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Thyroid cancer (TC) is themost common endocrine cancer, which contributes to

more than 43,600 deaths and 586,000 cases worldwide every year. Among the

TC types, PTC and FTC comprise 90% of all TCs. Genetic modifications in genes

are responsible for encoding proteins of mitogen-associated protein kinase

cascade, which is closely related with numerous cellular mechanisms,

including controlling programmed cell death, differentiation, proliferation, gene

expression, as well as in genes encoding the PI3K (phosphatidylinositol 3-kinase)/

protein kinase B (AKT) cascade, which has contribution in controlling cell motility,

adhesion, survival, and glucose metabolism, have been associated with the TC

pathogenesis. Various genetic modifications including BRAF mutations, RAS

mutations, RET mutations, paired-box gene 8/peroxisome proliferator-

activated receptor-gamma fusion oncogene, RET/PTC rearrangements,

telomerase reverse transcriptase mutations, neurotrophic tyrosine receptor

kinase fusion genes, TP53 mutations, and eukaryotic translation initiation factor

1A X-linked mutations can effectively serve as potential biomarkers in both

diagnosis and prognosis of TC. On the other hand, epigenetic modifications

can lead to aberrant functions or suppression of a range of signalling cascades,

which can ultimately result in cancer. Various studies have observed the link

between epigenetic modification and multiple cancers including TC. It has been

reported that several epigenetic alterations including histone modifications,

aberrant DNA methylation, and epigenetic modulations of non-coding RNAs

can play significant roles as potential biomarkers in the diagnosis and prognosis

of TC. Therefore, a good understanding regarding the genetic and epigenetic

modifications is not only essential for the diagnosis and prognosis of TC, but also

for the development of novel therapeutics. In this review, most of the major TC-

related genetic and epigenetic modifications and their potential as biomarkers

for TC diagnosis and prognosis have been extensively discussed.
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1 Introduction

Thyroid cancer (TC) is the most common endocrine cancer,

which contributes to more than 43,600 deaths and 586,000 cases

worldwide every year (1). In the past 30 years, the occurrence of TC

has elevated in multiple developed countries (2, 3). The occurrence

of TC varies by up to 15-20-fold according to geographical regions,

where it is more commonly diagnosed in developed countries.

High-risk regions for TC include Southern Europe, North

America, New Zealand, Australia, Eastern Asia, and Polynesia. As

per the histological type, TC can be classified into 5 types including

anaplastic TC (ATC), medullary TC (MTC), poorly differentiated

TC (PDTC), follicular TC (FTC), and papillary TC (PTC). Around

10% of TC patients contain tumour metastasis including lung and

bone (20%), lung (50%), bone (25%), and other sites (5%)

(Figure 1). PTC and FTC comprise 90% of all TCs, which

generally affect people aged between 50 and 60 years (1). A range

of risk factors have already been identified that can contribute to TC

development including genetic predisposition, increased

concentrations of thyroid-stimulating hormone, iodine excess or

deficiency, and ionising radiation (5). Common diagnostic

techniques of TC include histopathological evaluation of the

thyroid gland tissue, fine needle aspiration cytology (FNAC),

ultrasonography, and various laboratory examinations with the

likelihood of estimating the tumour markers calcitonin and

thyroglobulin (6). There is a growing interest in molecular genetic

analysis of FNAC samples (6). In addition, there are several

mutations that are explicit for specific types of carcinomas and
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can thus play a role in molecular testing in the preoperative period

along with alteration of the diagnosis in the case of cytologically

ambiguous results (6). Decreased effectiveness of radioiodine

therapy or a propensity to dedifferentiate, involvement of

metastatic lymph node, and signs of elevated level of tumour

aggressiveness have already been linked along with some

mutations (7).

MTC arises from neural crest and most of the MTC cases are

sporadic (75%) while the remaining are hereditary (25%) (8).

Indeed, this wide range of progression is meticulously associated

with the pattern of accumulated genetic and epigenetic changes,

which are associated with tumour invasion, metastasis, and

differentiation. Most of the genetic changes in TC start their

activities via causing the activation of metabolic pathways. It has

been observed that constitutive activation of the extracellular signal-

regulated kinase (ERK)/mitogen-associated protein kinase (MAPK)

cascades can result in tumorigenesis and can further mediate cell

division. ERK/MAPK cascade activation is an important and

common process involved with the human cancer progression

and initiation. Genetic abnormalities in the RAS gene, BRAF (B-

Raf Proto-Oncogene, Serine/Threonine Kinase) gene, and

rearranged in translation (RET)/PTC are also linked with TC.

Interestingly, the occurrence of RAS gene-associated activating

mutations is reliant on the tumour histology. It was observed that

RAS mutations are more commonly seen in FTC as compared to

PTC. A cell membrane receptor tyrosine kinase was found to be

encoded by the RET proto-oncogene. This kinase’s ligands belong

to the glial-cell-line derived neurotropic factor family that results in
FIGURE 1

The types and metastasis of thyroid cancer. Reproduced with permission from Elsevier, (4).
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receptor dimerisation following binding, which further results in

tyrosine residue autophosphorylation and starts the ERK/MAPK

cascade. Functional deficiency of RET can lead to Hirschsprung’s

disease, while increased activities of RET have been linked with a

range of cancer types, such as MTC. Simultaneous mutations of

BRAF as well as RET/PTC have been linked with PTC (9).

