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radiomics-clinical model
Hui-Bin Xue1†, Mei-Li Liang2†, Huang-Zhen Xu1,
Chen-Yu Wang1, Tian-Wen Xu1* and Ai-Yue Zhao3*

1Department of Digestive Tumor, The Second Affiliated Hospital of Fujian Medical University,
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Purpose: This study aimed to develop and validate a model for accurately

assessing the risk of distant metastases in patients with gastric cancer (GC).

Methods: A total of 301 patients (training cohort, n = 210; testing cohort, n = 91)

with GC were retrospectively collected. Relevant clinical predictors were

determined through the application of univariate and multivariate logistic

regression analyses. Then the clinical model was established. Venous phase

computed tomography (VPCT) images were utilized to extract radiomic features,

and relevant features were selected using univariate analysis, Spearman

correlation coefficient, and the least absolute shrinkage and selection operator

(Lasso) regression. Subsequently, radiomics scores were calculated based on the

selected features. Radiomics models were constructed using five machine

learning algorithms according to the screened features. Furthermore, separate

joint models incorporating radiomic features and clinically independent

predictors were established using traditional logistic regression algorithms and

machine learning algorithms, respectively. All models were comprehensively

assessed through discrimination, calibration, reclassification, and clinical

benefit analysis.

Results: The multivariate logistic regression analysis revealed that age,

histological grade, and N stage were independent predictors of distant

metastases. The radiomics score was derived from 15 selected features out of

a total of 944 radiomic features. The predictive performance of the joint model 1

[AUC (95% CI) 0.880 (0.811-0.949)] constructed using logistic regression is

superior to that of the joint model 2 [AUC (95% CI) 0.834 (0.736-0.931)]

constructed using SVM algorithm. The joint model 1 [AUC(95% CI) 0.880

(0.811-0.949)], demonstrated superior performance compared to the clinical

model [AUC(95% CI) 0.781(0.689-0.873)] and radiomics model [AUC(95% CI)

0.740(0.626-0.855), using LR algorithm]. The NRI and IDI values for the joint

model 1 and clinical model were 0.115 (95% CI 0.014 -0.216) and 0.132 (95% CI

0.093-0.171), respectively; whereas for the joint model 1 and LR model, they

were found to be 0.130 (95% CI 0.018-0.243) and 0.116 (95% CI 0.072-0.160),
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respectively. Decision curve analysis indicated that the joint model 1 exhibited a

higher clinical net benefit than other models.

Conclusions: The nomogram of the joint model, integrating radiomic features

and clinically independent predictors, exhibits robust predictive capability for

early identification of high-risk patients with a propensity for distant metastases

of GC.
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1 Introduction

Gastric cancer (GC) is a prevalent malignancy globally, ranking

fifth in terms of its incidence and fourth in terms of its mortality

rate (1). It is well-established that the prognosis of GC varies

significantly depending on the treatment approach employed at

different stages (2). Studies have reported that at initial diagnosis,

distant metastases are observed in approximately 21.9-44.6% of

patients with GC (3, 4), leading to an unfavorable prognosis with a

median overall survival of merely 5 months and a 5-year survival

rate as low as 3.9% (5). Therefore, early identification and effective

intervention targeting high-risk patients with distant metastases can

substantially enhance patient outcomes.

The primary modality for identifying distant metastases in

clinical practice is computed tomography (CT) examination,

which offers advantages such as high spatial resolution, strong

non-invasiveness, and robust technical support for image

processing. However, the CT diagnosis of distant metastasis in

GC exhibits characteristics of high specificity but low sensitivity (6).

MRI and PET-CT serve as adjunctive modalities for detecting

distant metastasis in conjunction with CT, yet their sensitivity

remains limited (6). Moreover, existing imaging techniques can

only identify present distant metastases and cannot predict the risk

of future occurrences. Therefore, clinicians encounter considerable

difficulty in precisely identifying distant metastases, highlighting the

pressing requirement for the development of an innovative and

accurate predictive approach that can serve as a supplementary

diagnostic tool in detecting distant metastases among recently

diagnosed GC patients.

