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Background and purpose: Distant metastasis in bladder cancer is linked to poor

prognosis and significant mortality. Machine learning (ML), a key area of artificial

intelligence, has shown promise in the diagnosis, staging, and treatment of

bladder cancer. This study aimed to employ various ML techniques to predict

distant metastasis in patients with bladder cancer.

Patients and methods: Patients diagnosed with bladder cancer in the Surveillance,

Epidemiology, and End Results (SEER) database from 2000 to 2021 were included in

this study. After a rigorous screening process, a total of 4,108 patients were selected

for further analysis, divided in a 7:3 ratio into a training cohort and an internal

validation cohort. In addition, 118 patients treated at the Second Affiliated Hospital of

Nanchang University were included as an external validation cohort. Features were

filtered using the least absolute shrinkage and selection operator (LASSO) regression

algorithm. Based on the significant features identified, three ML algorithms were

utilized to develop prediction models: logistic regression, support vector machine

(SVM), and linear discriminant analysis (LDA). The predictive performance of the three

models was evaluated by obtaining the area under the receiver operating

characteristic (ROC) curve (AUC), the precision, the accuracy, and the F1 score.

Results: According to the statistical results, the final probability of distant

metastasis in the population was 12.0% (n = 495). LASSO regression analysis

revealed that age, chemotherapy, tumor size, the examination of non-regional

lymph nodes, and regional lymph node evaluation were significantly associated

with distant metastasis of bladder cancer. In the internal validation cohort, the

prediction accuracy rates for logistic regression, SVM, and LDA were 0.874, 0.877,

and 0.845, respectively. The precision rates were 0.805, 0.769, and 0.827,

respectively, and the F1 scores were 0.821, 0.819, and 0.835, respectively. The

ROC curve demonstrated that the AUC for all models was greater than 0.7. In the

external validation cohort, the prediction accuracy rates for logistic regression,

SVM, and LDA were 0.856, 0.848, and 0.797, respectively, with the ROC curve

indicating that the AUC also exceeded 0.7. The precision rates were 0.877, 0.718,

and 0.736, respectively, and the F1 scores were 0.797, 0.778, and 0.762,

respectively. Among the algorithms used, logistic regression demonstrated

better predictive efficiency than the other two methods. The top three variables
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with the highest importance scores in the logistic regression were non-regional

lymph nodes, age, and chemotherapy.

Conclusion: The prediction model developed using three ML algorithms

demonstrated strong accuracy and discriminative capability in predicting distant

metastasis in patients with bladder cancer. This might help clinicians in

understanding patient prognosis and in formulating personalized treatment

strategies, ultimately improving the overall prognosis of patients with bladder cancer.
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Introduction

Bladder cancer (Bca) is one of the most common malignant

tumors of the urinary tract. As the ninth most prevalent malignant

tumor globally, its incidence and prevalence are increasing year by

year. Approximately 550,000 patients are newly diagnosed with Bca

each year (1, 2). Men tend to have a higher incidence, and smoking

is believed to be a contributing factor (3). Based on the ability of the

tumor to invade, Bca can be classified into non-muscle-invasive

bladder cancer (NMIBC), muscle-invasive bladder cancer (MIBC),

and metastatic forms of the disease (4). Approximately 70% of

newly diagnosed cases are NMIBC, while approximately 30% are

diagnosed as MIBC, frequently with metastatic characteristics. Half

of the patients with muscle-invasive disease will die frommetastases

within 2 years. Compared with the 5-year survival rate of 77% for all

stages of Bca, the 5-year survival rate for metastatic Bca is only 5%

(5–7). Therefore, it is critical to develop models for the prediction of

distant metastasis of Bca.

As an essential branch of artificial intelligence (AI), machine

learning (ML) develops predictive models by automatically learning

from large datasets to improve prediction algorithms. This

advancement assists clinicians in identifying high-risk patients

and in evaluating the prognosis of various diseases (8, 9).

Diagnostic and prognostic models built using ML algorithms

based on pathomic data have demonstrated remarkable efficiency

in distinguishing patients with Bca from those with glandular

cystitis, as well as in predicting the survival outcomes of BCa

(10). Network analysis methods rooted in ML frameworks can

effectively identify biomarkers linked to immunotherapy responses,

resulting in robust predictions for precision oncology (11).

Furthermore, a ML model utilizing full-sequence MRI can

accurately forecast the depth of invasion of Bca prior to surgery,

helping clinicians in recognizing pathological features associated

with tumor invasion ahead of invasive procedures (12). In addition,

ML has been widely applied in prostate cancer and kidney cancer

research, and it also holds significant potential in various benign

conditions, such as urinary tract stones (12, 13).
02
In this study, data on patients with Bca and their clinical and

pathological characteristics were retrieved from the Surveillance,

Epidemiology, and End Results (SEER) database from 2000 to 2021.