Interestingly, BRAF V600E mutation is limited to anaplastic,

papillary, and poorly differentiated TC (10). In this review, the

genetic and epigenetic basis of TC as well as the main TC-associated

genetic and epigenetic modifications and their potential as

biomarkers for both diagnosis and prognosis of TC have been

extensively covered.
2 Genetic and epigenetic basis of
thyroid cancer

Tumour progression and transformation involve the disturbance

of cell signal mechanisms that control the balance between apoptosis

and cell proliferation (11). Genetic modifications in genes are

responsible for encoding proteins of MAPK cascade (Figure 2),

which is closely linked with numerous cellular mechanisms,

including controlling programmed cell death, differentiation,

proliferation, gene expression, as well as in genes encoding the PI3K

(phosphatidylinositol 3-kinase)/protein kinase B (AKT) cascade,

which has contribution in the regulation of cell motility, survival,

adhesion, and glucose metabolism, have been associated with the TC
Frontiers in Oncology 03
pathogenesis (11, 12). Chromosomal rearrangements (fusion genes)

and point mutations are the two main molecular mechanisms

associated with TC. A single nucleotide is altered in case of a point

mutation, while 2 different genes are fused in case of chromosomal

rearrangement. In most of the cases, these genetic alterations are

somatic or nonhereditary in nature. Several endocrine neoplasia

syndromes (such as- MEN2A, MEN2B) and familial forms of MTC

involve hereditary germline mutations (12). Suspected thyroid tissues

are analysed for potential somatic mutations. On the other hand,

peripheral blood collected from the patients and perhaps their relatives

are used to identify germline mutations (11, 13).

Epigenetic processes are vital for the maintenance of tissue-

specific gene expression patterns and normal development of cells

in mammals (14). Nonetheless, epigenetic changes can lead to

abnormal functions or suppression of several signalling cascades,

which can eventually result in cancer including TC (Figure 3).

Several studies have observed the link between epigenetic

modification and a range of cancers, along with several genetic

variations (16, 17). Epigenetic processes involve nucleosome

remodelling, non-coding RNA expressions, DNA cytosine

methylation, and covalent chromatin modification. Abnormal

DNA methylation is linked with gene expression and has a

contribution in tumorigenesis. Hypomethylation through several

mechanisms can result in proto-oncogene activations and genomic

instability, which can play a role in cancer progression and

development. Nevertheless, hypermethylation is linked with gene

silencing (predominantly tumour suppressor genes) and is regarded
FIGURE 2

Genetic alterations involved in thyroid cancer. RAS, Rat sarcoma virus; ERK, extracellular signal-regulated kinase; BRAF, B-Raf proto-oncogene; PI3K,
phosphatidylinositol 3-kinase; MAPK, mitogen-associated protein kinase; PTEN, phosphatase and tensin homolog; AKT, protein kinase B; mTOR,
mammalian target of rapamycin.
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as a cancer hallmark. More studies regarding how certain genomic

areas are targeted for hypermethylation are likely to lead to the

development of more therapeutic areas. In addition, miRNA

expression profile is another feature of epigenetic modification.

Previously, miRNA expression profiles in tumours were compared

to the related normal tissues, which indicated extensive expression

level alterations. As microRNAs (miRNAs or miRs) control the

expression levels of many genes that are associated with apoptosis,

cell proliferation, and transcriptional regulation, therefore changes

in their expression levels can mediate tumorigenesis. Indeed,

miRNAs have the capacity to play a role as oncogenes or tumour

suppressors, according to their role on the target genes.
3 Genetic modifications that can be
considered as biomarkers in the
diagnosis and prognosis of
thyroid cancer

3.1 BRAF mutations

BRAF (7q24) is a proto-oncogene, which is responsible for

encoding serine/threonine kinase belonging to the RAF-kinase

family that has an important contribution in the signal

transduction along the RAS/RAF/MEK/ERK cascade controlling

apoptosis, differentiation, and cell growth. Among the 3 functional

RAF proteins identified in humans including c-RAF, BRAF, and

ARAF; BRAF exhibits the maximum basal kinase function and is

the most strong MAPK cascade activator. Mutations in BRAF have
Frontiers in Oncology 04
also been linked with human carcinogenesis, where an increased

level of BRAF mutations was observed in ovarian carcinoma,

colorectal carcinoma, and melanomas. All such mutations were

observed in the kinase domain of the protein, linking either the ATP

binding site or activation loop, which further contributes in the

activation of BRAF. Subsequently, they were also detected in PTCs

and might be a target for potential therapy development against

aggressive lesions (18). In the case of PTC, BRAF mutations are the

most commonly detected mutations, along with the highest

frequencies in classical PTC and tall-cell. BRAF mutations are

exclusively observed in PTC and PTC-derived-ATC. So far, over

40 BRAFmutations have been detected, among them V600E is most

commonly observed and responsible for around 95% of cases.

BRAF K601E is most commonly seen in the case of follicular

variant PTC (FV-PTC). Upon radiation exposure, a chromosomal

rearrangement leading to the fusion gene AKAP9/BRAF and small

in-frame deletions or insertions surrounding codon 600 were

detected in PTCs. As compared to children, adults are more

commonly affected by BRAF mutations. Fluorescence in situ

hybridisation study revealed that BRAF activation includes copy

number gain and is present in 35% of FTCs, 25% of follicular

adenomas (FAs), and 3% of PTCs (18).
3.2 RAS mutations

Ras proteins belong to the guanosine triphosphate (GTP)-binding

protein family that control cell growth via phosphoinositide-3-kinase

(PIK3) and MAPK signalling pathways. In TC, 3 of RAS family

including members NRAS (located at chromosome position 1p13),
FIGURE 3

The role of epigenetic modifications in thyroid cancer. Reproduced with permission from Elsevier, (15).
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KRAS (located at chromosome position 12p12), and HRAS (located at

chromosome position 11p11) were found to be mutated, wherein they

mainly become activated either through mutations that reduce their

intrinsic GTPase action (codon 61) or increase their GTP-binding

affinity (codons12/13). Since their discovery, RAS mutations have been

detected in 18–27% of poorly differentiated TCs (PDTCs), 10–20% of

PTCs (particularly FV-PTC), up to 60% of ATCs, 40–50% of FTCs,

and 20–40% of FAs. In general, the most common mutations are less

common in codon 61 of HRAS and most common in codon 61 of

NRAS. Furthermore, they are rarely observed in radiation-mediated

TCs of Chernobyl and more commonly observed in iodine-deficient

regions (18). RAS mutations were initially regarded as early events in

thyroid carcinogenesis because of their occurrence in both FTCs and

FAs, nonetheless this might be elucidated through the high extent of

interobserver variability regarding the difference of FAs from FV-PTCs.