Radiomics, an increasingly prominent field in recent years,

employs high-throughput extraction of quantitative features to

convert medical images into high-dimensional and minable data,

followed by comprehensive data analysis for decision support (7).

By comprehensively extracting quantitative features from regions

of interest, radiomics can discern subtle differences in medical

images that may elude human perception and quantify the extent

of heterogeneity observed in neoplasms (8). Moreover, the

quantitative features obtained from images can provide insights

into biological aspects including cellular morphology, gene
02
expression, and molecular properties (9). These features are

relatively independent yet interconnected with traditional

clinical and molecular attributes, thereby enhancing the

accuracy of evidence-based medicine (10, 11). Prior research has

showcased the resilience of radiomics models that employ CT

scans to effectively forecast lymph node metastasis, assess ovarian

metastasis, and detect peritoneal and omental metastasis among

patients with GC (12–15). These findings offer promising

prospects for utilizing radiomic features and clinical data to

prognosticate the risk of distant metastases in individuals

with GC.

Hence, we hypothesize that radiomics could be a valuable asset

in forecasting the risk of distant metastases in GC. The primary aim

of this study was to establish a predictive model for distant

metastases using CT-based radiomic features and clinical data,

with the ultimate goal of developing an individualized nomogram

to offer an influential instrument for personalized therapy of

patients with GC.
2 Materials and methods

2.1 Patients

The present study retrospectively screened all cases of GC

initially diagnosed at the Second Affiliated Hospital of Fujian

Medical University from January 2018 to December 2022, as

retrieved from the database.

The stated criteria were utilized for the purpose of inclusion: (1)

histologically confirmed primary GC; (2) comprehensive evaluation

of distant metastases using whole-body 18F-FDG-PET-CT or

contrast-enhanced CT scans of the chest, abdomen, and pelvis,

MRI of the brain, and radionuclide bone imaging prior to treatment

initiation. Exclusion criteria included: (1) coexistence with other

primary malignant tumors; (2) Siewert type I esophagogastric

junction tumors; (3) insufficient clinical data; and (4) obvious

artifacts or poor gastric distension on CT images. A total of 301

patients meeting these criteria were randomly allocated to either a

training cohort or a testing cohort, with a distribution ratio of 7:3.
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This study received ethical approval from the Ethics Committee

of the Second Affiliated Hospital of Fujian Medical University, and

the need for obtaining informed consent was waived. The research

flowchart is illustrated in Figure 1.
2.2 Data and images collection

The collected data encompassed clinical characteristics and

VPCT images. Clinical characteristics of patients were extracted

from the medical record system, including age, gender, tumor

location, tumor size, histological classification and grade, T stage,

N stage, M stage, CEA and CA19-9 levels, neutrophil-to-

lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), as

well as metastatic site information. Distant metastasis is defined

as non-regional lymph node metastasis or distant organ metastasis

confirmed by biopsy. For gastric cancer patients initially diagnosed

with distant metastasis via computed tomography (CT), a subset

may forgo biopsy. However, the presence of metastatic disease can

be confirmed if there is a change in size of the lesions during post-

treatment follow-up, leading to classification as stage M1.

The CT images are acquired from the radiology department and

saved in the Digital Imaging and Communication in Medicine

(DICOM) format. All subjects underwent comprehensive multi-

phase contrast-enhanced CT examinations, including arterial,

venous, and delayed phases, in addition to non-enhanced CT

scans, prior to their respective treatments. The CT examination
Frontiers in Oncology 03
was performed using a 128-slice Philips Brilliance iCT and a

Siemens dual-source CT scanner. Other scanning parameters

involved setting the tube voltage at 120 kV, adjusting the tube

current within the range of 180 to 540 mA, maintaining a slice

thickness of 2 mm, utilizing an image matrix size measuring

512×512, and determining pixel spacing as 0.765625×0.765625.
2.3 Image segmentation and radiomic
features extraction

Image segmentation was performed using ITK-SNAP software

(version 3.6.0; http://www.itksnap.org). A medical oncologist with 5

years of expertise in oncology manually segmented the regions of

interest (ROI) for all subjects’ lesions, which were subsequently

reviewed by a radiologist possessing a decade of professional

expertise. Both doctors were blinded to the patients’ clinical

conditions. The segmented CT image files were saved in

Neuroimaging Informatics Technology Initiative(NIFTI) format.