Our aim was to utilize ML algorithms to develop a reliable model

for the prediction of distant metastasis of Bca, thereby providing

clinical support for treatment decisions and individualized

prognosis assessment.
Patients and methods

Patients

Detailed data of patients with Bca from 17 registration centers

between 2000 and 2021 were collected from SEER*Stat (version 8.4.3),

including the demographic, clinical, and pathological characteristics.

The inclusion criterion comprised patients diagnosed with Bca during

this time frame. The exclusion criteria were cases with unknown race,

unknown pathological grade, unknown radiotherapy status, unknown

tumor size or blank records, unknown non-regional lymph nodes, and

unknown T, N, or M stage, as well as unknown regional lymph node

examination results. Figure 1 illustrates the complete screening process.

As SEER is a public database and all records are de-identified, no

additional ethical approval was required.

The external validation cohort comprised 118 eligible patients

diagnosed with Bca between 2016 and 2020. Upon review and

analysis, a total of 18 patients were found to have ultimately

developed distant metastasis. The final follow-up was scheduled

for December 2023. This study was approved by the Ethics

Committee of the Second Affiliated Hospital of Nanchang

University, with a waiver of informed consent.

Screening for clinical and
pathological features

The variables selected included demographic characteristics (i.e.,

age, sex, and race), tumor characteristics (i.e., tumor size, grade,
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histology, T stage, and N stage), treatment information (e.g.,

chemotherapy and radiation therapy), and other variables (e.g.,

regional lymph nodes examined and non-regional lymph nodes).

The primary endpoint of this study was the development of distant

metastases in Bca. For better analysis, some of the variables were

processed in the SEER database. A number of continuous variables,

i.e., age, tumor size, regional lymph nodes examined, and non-

regional lymph nodes, were transformed into categorical variables.

All clinical and pathological features were used in the training set to

screen the features most related to the distant metastasis of Bca using

least absolute shrinkage and selection operator (LASSO) regression.

Variables were selected not only for their individual significance

but also for their potential interactions and contributions to the

overall predictive model. The LASSO regression technique applies a

penalty proportional to the absolute value of the coefficient sizes,

effectively shrinking some coefficients to zero. This process

facilitates variable selection while preventing overfitting, which is

particularly important when dealing with high-dimensional

datasets. The tuning parameter (l) regulates the strength of the

penalty: a larger l leads to more coefficients being set to zero,

thereby highlighting the most important predictors.
Frontiers in Oncology 03
The clinical rationale for selecting these variables is grounded in

their established correlations with outcomes in previous studies and

clinical guidelines. For instance, age and gender have been shown to

significantly influence the prognosis of cancer and the response to

treatment. Tumor characteristics such as size, grade, and stage (T

and N) are critical in the assessment of the aggressiveness of a

cancer and the likelihood of metastasis. In addition, treatment

variables, particularly the effects of chemotherapy and radiation

therapy on cancer progression, have been well documented and are

essential for our analysis. Lastly, examination of regional and non-

regional lymph nodes is crucial for the assessment of the metastatic

spread, thus helping in the development of predictive models for

distant metastasis.
Construction of the machine
learning model

As a common linear classifier, logistic regression establishes a

regression formula for the classification boundary based on existing

data, enabling the accurate identification of binary classification
FIGURE 1

Surveillance, Epidemiology, and End Results (SEER) database screening and research flowchart.
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problems. It primarily implements the algorithm through the

logistic function, specifically the sigmoid function. Support vector

machine (SVM), as a binary classification model, is fundamentally

defined as a linear classifier that maximizes the margin in the

feature space. By maximizing this margin, SVM can ultimately be

transformed into a solution for a convex quadratic programming

problem. Linear discriminant analysis (LDA), a classic method in

statistics and ML, aims to maximize the separation between samples

of different categories while minimizing the scatter within the same

category through a projection method, thus achieving linear

classification of data.

The clinical and pathological characteristics identified above

were utilized in constructing the ML models. Three types of ML

algorithms were trained using a binary classification approach. The

training set (70%) was used to train the model, while the validation

set (30%) was employed to assess the predictive performance of the

model, followed by external validation. A weighted average of the

precision, accuracy, and F1 score was employed to minimize the

impact of sample imbalance on the evaluation results. The

predictive values of logistic regression, SVM, and LDA were

compared by calculating the prediction accuracy, precision, F1

score, and the area under the receiver operating characteristic

(ROC) curve (AUC).
Statistical analysis

Data analysis was conducted using SPSS 27.0, R language

software (version 4.3.1; http://www.r-project.org/), and Python

language software (https://www.python.org/downloads/release/

python-380/). For the analysis and processing, all categorical

variables were expressed as numbers with percentages, and

LASSO regression was employed to identify key predictors.

