
	3.4.1 M2prob and overall survival
	3.4.2 Mscore and overall survival


	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