When conducting feature extraction, the ROI images underwent

normalization and resampling to achieve a pixel spacing of

2.0mm×2.0mm×2.0mm, thereby ensuring accurate pixel size and

slice thickness. Pyradiomics (16), an open-source Python package

accessible at the following link (https://pyradiomics.readthedocs.io/

en/latest/), was used for feature extraction.

Feature extraction was facilitated by employing Laplacian of

Gaussian (LoG) and wavelet filters, which are renowned for their
FIGURE 1

Flowchart of the study.
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efficacy in enhancing relevant information and reducing noise

within digital image processing. The ROIs can yield five distinct

types of radiomic features: (1) first-order statistical features, (2)

shape and size features, (3) texture features, (4) LoG features, and

finally, (5) wavelet features.

To guarantee the reproducibility and reliability of radiomics

features, 30 cases were randomly selected. One month after the

initial segmentation, the same oncologist (Observer 1) and the same

radiologist (Observer 2) resegmented the ROI to assess the intra-

and inter-observer reproducibility of the extracted features. Only

features with an intra-class correlation coefficient (ICC) greater

than 0.75 for both inter- and intra-observer agreements were

considered stable and selected for further analysis.
2.4 Feature selection and radiomics
score construction

In the feature selection process, we employed univariate analysis

to eliminate irrelevant features. The Spearman correlation

coefficient was utilized to identify feature pairs exhibiting a high

degree of correlation. Feature pairs characterized by a correlation

coefficient absolute value exceeding 0.9 were deemed to have a

strong correlation and thus, only one of the two feature was

retained. The remaining features were standardized using the

formula (X − m)/s, where m is the mean and s is the standard

deviation of each feature. Subsequently, the least absolute shrinkage

and selection operator regression (Lasso) was applied to identify

radiomic features that exhibit the strongest correlation with distant

metastasis in GC. The model’s correlation coefficients and constants

were calculated, leading to derivation of the radiomics scoring

formula. Figure 2 illustrates the methodology for creating the

radiomics score (radscore).
Frontiers in Oncology 04
2.5 Clinical model construction

We employed univariate and multivariate logistic regression

analyses in order to ascertain the clinically independent predictors.

Subsequently, we constructed clinical nomograms incorporating

these independent predictors.
2.6 Radiomics models construction

We utilize selected radiomic features to construct radiomics

models employing various machine learning algorithms, including

support vector machines (SVM), logistic regression (LR), random

forests (RF), naive Bayes (NB), and extreme gradient boosting

models (XGB). We then compare the effectiveness of these

models to determine the optimal algorithm.
2.7 Radiomics-clinical model construction

Relevant clinical predictors that showed statistical significance

in the univariate regression analysis were incorporated into a

logistic multivariate regression analysis along with radscore.

Afterwards, we developed the joint model 1 by including variables

with a P-value below 0.05. Furthermore, we incorporated both

clinical features and radiomic features into the feature selection

process, identifying the clinical and radiomic features most strongly

associated with distant metastasis of GC through feature selection.

Subsequently, we constructed joint models using the

aforementioned five machine learning algorithms and determined

the optimal machine learning joint model 2 by comparing the

effectiveness of these models. Finally, by comparing the predictive

performance of joint model 1 and joint model 2, we identified the
FIGURE 2

The methodology for creating the radiomics score.
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best joint model and compared it with the clinical model and the

best radiomics model.
2.8 Model evaluation

The effectiveness of the models was gauged through the AUC,

indicating the area under the receiver operating characteristic

(ROC) curve. To compare the AUC values across different

models, we employed the DeLong test. The calibration of the best

joint model was evaluated using a calibration curve and Hosmer-

Lemeshow test. Net reclassification improvement (NRI) and

integrated discrimination improvement (IDI) were computed to

compare performance across various models. Additionally, decision

curve analysis (DCA) was conducted to evaluate the practical value

of our models by quantifying net benefit at various threshold

probabilities. Ultimately, the sensitivity and specificity of the best

joint model were determined and compared with those of

conventional computed tomography (CT) for diagnostic accuracy.
2.9 Statistical analysis

The statistical analysis was conducted using IBM SPSS software

(version 27.0), Python software (version 3.11.4), and R software

(version 4.4.0; https://www.r-project.org). Clinical baseline

characteristics were compared between the training cohort and

testing cohort, employing the Chi-square test for categorical

variables and the Mann-Whitney test for continuous variables.