It has been recently revealed that there is an increased level of RAS

mutations in ATCs and PDTCs as well as lower levels of RAS

mutations in well-differentiated TCs, which indicates the influence of

RAS in the progression of the tumour, instead of the initiation. It has

been demonstrated by in vitro studies that elevated levels of genomic

instability mediated via RAS-genomic instability can mediate the

progression of the tumour through permitting tumour cells to collect

mutations that mediate elevated levels of invasiveness and survival. In

addition, thyroid-targeted RAS mutation led to follicular tumours that

further resulted in PDTCs in mice. RAS mutations might also be

prognostic of poor prognosis in the case of PDTCs and well-

differentiated TCs (18).
3.3 RET mutations

It is now well-known that the RET gene encodes a receptor

tyrosine kinase and has a significant contribution in cell survival,

differentiation, and growth (12). Typically, RET gene-associated

point mutations are observed in MTC (19). Interestingly, 95% of

MEN2B and MEN2A individuals contain germline mutations,

while the occurrence of somatic mutations in sporadic MTC and

germline mutations in familiar MTC is lower (50%) (20). For

relatives of patients, genetic screening is suggested with an

identified germline mutation in the RET gene (21). There is a

high risk of MTC in case of an inherited RET mutation, where it is

suggested to go through a preventive total thyroidectomy (22).

Individual suggestions can be provided as per the identified

genotype-phenotype correlations, particularly about the timing of

prophylactic total thyroidectomy in childhood to avert the disease

development (13, 23).
3.4 RET/PTC rearrangements

In children and adolescents, the most commonly observed

mutation is the chromosomal rearrangement of RET/PTC (24).

This kind of rearrangement is more common in PTC and is linked

with frequent metastatic dissemination and more aggressive tumour
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behaviour (25). Carcinoma cases are observed following previous

exposure to radiation (25). Identification of RET/PTC

rearrangement serves as a strong indicator of PTC and might also

facilitate the molecular diagnosis of FNAC, particularly in uncertain

cytological findings. Total thyroidectomy is typically suggested

following identification of RET/PTC rearrangements (13, 26).
3.5 Paired-box gene 8/Peroxisome
proliferator-activated receptor-gamma
fusion oncogene

A balanced translocation, t(2;3)(q13;p25), can lead to PAX8/

PPARg fusion oncogene that fuses PPARg and PAX8. A translocation

t(2;3;6;15) was first detected in an FA, which was then confirmed in

FTCs and FAs. Subsequently, the presence of PPARg and PAX8 was

confirmed in this translocation and it was observed that fusion

protein expression is induced by the PAX8 promoter. PAX8 plays

an important role in regulating the terminal differentiation in thyroid

cells, which regulates the expressions of thyroid-stimulating hormone

(TSH) receptor, thyroglobulin, and sodium iodide symporter (NIS).

Therefore, it is expected that the expression pattern of PAX8/PPARg
fusion protein is associated with the differentiation behaviour of

thyroid tumours, where absent or low level is expected in poorly

differentiated tumours and high level in well-differentiated tumours.

On average, it has been reported that PAX8/PPARg present in 13% of

FV-PTC (0–50%), 11% of FAs (0–55%), and 36% of FTCs (0–63%).

The aforementioned findings are based on the RT-PCR, however it

should also consider the fact that promoters that drive expression of

PAX8/PPARgmRNAmight be missing in the cells that are present in

the dedifferentiated tumours, nonetheless still might harbour the

fusion at the DNA level. In an attachment-independent manner,

PAX8/PPARgmediated in vitro thyroid cell growth, which decreased

apoptosis and elevated soft agar colony formation (27). These effects

might take place because of the fusion protein’s dominant negative

suppressive action as compared to wild-type PPARg, which is

thought to possess tumour-suppressive activities and has been

identified as a possible target for the development of therapeutics

against various cancer types. The role of PPARg in TC has been

further revealed by the identification of another fusion protein in

FTC, CREB3L2-PPARg, which might arise a chromosomal

rearrangement, t(3;7)(p25;q34). However, more studies are required

to find out whether PAX8/PPARg alone can mediate TC or whether

additional epigenetic or genetic processes are needed to activate the

full phenotypic expression of follicular TC (18).
3.6 Telomerase Reverse
Transcriptase mutations

The rate-limiting catalytic subunit of telomerase is encoded by

the TERT gene, which is accountable for the elongation of telomere

during the replication of DNA (12). C250T and C228T are the two

main point mutations that have been identified in TERT gene (28,
frontiersin.org
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29). An increased level of telomerase expressions have been

observed in cancer cells positive for C250T and C228T mutations,

where these cancer cells can maintain chromosomal telomere

length and can continue proliferation indefinitely (29). It has

been observed that there is a link between TERT mutations and

tumour aggressiveness as well as distant or local metastasis (28).

TERT mutations are found in ATC, more aggressive forms of PTC,

and poorly differentiated TCs (28, 30). Co-occurrence of BRAF

V600E mutation and TERT mutations is linked with increased level

of tumour aggressiveness in case of PTC as compared to BRAF and

TERT mutations occurring alone (31). Region VI elective neck

dissection and total thyroidectomy are recommended for the

preoperative detection of TERT mutations in nodules bigger than

1 cm as per the European Thyroid Association (13, 26).
3.7 Neurotrophic tyrosine receptor kinase
fusion genes

The occurrence of NTRK fusion genes in PTC is 5–10% in

adolescent and pediatric patients (32). If a NTRK fusion gene is

detected in a thyroid sample, the risk of malignancy is considered as

100% (21, 32). The follicular arrangement is observed in NTRK

fusion-positive carcinomas, along with the incidence of frequent

lymph node metastasis and chronic lymphocytic thyroiditis

(13, 19).
3.8 TP53 mutations

TP53 gene (a tumour suppressor) starts apoptosis in the case of

nonrepairable DNA and controls the cell growth by regulating the

cell division (12). Increased levels of TP53 expressions and

mutations are identified in over 75% of undifferentiated and

invasive carcinomas (21). In differentiated carcinomas, the

occurrence of TP53 mutations is considered as an indication of

subsequent ATC dedifferentiation (19).
3.9 Eukaryotic translation initiation factor
1A X-linked mutations

The EIF1AX gene encodes a vital eukaryotic translation initiation

factor and EIF1AX mutations have been linked to several cancers.