LASSO regression was carried out using the glmnet package in R

or the scikit-learn package in Python, and the ROC curve was

plotted using the matplotlib package in Python.
Results

Patient characteristics and metastasis

The characteristics of the training cohort, the internal validation

cohort, and the external validation cohort of patients are presented

in Table 1. The probabilities of distant metastasis for Bca in

the three cohorts were 11.9% (n = 343), 12.3% (n = 152), and

19.4% (n = 14), respectively.
Identification of significant features

All clinical and pathological characteristics were analyzed using

LASSO regression. The results indicated that age, chemotherapy,

tumor size, non-regional lymph nodes, and regional lymph node

examination were the significant variables associated with the

distant metastasis of Bca, as detailed in Figure 2.
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TABLE 1 Clinical and pathological characteristics of the patients across
the three cohorts.

Variables
Training

(n = 2,876)

Internal
validation
(n = 1,232)

External
validation
(n = 118)

Distant metastasis, n (%)

No 2,533 (88.07) 1,080 (87.66) 100 (84.75)

Yes 343 (11.93) 152 (12.34) 18 (15.25)

Age, n (%)

<60 years 298 (10.36) 139 (11.28) 16 (13.56)

60–80 years 1,352 (47.01) 611 (49.59) 55 (46.61)

>80 years 1,226 (42.63) 482 (39.12) 47 (39.83)

Gender, n (%)

Men 2,050 (71.28) 832 (67.53) 81 (68.64)

Women 826 (28.72) 400 (32.47) 37 (31.36)

Race, n (%)

White 2,512 (87.34) 1,061 (86.12) 0

Black 158 (5.49) 162 (13.15) 0

Other 206 (7.16) 9 (0.73) 118 (100)

Histology, n (%)

TCC 2,483 (86.34) 1,049 (85.15) 98 (83.05)

NTCC 393 (13.66) 183 (14.85) 20 (16.95)

Grade, n (%)

Grade I 34 (1.18) 17 (1.38) 18 (15.25)

Grade II 150 (5.22) 73 (5.93) 6 (5.09)

Grade III 833 (28.96) 464 (37.66) 36 (30.51)

Grade IV 1,859 (64.64) 678 (55.03) 58 (49.15)

Radiotherapy, n (%)

No 160 (5.56) 53 (4.30) 79 (66.95)

Yes 2,716 (94.44) 1,179 (95.70) 39 (33.05)

Chemotherapy, n (%)

No 1,074 (37.34) 495 (40.18) 47 (39.83)

Yes 1,802 (62.66) 737 (59.82) 71 (60.17)

Tumor size, n (%)

≥3 cm 2,304 (80.11) 998 (81.01) 95 (80.51)

<3 cm 572 (19.89) 234 (18.99) 23 (19.49)

Non-regional lymph nodes, n (%)

No 2,502 (87.00) 1,047 (84.98) 102 (86.44)

Yes 374 (13.00) 185 (15.02) 16 (13.56)

T stage, n (%)

T1 314 (10.92) 150 (12.18) 12 (10.17)

T2 1,801 (62.62) 751 (60.96) 84 (71.19)

(Continued)
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Construction and evaluation of
machine models

Three ML models were developed using the significant variables

identified earlier. A weighted average of the precision, accuracy, and

the F1 score was utilized to minimize the effects of sample

imbalance on the evaluation results. In the internal validation

cohort, the prediction accuracy rates for logistic regression, SVM,

and LDA were 0.874, 0.877, and 0.845, respectively. The accuracy

rates were 0.805, 0.769, and 0.827, respectively, and the F1 scores

were 0.821, 0.819, and 0.835, respectively. The AUC (95% CI) values

were 0.701 (0.634–0.767), 0.701 (0.641–0.766), and 0.701 (0.635–

0.780), respectively. In the external validation cohort, the prediction

accuracy rates for logistic regression, SVM, and LDA were 0.856,
Frontiers in Oncology 05
0.848, and 0.797, respectively. The precision rates were 0.877, 0.718,

and 0.736, respectively, and the F1 scores were 0.797, 0.778, and

0.762, respectively. The AUC (95% CI) values were 0.740 (0.682–

0.795), 0.740 (0.674–0.792), and 0.740 (0.685–0.796), respectively.

Details can be found in Figure 3. These results indicate that all three

models can effectively predict distant metastasis in Bca. However,

after comprehensive comparison, logistic regression was found to

have the best predictive value and identification ability. The top

three variables with logistic regression importance scores were non-

regional lymph nodes, age, and chemotherapy (Figure 4).
Discussion

Distant metastasis of Bca significantly impacts the survival rates

and treatment prospects of patients. The common sites of

metastasis include the liver, kidneys, and bones. Patients with Bca

face an increased risk of death due to distant metastasis (14, 15).