Additionally, the Mann-Whitney test was utilized to assess

radscore consistency between the training and testing cohort. A

statistical significance was determined when the p-value was less

than 0.05 on both sides.
3 Results

3.1 Clinical characteristics

Among the 301 eligible cases, 202 presented no distant

metastasis while 99 exhibited distant metastasis at initial

diagnosis, resulting in an incidence rate of 32.9%. Peritoneal

dissemination emerged as the predominant location for distant

metastasis (42.4%), closely trailed by hepatic involvement (39.4%)

and non-regional lymph node infiltration (30.3%). Less frequent

sites of metastasis included the lung (14.1%), adrenal glands

(6.1%), bone (5.1%), pancreas (5.1%), spleen (2.0%), abdominal

wall (2.0%), ovary (2.0%), and brain (1.0%). The distribution of

metastases was characterized by 57 cases (57.6%) with

involvement of a single organ and 43 cases (43.4%) with

involvement of multiple organs, with non-regional lymph nodes

being counted as one organ.

The entire cohort was divided into two cohorts, namely a

training cohort (n=210) and a testing cohort (n=91), using a
Frontiers in Oncology 05
random allocation method with a ratio of 7:3. In the training

cohort, distant metastasis was identified in only 69 cases (32.9%),

whereas 141 cases (67.1%), exhibited no indications of distant

metastasis. Similarly, within the testing cohort, there were 30

cases (33.0%) with distant metastasis and 61 cases (67.0%)

without distant metastasis observed. Comparison of clinical

characteristics between these two cohorts revealed no significant

differences in baseline characteristics (Table 1), indicating

satisfactory data division outcomes.
TABLE 1 Comparison of baseline characteristics between the training
and testing cohorts in patients with gastric cancer.

Characteristics
Training
cohort

(n = 210)

Testing
cohort
(n = 91)

P-value

Length (cm) 4.561 ± 2.168 4.352 ± 1.982 0.453

NLR 4.292 ± 2.103 4.193 ± 1.747 0.877

PLR 181.063 ± 58.675 183.521 ± 58.684 0.759

Age (years) 0.305

≥75 32 18

60-74 110 37

45-59 60 31

≤44 8 5

Gender 0.164

Female 60 19

Male 150 72

Location 0.730

Cardia - fundus 77 28

Body 45 23

Antrum 69 30

2/3-whole stomach 19 10

Histology 0.418

adenocarcinoma 172 78

others 38 13

Grade 0.843

G1/G2 93 37

G3 100 46

Gx 17 8

Stage T 0.321

T1/T2 24 7

T3 109 43

T4 77 41

(Continued)
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3.2 Features selection and radiomics score

A total of 944 radiomic features were extracted from the ROIs,

and after conducting ICC, univariate analysis, Spearman correlation

coefficient, and applying the Lasso regression algorithm, we

ultimately selected 15 features that exhibited the strongest

association with distant metastasis of GC. The calculation

formula for radscore is illustrated in Figure 2.

In the training cohort, there was a significant difference in

radscores between patients with and without distant metastasis

(mean ± SD: 0.445 ± 0.141 vs 0.272 ± 0.145; z = -7.216, P < 0.001). A

similar trend was observed in the testing cohort where patients with

distant metastasis had higher radscores compared to those without

(mean ± SD: 0.429 ± 0.173 vs 0.294 ± 0.163; z = -3.672, P < 0.001).

Furthermore, the radscore of the training cohort was 0.329 ± 0.165,

while the radscore of the testing cohort was 0.338 ± 0.177 (z =

-1.001, P = 0.317), indicating satisfactory data division outcomes.
3.3 Development and validation of the
clinical model

The univariate logistic regression analysis revealed significant

differences in age, histological grade, T stage, N stage, CEA, and

CA19-9 (Table 2). Subsequently, a multivariate logistic regression

analysis was conducted on the aforementioned independent

predictors. The results demonstrated that age, histological grade,

and N stage were clinically independent predictors (P<0.05).