Mutations in the EIF1AX gene have been detected in tumours that

typicallybedeficient inother commondrivers and identified in1.5%of

The Cancer Genome Atlas (TCGA) cohort, which are indicating that

EIF1AX gene may play a role a novel PTC oncogene (33). RAS and

EIF1AXmutations often co-occur, however the precise mechanism of

action is yet to be discovered. These mutations are observed in benign

neoplasms and in around 30% of PTC, which are closely linked with

TERT and RAS mutations and indicate individuals in advanced TC

with a reduced rate of disease-specific survival (34).
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4 Epigenetic modifications that can be
considered as biomarkers in the
diagnosis and prognosis of
thyroid cancer

4.1 Aberrant DNA methylation

Aberrant DNA methylation (ADM) of tumour suppressor

genes and proto-oncogenes are found in TC and other human

cancers. Tumour suppressor genes present in the thyroid include

tissue inhibitor of metalloproteinase 3 (TIMP3), solute carrier

family 5 member 8 (SLC5A8), Ras association domain family

member 1, isoform A (RASSF1A), RAP1 GTPase activating

protein (RAP1GAP), RAPb2, phosphatase and tensin homolog

(PTEN), and death associated protein kinase (DAPK). A class of

GTPase-activating proteins is encoded by the RAP1GAP gene,

which is responsible for the deactivation of RAS-related protein.

This gene also controls mitogenic and oncogenic mechanisms in

thyroid cells. On the other hand, RAP1 has a significant

contribution in the ERK-dependent cascade regulation and

BRAF-MEK-ERK cascade activation. In thyroid tumour cell lines,

the immunohistochemistry studies showed RAP1GAP gene

downregulation in PTC along with its invasion and proliferation.

PTEN is a tumour-suppressive gene, which is responsible for

encoding phosphatidylinositol-3, 4, 5-triphosphate 3-phosphatase

protein. PTENmutations have been detected in several cancer types.

PTEN gene is also responsible for the negative regulation of AKT/

protein kinase B (PKB) signalling cascade. Moreover, this gene has a

significant contribution in controlling cell cycle and opposing rapid

cell division and growth. ADM of PTEN is commonly observed in

both PTC and FTC.

The TIMP3 gene is responsible for the suppression of cell

development, angiogenesis, infiltration, and metastasis of many

tumours. A hypermethylation of TIMP3 gene has been detected

in the case of TC. This gene is also linked with extrathyroidal

invasion and lymph node metastasis (35). A protein analogue to the

RAS effectors protein is encoded by the RASSF1A gene. A link has

been reported between the cancer and RASSF1A mRNA expression

deregulations, where ADM plays an important in the inactivation of

RASSF1A gene. Unlike FTC, ADM of RASSF1A is present in a small

proportion in PTC, which might have a significant contribution in

thyroid carcinogenesis. DNA hypomethylation also has a significant

contribution in carcinogenesis, however its exact role is yet to be

fully revealed. Nonetheless, international patterns of ADM have

been revealed in subtypes of thyroid malignancy through DNA

methylation arrays. Collectively, 13 and 21 hypomethylated genes

in FTC as well as 262 and 352 hypermethylated genes in PTC have

been identified. Moreover, 86 and 131 hypermethylated as well as

280 and 393 hypomethylated genes were detected in MTC and

ATC, respectively. Out of these genes, 4 oncogenes including

TCL1B, NOTCH4, INSL4, and DPPA2 were found to be

commonly controlled by hypomethylation (35).
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4.2 Histone modifications

The link between the behaviour of thyroid tumours and histone

modifications has been demonstrated. It is well-established that the

gene transcription is dependent on the chromatin accessibility and

conformation. Chromatin remains “open” (euchromatin) in a

transcriptionally active state, which permits the transcriptional

machinery interaction with DNA to initiate the transcription of

genes, while DNA remains tightly wrapped around the closed state

of chromatin (heterochromatin). On the other hand, DNA tight

packaging is caused by its coiling around histone proteins, which

provide structural support to a chromatin. Through de-acetylation

and acetylation of lysine residues, the extent of DNA condensation

around histones regulates gene transcription, which involves

histone post-translational modification. Histone deacetylases and

acetyltransferases are the enzymes that cause such reversible

acetylation-deacetylation alterations. The interaction of DNA and

histones is hindered by histone acetylation of lysine residues

through the removal of the positive charge on the histones that is

responsible for the interaction with the negative charge containing

phosphate groups of DNA. The role of histone acetylation in cancer

has been widely evaluated, where this acetylation has a significant

contribution in tumorigenesis.

Histone acetylation in TC plays a role from the early stages of

thyroid carcinogenesis. Increased concentrations of H3K9–K14ac

and H3K18ac have been reported in FTC and PTC than in control

tissues, while histone H3K9–K14ac was only identified in ATC

tissues, further indicates that the deficiency of the expression of

H3K18Ac in case of ATC might have contribution during the

progression of TC (36). It was observed that ectopic induction of

major driver oncogenes including RAS, BRAF or RET/PTC resulted

in elevated concentrations of acetylated histones in thyroid cell

lines, which is in contrast with the events that take place in

undifferentiated and advanced tumours where acetylation

decreases expressions of a range of thyroid differentiation genes

including NKX2.1 (NK2 Homeobox 1), TPO (thyroid peroxidase),

TG (Thyroglobulin), and SLC5A5 (solute carrier family 5 member 5)

(37). HRAS and BRAFV600E mutations (unlike other genetic

modifications) exhibit less response to histone deacetylase

(HDAC) inhibitor therapies regardless of thyroid tumour

subtypes. An improved antitumour action has been observed in

some tumour cell lines with the combined treatment of PI3K/Akt or

MAPK inhibitors and HDAC inhibitors. Panobinostat is a strong

inhibitor of HDAC that exerted in vitro and in vivo cytotoxic

actions on ATC cell lines, which resulted in apoptosis as well as cell

cycle arrest and blocked growth of tumours in a xenograft mouse

model. Treatment with panobinostat also re-stimulated mRNA

expression of SLC5A5 along with an increased level of NIS, these

effects were also demonstrated with two other inhibitors of HDAC

trichostatin and suberoylanilide hydroxamic acid (38). Several

clinical trials were carried out utilising various HDAC inhibitors

including depsipeptide, valproic acid, romidepsin, vorinostat, and

suberoylanilide hydroxamic acid (39, 40). Nonetheless, these

clinical trials failed to show promising outcomes, in spite of the

great potential of these HDAC inhibitors (15).
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4.3 Non-coding RNAs

4.3.1 Long non-coding RNAs
Typically, lncRNAs are described as transcripts that contain

over 200 nucleotides that are not generally translated into

functional proteins. In addition, they are commonly found in the

nucleus, wherein lncRNAs exhibit various activities including gene

expression and splicing regulation via various mechanisms.