Based on these predictors obtained from the final screening, we

developed a clinical prediction model. The AUC of the training

cohort was found to be 0.797 (95% CI 0.738-0.856). Furthermore,

the AUC of the testing cohort was found to be 0.781 (95% CI 0.689-
Frontiers in Oncology 06
0.873). Figure 3 presents the nomogram along with ROC and

calibration curves illustrating our clinical prediction model.
3.4 Development and validation of the
radiomics models

Different machine learning algorithms, including support

vector machine (SVM), logistic regression (LR), Random forest

(RF), Naive Bayes (NB), and extreme gradient enhancement model

(XGB), were employed to develop the radiomics models. Figure 4A

presents the AUC results of all models in the testing cohort except

for the machine learning joint models, revealing that the LR model

exhibits the best performance among the radiomics models.
3.5 Development and validation of the
radiomics–clinical model

The univariate logistic regression analysis revealed a statistically

significant difference in radscore between patients with distant

metastasis and those without (P < 0.001). The logistic multivariate

regression analysis incorporated the radscore and clinical characteristics

that demonstrated statistical significance in the univariate regression

analysis. The results revealed significant statistical associations (P < 0.05)

between age, histological grade, N stage, and radscore (Table 2), leading

to the establishment of the joint model 1. In the training cohort, the

AUC was 0.865 (95% CI 0.812-0.918); while in the testing cohort, the

AUC was 0.880(95% CI 0.811-0.949).

By incorporating both clinical and radiomic features into the

feature selection process, we identified 22 features with the strongest

association with distant metastasis of GC after the selection. The

clinical features included age, histological grade, N stage, and CEA,

while the radiomic features included original_glcm_Imc2, log-sigma-3-

0-mm-3D_firstorder_Median, log-sigma-3-0-mm-3D_glcm_MCC,

log-sigma-3-0-mm-3D_glrlm_ShortRunLowGrayLevelEmphasis, log-

sigma-3-0-mm-3D_glszm_HighGrayLevelZoneEmphasis, log-sigma-

3-0-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis, wavelet-

LLH_firstorder_Median, wavelet-LLH_glrlm_LongRunHighGray

LevelEmphasis, wavelet-LLH_glszm_GrayLevelVariance, wavelet-

LLH_g l s zm_HighGrayLeve lZoneEmphas i s , wave l e t -

LLH_glszm_SmallAreaEmphasis, wavelet-LHL_firstorder_Median,

wavelet-LHL_glszm_ZoneVariance, wavelet-HLH_glszm_

SmallAreaHighGrayLevelEmphasis, wavelet-HHL_glcm_Imc1,

wavelet-LLL_firstorder_TotalEnergy, wavelet-LLL_firstorder_

Variance, and wavelet-LLL_glcm_InverseVariance. Using the

aforementioned features, we constructed five machine learning joint

models. Figure 4B presents the AUC of joint model 1 and all machine

learning joint models in the testing cohort, demonstrating that the

SVM algorithm-built joint model 2 performed the best. In the training

cohort, the AUC was 0.842 (95% CI 0.780-0.904); in the testing cohort,

the AUC was 0.834 (95% CI 0.736-0.931). The DeLong test indicated

that, compared to joint model 2, joint model 1 had superior

discriminative performance (P < 0.05). Figure 3 presents the

nomogram along with ROC and calibration curves illustrating our

radiomics-clinical prediction model 1.
TABLE 1 Continued

Characteristics
Training
cohort

(n = 210)

Testing
cohort
(n = 91)

P-value

Stage N 0.633

N0 39 12

N1 31 17

N2 68 30

N3 72 32

CEA 0.472

Normal 146 67

Elevated 64 24

CA19-9 0.718

Normal 148 66

Elevated 62 25
NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; CEA,
carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9.
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TABLE 2 Univariate and multivariate logistic regression analysis.

Characteristics
Univariate regression Multivariate regression

OR (95%CI) P-value OR (95%CI) P-value

Age

≥75 Reference

60-74 0.803 [0.408, 1.615] 0.530 0.858 [0.362, 2.064] 0.730

45-59 0.955 [0.462, 2.004] 0.900 1.408 [0.567, 3.596] 0.470

≤44 4.368 [1.233, 18.099] 0.030 5.168 [1.114, 26.844] 0.040

Gender

Female Reference

Male 0.999 [0.582, 1.742] 1.000

Location

Cardia-fundus Reference

Body 1.253 [0.641, 2.433] 0.510

Antrum 1.633 [0.908, 2.959] 0.100

2/3-whole stomach 1.379 [0.558, 3.273] 0.470

Length 1.020 [0.909, 1.141] 0.730

Histology

adenocarcinoma Reference

others 0.920 [0.471, 1.733] 0.800

Grade

G1/G2 Reference Reference

G3 7.418 [4.136, 13.936] <0.001 4.554 [2.314, 9.330] <0.001

Gx 1.662 [0.502, 4.768] 0.370 0.698 [0.179, 2.384] 0.580

Stage T

T1/T2 Reference Reference

T3 4.050 [1.347, 17.528] 0.030 0.830 [0.199, 4.440] 0.810

T4 6.863 [2.268, 29.819] <0.001 0.869 [0.197, 4.829] 0.860

Stage N

N0 Reference Reference

N1 5.333 [1.559, 24.681] 0.010 2.747 [0.614, 15.450] 0.210

N2 9.290 [3.109, 40.131] <0.001 3.794 [1.021, 18.986] 0.070

N3 13.714 [4.641, 58.920] <0.001 5.723 [1.541, 28.790] 0.020

CEA

Normal Reference Reference

Elevated 1.894 [1.129, 3.174] 0.020 1.539 [0.734, 3.230] 0.250

CA19-9

Normal Reference Reference

Elevated 2.397 [1.429, 4.032] <0.001 1.358 [0.651, 2.824] 0.410

NLR 1.047 [0.928, 1.182] 0.450

(Continued)
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3.6 Evaluation of models

The performance of the clinical model, radiomics models, and

joint model 1 was compared in Figure 4C. The DeLong test

demonstrated that the joint model 1 exhibited significantly better

discriminatory capability in comparison to both the clinical model and

radiomics models (P < 0.05). The calibration curve indicated a good

agreement between predicted and observed values for the joint model

1. Furthermore, the Hosmer-Lemeshow test did not find any

statistically significant difference for the joint model 1 (p = 0.5419),

suggesting a well-fitted joint model. The NRI and IDI values for the

joint model 1 and clinical model were 0.115 (95% CI 0.014 -0.216) and

0.132 (95% CI 0.093-0.171), respectively; whereas for the joint model 1

and LR model, they were found to be 0.130 (95% CI 0.018-0.243) and

0.116 (95% CI 0.072-0.160), respectively. These results indicate a

significant improvement in predictive power when comparing the

joint model 1 to both the clinical model and LR model. The decision

curve analysis depicted in Figure 4D demonstrates that across various

threshold probabilities, net benefit is better for the joint model 1 than
Frontiers in Oncology 08
for other models. The sensitivity and specificity of CT for the diagnosis

of distant metastasis are detailed in Table 3. The sensitivity of CT is

65.7%, with a specificity of 98.5%. In contrast, the sensitivity of the

joint model 1 reaches 78.1%, and its specificity is 84.5%.

4 Discussion

Through integration of clinical data and radiomic features, we

have successfully developed and validated a nomogram model to

precisely forecast the occurrence of distant metastases in gastric

cancer. This constructed nomogram can serve as a user-friendly and

non-invasive tool for individualized treatment of GC patients.