Chromatin structure can be altered due to the interaction of

lncRNAs with DNA, which can result in epigenetic modifications

and further cause alterations in the target gene expressions. In

addition, lncRNAs can interact with miRNAs or mRNAs and play a

role as molecular sponges or competing endogenous RNAs

(ceRNAs) to control the miRNA interaction with the targets or to

regulate the translation and stability of mRNAs. A range of

deregulated lncRNAs have already been reported, which can play

role as biomarkers in the prognosis and diagnosis of TC (Table 1).

For instance, HOX transcript antisense RNA (HOTAIR) is a

lncRNA that is commonly overexpressed, which was found to be

overexpressed in patients with PTC and TC (41). HOTAIR is

commonly linked with survival and it contributes in thyroid

carcinogenesis through Wnt signalling (42). In a miR-1-induced

manner, silencing of HOTAIR markedly decreased the tumour

growth in vivo as well as the growth of FTC-133 and TPC-1 cell

lines via controlling the expression of CCND2. Overexpression of

nuclear-enriched Abundant Transcript 1 (NEAT1) has been

reported in case of PTC and NEAT1 silencing in TPC-1 cells

resulted in decreased in vivo tumour growth, motility, and cell

survival induced by the downregulation of b-catenin through the

regulation of miR-214 (54). Trinucleotide Repeat Containing

Adaptor 6C-Anti Sense1 (TNRC6C-AS1) is another lncRNA that

plays a role as an oncogene in TC via sponging miR-129-5p as well

as mediating invasion, proliferation, and migration of TPC-1 cells

(55). TNRC6C overexpression or TNRC6C-AS1 silencing re-

induced the expressions of various thyroid genes including TPO,

TSHR (thyroid stimulating hormone receptor), SLC26A4, and

SLC5A5 (56). Therefore, it is likely that the TNRC6C-AS1–

TNRC6C axis has a contribution in iodine metabolism regulation

in case of PTC. Overexpression of MALAT1 (metastasis-associated

lung adenocarcinoma transcript 1) has also been observed in PTC,

where it exerts oncogenic activities (57). Nonetheless,

downregulation of MALAT1 has been reported in ATC and

PDTC (57). In the case of TC, MALAT1 mediates invasion and

proliferation of cells via IQGAP1 upregulation (58), which is a vital

MAPK scaffold protein that has significant contribution in TC (59).

The expression of MALAT1 is controlled via TGFb, which
indicates its contribution in TC progression by processes

associated with epithelial-mesenchymal transition (60).

Interestingly, some lncRNAs act as tumour suppressors via

controlling epithelial differentiation and cell homeostasis. For

example, in PTC, CASC2 (Cancer Susceptibility Candidate 2) was

found to be downregulated in samples and its lower level was linked

with poor prognosis (60). CASC2 overexpression markedly

decreased in vitro cell proliferation and resulted in ERK1/2 and

AKT inactivation (60, 61). Furthermore, CASC2 suppressed the
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invasion and migration of TC cells via sponging miR-18a-5p and

miR-155 (62). GAS5 (Growth Arrest-Specific 5) is another lncRNA

and its downregulation was observed in TC cell lines and PTC in

contrast with samples containing benign tumour. In patients with

PTC, a lower level of GAS5 expression is linked with poor

prognosis, tumour nodules metastasis (TNM) staging, multiple

cancer foci, and lymph node metastasis (63). In PTC cell lines,

GAS5 played a role as a ceRNA of miR-222-3p and inactivated the

PI3K signalling caused by the upregulation of PTEN (63). These

findings indicate the role as a tumour suppressor in TC. LINC00893

(Long Intergenic Non-Protein Cocing RNA 893) is another lncRNA

that is linked with PI3K signalling through PTEN signalling.

Reduced expression of LINC00893 has been reported in TC and

PTC cells (64). In PTC cell lines, LINC00893 ectopic overexpression

diminished cell migration and proliferation via AKT

phosphorylation blockage (64).

4.3.2 Circular RNAs
Numerous studies have already discovered the link between

circRNAs and tumorigenesis. The circRNAs play a role as a ceRNA
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to control gene expression via suppressing miRNA activities (Table 2).

There is a growing interest regarding the functions and roles of

circRNAs. In a study, 98 deregulated circRNAs were detected when

comparing six PTC tumours with nearby normal tissues (70). Among

them, circRNA-102171 overexpression was observed in 47 PTC

samples as compared to contralateral healthy tissues (71). In a

different study, 146 deregulated circRNAs were detected after RNA

sequencing of 11 PTCs and their heterolateral non-tumour tissues (72).