To construct the most precise prediction model, we developed a

diverse range of models including clinical model, radiomics models,

and joint model. The clinical model exhibited strong performance

(AUC = 0.781). Out of the different machine learning models

assessed, the LR model demonstrated exceptional performance

with an AUC score of 0.740, slightly lower than that of the

clinical model; however, statistical analysis using Delong test
TABLE 2 Continued

Characteristics
Univariate regression Multivariate regression

OR (95%CI) P-value OR (95%CI) P-value

PLR 0.999 [0.995, 1.003] 0.590

Radscore
(per 0.1 increase)

2.177 [1.769, 2.741] <0.001 2.069 [1.622, 2.715] <0.001
OR, odds ratio; CI, confidence interval; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9.
Bold values: p < 0.05.
FIGURE 3

(A) Nomogram of clinical model. (B) ROC curve of clinical model. (C) Calibration curve of clinical model. (D) Nomogram of radiomics-clinical model.
(E) ROC curve of radiomics-clinical model. (F) Calibration curve of radiomics-clinical model.
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revealed no significant difference in AUC between these two models

(p > 0.05). Among the joint models 2 constructed using machine

learning algorithms, the SVM algorithm demonstrated the best

performance. However, compared to joint model 2, joint model 1

achieved superior performance (AUC = 0.880, Delong test, p <

0.05). Furthermore, compared to radiomic models built using

machine learning algorithms, the predictive performance of the

machine learning joint models was enhanced. These results indicate

that integrating radiomics with clinical features enhances diagnostic

efficiency within this prediction model framework. Furthermore, we

employed DCA curves along with NRI and IDI metrics to

comprehensively evaluate various models’ performances. While

ROC curves evaluate predictive accuracy solely based on

discrimination ability, DCA curves offer valuable insights into the
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potential drawbacks and advantages associated with false negatives

and false positives (17). NRI quantifies differences in correct

classification rates between two classifiers by measuring variations

in sensitivity and specificity sums (18). Similarly to NRI, IDI

measures gaps in prediction probabilities (19). Both indicators are

suitable for comparative analyses among different models. In

clinical practice, the principal modality for detecting distant

metastasis in gastric cancer patients is CT examination. However,

studies by Leeman, Feng, Pan, et al. (20–22), have reported that the

overall sensitivity of CT in diagnosing distant metastasis varies from

14.3 to 59.1%, with a specificity ranging from 89.6 to 99.8%. In the

present study, the sensitivity and specificity of CT for diagnosing

distant metastasis were 65.7% and 98.5%, respectively, whereas our

joint model exhibited a sensitivity of 78.1% and a specificity of
TABLE 3 The sensitivity and specificity of M staging by CT using histological examination as the reference standard.

Histological staging N
CT staging

Sensitivity (%) Specificity (%)
M0 M1

M0 202 199 3
65.7 98.5

M1 99 34 65

Total 301 233 68
M0: Patients without distant metastasis; M1: Patients with distant metastasis.
FIGURE 4

(A) AUC comparison of testing cohorts for all models. (B) AUC comparison of testing cohorts for all joint models. (C) ROC comparison of testing
cohorts for all models. (D) DCA curve.
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84.5%. The sensitivity of our model in diagnosing distant metastasis

is significantly higher than that of CT scans, which implies a

substantial reduction in the rate of missed diagnoses in clinical

practice. The specificity of our model is only slightly lower than that

of CT scans, suggesting its potential as an auxiliary diagnostic tool

to complement CT scans and reduce the rate of false positives.

Radiomics has found extensive application in the investigation

of malignancy, including lung cancer, colorectal cancer, thyroid

cancer, and gastric cancer (23–26). Moreover, at the microscopic

scale, radiomics is employed to evaluate the immune environment

and immunotherapy response of tumors (27). In previous studies

on gastric cancer, radiomics has been applied to predict lymph node

metastasis, peritoneal metastasis, response to neoadjuvant

chemotherapy, and long-term survival (12, 14, 28, 29). Gao

developed a CT-based radiomic model for predicting lymph node

metastasis in gastric cancer with excellent discriminative ability

(AUC = 0.89) (12). Dong successfully employed CT radiomics to

accurately identify occult peritoneal metastases in advanced gastric

cancer patients both in the training set (AUC = 0.958) and test set

(AUC = 0.941) (14). Radiomics has also been employed to forecast

neoadjuvant chemotherapy response in locally advanced gastric

cancer (AUC = 0.736) (28). These results emphasize the

considerable potential of radiomics in the development of

predictive models. Similarly, our study shows that the joint model

achieves excellent accuracy in predicting distant metastases in GC

patients, with an AUC of 0.865 for the training cohort and 0.880 for

the testing cohort.