On the other hand, circ_0011058 is another circRNA that mediated in

vivo tumour growth and angiogenesis and facilitated cell proliferation

in PTC cell lines via controlling YAP1 expression and sponging miR-

355-5p (73). An upregulated level of CircRUNX1 was observed in

cancer samples to control the miR-296-3p/DDHD2 axis associated

with metastasis formation and tumour growth (74). Additional

activities of circRNAs include altering protein and gene expression

by controlling gene transcription, through their role as a translation

template or by interacting with the transcription machinery. Indeed,

circRNAs also have the capacity to modify the localisation or functions

of the proteins via interactions. For instance, circ-Amotl1 can interact

with c-MYC to activate and stabilise its transcriptional function
TABLE 1 Summary of potential lncRNAs as diagnostic and prognostic biomarkers in thyroid cancer.

lncRNAs Type of
thyroid
cancer

Target Roles References

HOX transcript antisense
RNA (HOTAIR)

Papillary thyroid
cancer (PTC)

miR-488-5p Regulates the disease progression and tumorigenesis of PTC
via controlling the cellular malignancy

(41, 42)

Nuclear-enriched Abundant
Transcript 1 (NEAT1)

PTC miR-524-5p NEAT1 elevates histone deacetylase 1 gene (HDAC1)
expression via sponging miR-524-5p

(43)

TNRC6C-AS1 Thyroid
cancer (TC)

miR-513c-5p TNRC6C-AS1
suppresses apoptosis and autophagy of TC cells via STK4
methylation by using Hippo signalling pathway

(44)

Metastasis Associated Lung
Adenocarcinoma Transcript
1 (MALAT1)

Anaplastic
TC (ATC)

miR-200-3p Associated with the autophagy, invasion, migration,
apoptosis, and cell proliferation

(45)

Long Intergenic Non-Protein Coding
RNA 313 (LINC00313)

PTC miR-4429 Regulates the migration and proliferation of PTC cells (46)

AB074169 PTC KH-Type Splicing
Regulatory
Protein (KHSRP)

AB074169 controls cell proliferation through modulating
KHSRP-induced CDKN1a expression

(47)

Taurine upregulated gene 1 (TUG1) TC miR-145 Elevated TUG1 expression significantly induces tumor cell
invasion and proliferation

(48)

ZNFX1 Antisense RNA 1 (ZFAS1) PTC miR-590-3p ZFAS1 overexpression can mediate proliferation and
suppress apoptosis of PTC cells

(49)

Actin filamentin-1 antisense RNA 1
(AFAP1-AS1)

ATC miR-155-5p Overexpression of AFAP1-AS1 leads to migration,
proliferation, invasion and apoptosis inhibition of
tumor cells

(50)

Long Intergenic Non-Protein Coding
RNA 313 (LINC00313)

TC ALX Homeobox
4 (ALX4)

Regulates cell invasion, migration, and proliferation (4)

BRAF-Activated Non-protein Coding
RN (BANCR)

PTC Thyroid stimulating
hormone
receptor (TSHR)

BANCR mediates cell proliferation in PTC (51)

HOXA Cluster Antisense RNA 2
(HOXA-AS2)

PTC miR-520c-3p HOXA-A52 mediates cell invasion and migration (52)

LOC100129940-N PTC Wnt/b-catenin signalling Mediates cell invasion, migration, and proliferation (53)
frontiersin.org

https://doi.org/10.3389/fonc.2024.1474267
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sabi 10.3389/fonc.2024.1474267
through the regulation of its nuclear translocation (75). Furthermore,

circRNA_102171 activates theWnt/b-catenin signalling through direct
interaction with CTNNBIP1, which eventually mediates the

invasiveness of PTC cells (71).

4.3.3 MicroRNAs
Among the ncRNAs, miRNAs have been best characterised and

most studied. These ncRNAs contain RNA transcripts of 18–24

nucleotides that interact with the 3′-UTR of mRNAs to hinder

protein translation of target genes. They have a significant role in

cancers, where miRNAs play a role in enhancing tumour
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progression and loss of differentiation. They can be classified as

tumour suppressors and oncogenic (oncomiRs) as per their

activities on death and proliferation of cells as well as expression

patterns in malignant samples in contrast with healthy tissues.

Certain profiles of miRNA expressions can be linked with genetic

mutations commonly detected in DTCs. Moreover, miRNAs can be

easily detected in blood samples and they show resistance to various

environmental conditions including room temperature, therefore a

miRNA profile can be used as therapeutic targets and prognostic

biomarkers (Table 3). In contrast with circulating mRNAs, miRNAs

have the ability to remain protected from nucleases in the
TABLE 3 Summary of potential miRNAs as diagnostic and prognostic biomarkers in thyroid cancer.

miRNAs Type of
thyroid cancer

Target Roles References

miR-221 Papillary thyroid
cancer (PTC)

CDKN1B/p27 Affects the cell cycle and the p27
protein level

(76)

miR-222 PTC CDKN1B/p27 Regulates cell cycle and p27
protein level

(77)

miR-137 PTC CXCL12 miR-137 suppresses PTC cell
invasion, migration,
and proliferation

(78)

miR-146b PTC Epidermal growth factor receptor (EGFR), nuclear
factor-kB (NF-kB), interleukin 1 receptor-associated
kinase 1 (IRAK1), and SMAD family member
4 (SMAD4)

Expression of miR-146b was
positively linked with cell invasion,
migration, and proliferation

(79)

miR-206 PTC MAP4K3 miR-206 upregulation suppressed
the cell proliferation and
stimulated apoptosis

(80)

miR-486 PTC Fibrillin-1 and KIAA1199 (Cell migration inducing
protein or CEMIP)

Regulates PTC cell invasion
and metastasis

(81)

miR-1179 PTC High Mobility Group Box 1 (HMGB1) Regulates PTC progression (82)

miR-1266 PTC Fibroblast growth factor receptor 2 (FGFR2) miR-1266 overexpression in PTC
cells markedly decreased cell
invasion, migration,
and proliferation

(83)

miR-25-3-p PTC and follicular
thyroid cancer (FTC)

Suppressor Of Cytokine Signalling 4 (SOCS4) Increases cell invasion
and metastasis

(84)
TABLE 2 Summary of potential circRNAs as diagnostic and prognostic biomarkers in thyroid cancer.

circRNAs Type of
thyroid cancer

Target Roles References

Circ_100395 Papillary thyroid
cancer (PTC)

Phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (AKT)/
mammalian target of rapamycin
(mTOR) signalling

Circ_100395 overexpression markedly
decreased cell invasion, migration and
survival via the PI3K/AKT/mTOR
signalling pathway

(65)

hsa-circ-u0058124 PTC miR-218–5p Mediates cell metastasis, tumour
invasiveness, tumourigenicity,
and proliferation

(66)

CircNEK6 PTC miR-370-3p Promotes PTC progression (67)

circ-ITCH PTC miR-22-3p circ-ITCH is associated with sponging
miR-22-3p and elevation of
CBL expression

(68)

circ-BACH2 PTC miR-139-5p Mediates PTC cell invasion, migration,
and growth

(69)
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bloodstream by being encased in exosomes or microvesicles or

through interaction with proteins as well as miRNAs have the

capacity to remain undamaged in paraffin-fixed tissue samples (85,

86). Numerous studies have already assessed the role of various

miRNAs in thyroid carcinogenesis, where they regulate the major

cancer-associated signalling mechanisms including transforming

growth factor beta (TGFb), PI3K, MAPK, Hippo and Wnt

signalling mechanisms (15, 87). PTC miRNAs are classified into 6

clusters as per TCGA that are markedly different as per the

parameters including risk profiles, histological phenotype, driver

mutations, and so on. For example, Cluster 1 is closely linked with

RAS mutations and FV-PTC, while clusters- 5 and 6 contain the

highest level of BRAFV600E mutations and a very high risk.

On the other hand, Cluster 6 possesses most of the tall-cell PTC

samples (74%) of TCGA (88). As like FTC tumours, FV-PTC

exhibits a RAS-like signature, however some of the most

deregulated miRNAs are common in PTC (76, 89), unlike TCGA

findings where the expression patterns of miRNA of cluster 1 were

markedly dissimilar to the most deregulated miRNA in PTC (15).

Unlike PTC, FTC shows a specific and different pattern of

miRNA expression, however there are a minimum 2 shared

miRNAs including mir-221 and miR-34 that have significant

contributions in well-differentiated tumours in case of thyroid

carcinogenesis (76). On the other hand, ATC contains several

deregulated miRNAs present in FTC and PTC, however it

contains specific deregulated miRNAs that are associated with the

malignancy and dedifferentiation (90, 91). ATC also contains

heterogenous cell types and a higher level of downregulated

miRNAs (91). Collectively, these findings confirm the significance

of epigenetics as a diagnostic tool in the case of TC. Numerous

studies have already analysed and identified miRNA profiles

differentiating benign from malignant thyroid neoplasms, which

could be used by clinicians in postoperative monitoring. A

combination of quantitative reverse transcription polymerase

chain reaction (RT-PCR) and sequencing showed overexpressed

levels of miR-222 and miR-151-5p in tissue and serum samples of

PTC patients in comparison with healthy controls and goitre

patients (77). Levels of miR-222 and miR-151-5p were found to

be reduced following thyroidectomy compared to the levels

observed in healthy people (92–94). A range of other PTC-linked

miRNAs including miRNA-146b, miR-451a, miR-25-3p, miRNA-

190, miR-29b, miRNA-95, and miRNA-579 have been identified.

Indeed, miR-146b is a well-studied and most overexpressed

miRNAs in TC, which is most commonly seen in PTC. The miR-

146b expression is closely linked with the malignant thyroid

neoplasm occurrence, which makes this miRNA an important

biomarker (79). It was observed that miR-146b-3p can interact

with the 3′-UTR of SLC5A5 and PAX8, which further leads to

iodide uptake and protein translation inhibition (95). It has been

observed that miR-146b-5p interacts with 3′-UTR of PTEN and

SMAD4 (SMAD Family Member 4) to decrease the level of mRNA

expression and stimulate PI3K/AKT signalling mechanism and

TGFb hyperactivation, which eventually leads to an elevated level

of cell aggressiveness (96, 97). In addition, miR-146b-5p decreases the

biosynthesis of miRNA via targeting DICER1, which is an important

protein required for miRNAmaturation that contributes as a tumour
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suppressor in TC (98). Both cell proliferation as well as invasion are

regulated by miR-146b-5p and these processes are up-regulated

throughout the epithelial-mesenchymal transition, therefore affects

the progression of PTC. Several studies already reported the potential

of miRNA profiles (including miR-146b) for the accurate

differentiation benign as well as malignant tumours in fine-needle

aspiration biopsy (FNAB) specimens (99–102). Levels of circulating

miR-146b have been designated as an important and reliable

serological marker for differentiating between benign tumours and

PTC (103). Identification of the expressions of miR-146b in case of

several thyroid nodules via using in situ hybridisation study

confirmed its significance in differentiating between PTC from

anaplastic TC, FTC, follicular adenomas, or poorly differentiated

TC (84, 104). Increased concentrations of miR-21 and miR-146b-5p

were also linked with markedly lower survival rates in PTC patients.

In PTC, mir-146b-5p has been suggested as a prognostic and

diagnostic marker because of its increased expression level in PTC

unlike other tissues examined (104).

TCGA carried out a study with TC samples, which observed

that miR-146b-5p-induced regulation of the IRAK1 (interleukin-1

receptor-associated kinase 1) gene which is different from the

conventional form of PTC (105). NF-kB/IL6/STAT3 signalling

cascade was also found to be linked with the regulation of

synthesis of miR-146b-5p, whose elevated concentrations

downregulate the expressions of various pro-inflammatory

mediators including IRAK1 (106). The deregulation of miR-146b

was linked with aggressive behaviour of tumours in clinical PTC

specimens positive for BRAF and individuals containing BRAF

mutations showed elevated expressions of miR-146b as compared

to BRAF wild-type controls (107, 108). Various other miRNAs

including miR-17-92, miR-339, and miR-875-5p cluster also have

the capacity to interact with the 3′UTR of SLC5A5, which further

decreases the expressions of NIS. An increased concentration of

miR-875-5p expression was detected in the case of PDTC, while

miR-339 expression was less commonly observed (109). Elevated

levels of miR-17-92 expression decreased PAX8 and other genes

responsible for iodine metabolism (110), whereas the miR-29a level

is downregulated and targets LOX gene (91). An elevated level of

PI3K cascade regulation by microRNAs has been observed in TC.

PTEN is also targeted by miR-21, where an increased expression has

been observed in various solid tumours including PTC. The

expression of miR-21 is controlled through RAS by the activator

Protein-1 transcription factor and minimum 2 downstream

pathways including PI3K and MAPK (111, 112). Both miR-222

and miR-221 can interact with the 2 target regions in the 3′-UTR
area of the p27-kip1 transcript, an established downstream effector

of the PI3K cascade and a negative cell cycle regulator, which

decreases its protein concentrations (112). The overexpression of

miR-221 triggered cell invasion, migration and proliferation in

various PTC cell lines (113).