Utilizing multivariate logistic regression analysis, we identified

age, histological grade, and N stage as independent clinical predictors

for distant metastasis in GC patients. Earlier research has

documented an increased prevalence of lymph node metastasis

among gastric cancer patients in the younger age group (30, 31),

suggesting that increased lymph node metastasis in younger patients

may contribute to distant metastasis. Furthermore, our findings

indicate that patients with poorly differentiated gastric cancer are

more prone to developing distant metastases compared to those with

moderately and highly differentiated tumors, potentially due to the

enhanced growth capacity and invasive potential of poorly

differentiated gastric cancer tissues in infiltrating surrounding

tissues, capillaries, and lymphatics. Our study incorporated

systemic immunoinflammatory markers, including NLR and PLR,

as clinically independent predictors for distant metastases. This is due

to the strong correlation between tumor development and

advancement and inflammation, wherein inflammatory cells

facilitate cancer cell proliferation, angiogenesis, and invasion (32).

Neutrophils modify the tumor microenvironment and secrete

inflammatory mediators to promote tumor cell proliferation,

invasion, and metastasis (33). Platelet activation acts as a chemical

attractant inducing cancer cell metastasis (34). Lymphocytes have a

significant impact on suppressing the growth and spread of cancer

cells by employing cytokine-induced cytotoxicity, thereby

contributing to effective immune responses against malignancies

(35). According to Osama et al., NLR and PLR are linked to gastric

cancer distant metastasis (36); however, our study did not identify

them as independent predictors of distant metastasis. This

discrepancy may be attributed to an inadequate sample size.
Frontiers in Oncology 10
To enhance the richness of image information acquisition, this

study employs a Laplacian of Gaussian (LoG) filter and a wavelet

filter in the feature extraction process. The LoG filter, a second-order

derivative filter, is primarily utilized for edge detection and feature

point recognition (37). Conversely, the wavelet filter offers multi-scale

and multi-directional analytical capabilities, and is extensively

applied in denoising and image enhancement techniques (38). It is

evident that the majority of the 15 selected features are derived from

these two filters. Moreover, the Spearman correlation coefficient is

applied to eliminate features with high inter-correlation, which aids

in reducing the complexity of the model and mitigating the risk of

overfitting. Subsequently, the radiomics models are established using

machine learning algorithms such as SVM, LR, RF, NB, and XGB,

based on the selected features. The findings suggest that LR, SVM,

and RF-based radiomics models demonstrate comparable predictive

efficacy as clinical features, thereby establishing themselves as

dependable biomarkers for forecasting GC metastasis.

To the best of our knowledge, this study represents the first

attempt to develop and validate a radiomics-based nomogram for

predicting the risk of distant metastases in patients with GC. The

utility of this approach lies in its utilization of readily available CT

imaging technology and a well-established methodology to forecast

the risk of distant metastases, without incurring additional financial

burden for patients. Furthermore, the presentation of the model in a

nomogram format allows for a more graphic representation of how

various parameters influence the outcomes, thus facilitating its

clinical application. However, several limitations of our research

should be acknowledged. Firstly, despite the robust performance of

the model, it requires a necessary suite of external validations to

corroborate its generalizability. Consequently, future studies should

incorporate a diverse patient population from different centers for

validation purposes. Secondly, the current study is retrospective in

nature and hence necessitates confirmation through additional

prospective investigations. Lastly, given our selection of venous

phase CT images for ROI segmentation, the predictive capabilities

of extracting features from arterial phase and delayed phase CT

images require additional verification.
5 Conclusions

Radiomics of venous phase CT images prior to treatment holds

promise as a potential biomarker for predicting the occurrence of

distant metastases in individuals diagnosed with gastric cancer. The

radiomics-clinical model exhibits a remarkable predictive

capability, offering significant value in the early identification of

high-risk patients with a propensity for distant metastases, thereby

providing a broad application potential in clinical decision-making.
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