An overexpression of miR-29 and miR-23 has also been

reported, which are found to be controlled by TSH and its target

SMAD3 (a key regulator of TGFb activities) (114). Among the TC-

related downregulated miRNAs, the let-7 miRNA family has a

significant contribution in the development and control of cell

fate. Members of the let-7 miRNA family have the capacity to
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interact with the 3′-UTR of all 3 RAS genes (including KRAS,

NRAS and HRAS) via several binding regions, which contribute in

decreasing the levels of protein expression. An activation of the

RAS-ERK cascade was detected following the downregulation of let-

7 miRNAs. A downregulation of let-7f was observed in PTC (115),

while its expression was found to be linked with the levels of RAS

protein (116). Moreover, a stable let-7f transfection in TPC-1 (the

human PTC cell line) containing RET/PTC rearrangement resulted

in the decreased cell proliferation and MAPK activation.

As per TCGA findings, expression of miR-137 is not markedly

deregulated inTC, however a lower level of expressionwas observed in

PTCascompared toadjacentnormal tissues (117). Itwas observed that

miR-137 can directly target the transcript of the tyrosine kinase

receptor gene EGFR (epidermal growth factor receptor), which has a

significant contribution in theMAPKsignalling translocation from the

membrane to the nucleus in order to cause activation of the major

effectors ofMAPK. In addition, miR-137 downregulated cell invasion,

colony formation ability, and cell proliferation as well as negatively

regulated ERK and Akt signalling pathways in TPC-1 and B-CPAP

(thePTCcell lines). The reductionofEGFRrepealed the actionofmiR-

137 suppression on these signalling cascades, which indicates that

miR-137 contributes on signalling in an EGFR-dependent manner. In

a study, Nieto et al. used combined miRNA and mRNA expression as

prognostic indicators of TC recurrence (78). They formulated a risk

score model as per the comprehensive bioinformatics and

experimental miRNA, mRNA, and somatic mutation study in

recurrent tumours. Furthermore, they utilised RNA sequencing

results of 501 TC samples obtained from TCGA datasets, including

46 recurrent tumours and 455 non-recurrent samples. These

researchers also carried out a functional gene analysis in several

thyroid cell lines in cell-based assays and evaluated the prognostic

values of the genes by utilising the TCGA datasets (78). In total, they

detected 59 genetic variants, 39miRNAs, and 40mRNAs as important

biomarkers of TC recurrence. Among them, miR-1179 and miR-486

showed marked activities in suppressing in vitro TC cell migration,

while deletionofmiR-1179 andmiR-486 elevated cellularmigration in

vitro (82, 118).Amarkedly higher level ofmiR-375overexpressionwas

observed in the case of MTC in comparison with the normal thyroid

tissues. Moreover, there is a close connection between patient

outcomes, expression of miR-375, and tumour aggressiveness, which

indicates an important role in the pathogenesis of MTC (119, 120).

Therefore, levels of circulating miR-375 are regarded as important

prognostic markers for advanced MTC (121). In addition to this,

serum miR-375 can be used as prognostic and diagnostic markers of

MTC, which differentiates between control subjects andMTCpatients

along with a 97.6% specificity and a 92.6% sensitivity (122).
5 Conclusion and future perspectives

Advances in genetic research and the epigenetics revolution

have extensively evaluated Over the past decades to find out

whether genetic codes predominately determine gene function or

not. Various experiments have also established the involvement of

genetic and epigenetic modifications in cancer, which indicates that

genome packaging is also vital as like genome in controlling the
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major cellular mechanisms. Therefore, a comprehension regarding

genetic and epigenetic modifications is not only essential for the

diagnosis and prognosis of various cancers including TC but also

for the development of therapeutics. As like any other cancers, most

of the genetic and epigenetic modifications in the case of TC are

somatic in nature, thus evaluation of the epigenetic pattern in TC

exhibited an important contribution in these modifications in the

prognosis and classification of tumours. Interestingly, TC-

associated epigenetic alterations are reversible; therefore it is

possible to develop an optional epigenetic therapy. As miRNAs

have substantial contribution in cell invasion, differentiation and

proliferation, thus miRNAs as well as target genes can be used as

potential targets for the diagnosis and treatment of tumours.

Indeed, whole genome sequencing methods can extraordinarily

identify the genetic lesions accountable for the dedifferentiation,

progression and onset of TC. The molecular pathogenesis of TC has

been changed owing to the growing knowledge of genomics and

epigenomics. This improved understanding of TC-associated

signalling mechanisms and complex intracellular networks has

resulted in clinical trials with small kinase inhibitors.

Furthermore, mutation identifications in novel genes led to the

detection of potential and novelmolecularmarkers of TC. Anupdated

classification of thyroid tumours as per the RAS-and BRAF-score or

differentiation-score has mediated the development of precise

molecular classification of these tumours. Novel findings on histone

acetylation and DNA methylation might result in the detection of

repressive molecules of both modifications that may further facilitate

the thyroid tumour re-differentiation, which can further decrease their

aggressive behaviours and their refractoriness to radioactive iodine.

Collectively, all thesefindings have improved the knowledge regarding

TC pathogenesis and its causes. Moreover, this knowledge has

provided insights regarding the biological mechanisms linked with

the progression and initiation ofTC, regulatory circuits, new targetable

cancer genes, andmolecularmarkers with clinical uses in prognosis as

well as diagnosis of TC.
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96. Ramıŕez-Moya J, Wert-Lamas L, Santisteban P. MicroRNA-146b promotes
PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting
PTEN. Oncogene. (2018) 37:3369–83. doi: 10.1038/s41388-017-0088-9

97. Geraldo MV, Yamashita AS, Kimura ET. MicroRNA miR-146b-5p regulates
signal transduction of TGF-b by repressing SMAD4 in thyroid cancer. Oncogene.
(2011) 31:1910–22. doi: 10.1038/onc.2011.381
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