Those with localized Bca often experience an excellent quality of life

and progression-free survival with aggressive treatment. Despite

advancements in various targeted therapies and immunotherapies,

distant metastasis remains highly lethal when it occurs (16–18). The

metastatic spread in patients with Bca is believed to be random and

unpredictable. Although early systemic treatment for Bca has made

progress and is somewhat effective in preventing tumor

progression, some individuals still inevitably develop recurrent or

metastatic disease (19, 20). Therefore, it is crucial to develop new

models for predicting the metastasis of Bca.

ML, a subfield of AI, emerged from the intersection of statistics

and computer science. Among the algorithms that demonstrate

superior performance, LDA and SVM are the most commonly

recognized (21, 22). The continuous advancement of computing

systems and recognition software has contributed to the popularity

of ML-based systems. These systems are capable of performing

complex tasks in bioinformatics and medical imaging, assisting

healthcare professionals in improving the diagnostic accuracy,

predicting disease progression, and even exploring new
TABLE 1 Continued

Variables
Training

(n = 2,876)

Internal
validation
(n = 1,232)

External
validation
(n = 118)

T stage, n (%)

T3 406 (14.12) 146 (11.85) 12 (10.17)

T4 355 (12.34) 185 (15.02) 10 (8.47)

N stage, n (%)

N0 2,522 (87.69) 1,053 (85.47) 61 (51.69)

N1 189 (6.57) 73 (5.93) 20 (16.95)

N2 157 (5.46) 103 (8.36) 19 (16.10)

N3 8 (0.28) 3 (0.24) 18 (15.26)

Regional nodes examined, n (%)

<10 2,663 (92.60) 1,168 (94.81) 111 (94.07)

10–20 137 (4.76) 37 (3.00) 3 (2.54)

>20 76 (2.64) 27 (2.19) 4 (3.39)
“Other” included American Indian/Alaska Native/Asian/Pacific Islander.
TCC, transitional cell carcinoma; NTCC, non-transitional cell carcinoma
FIGURE 2

(A) Least absolute shrinkage and selection operator (LASSO) coefficient distribution of the clinical and pathological characteristics. (B) LASSO
regression analysis was performed using the minimum criterion and a 10-fold cross-validation method. By introducing a penalty adjustment
parameter (l), the coefficients of the features are compressed towards zero, enabling automatic feature selection.
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therapeutic avenues (23–25). A retrospective study by Denget al.

showed that a ML model combining radiomic features and clinical

variables could accurately predict the pathological grade of Bca (26).

In addition, the quantitative assessment of tumor-infiltrating

lymphocytes using ML mitigates the inter- and intra-observer

variability, effectively predicting survival in MIBC and identifying

patients who may benefit from immunotherapy or treatment

adjustments (27). Liu et al. predicted lung metastasis in Bca by

developing a nomogram model; however, this model did not

include all distant metastases and highlighted the need for

improved algorithmic approaches (28). In the study by Chen

et al., multiple clinical variables were utilized to develop a

nomogram for predicting distant metastasis in patients with

urothelial Bca (29). In this research, a more advanced ML

algorithm was employed, incorporating AI methods to

successfully predict distant metastasis in Bca. ML utilizes

advanced algorithms to analyze various clinical variables and

integrate mult iple data sources , result ing in a more

comprehensive assessment of the condition of a patient. This

approach improves the diagnostic accuracy and reduces the

likelihood of misdiagnosis (9).

Our research utilized three ML models: logistic regression,

SVM, and LDA. After screening the clinical variables and

pathological characteristics using LASSO regression, we
Frontiers in Oncology 06
incorporated the identified significant variables and features into

the construction of our ML models. In the internal validation

cohort, we evaluated the predictive capability of the three models

by calculating the prediction accuracy, precision, F1 score, and the

AUC. The results indicated that all three models effectively

predicted distant metastasis in Bca. This was further confirmed

with the external validation cohort. By utilizing the model described

above, the stage and the pathological type of patients with Bca can

be predicted in real time, allowing for targeted treatment and

follow-up for those at high risk of distant metastasis. However,

this study has several limitations. Firstly, as a retrospective analysis

based on the SEER database, it may have lacked certain potentially

important factors, such as vascular invasion and preoperative

laboratory results. In addition, patients with unknown variable

information were excluded, which means that the results were

inevitably impacted by selection bias. Secondly, variations in the

sequencing of radiotherapy and chemotherapy, the types of

radiation used, and the chemotherapy agents administered may

have affected the likelihood of Bca metastasizing to distant sites.

Finally, while we have validated our model using an external cohort,

it is essential to include additional clinical and molecular biological

features in the future to enhance its predictive power in complex

clinical settings. Furthermore, multicenter prospective studies are

essential for the development of more robust algorithms, such as

deep learning and ensemble models. These studies should also focus

on comparing model performance across different groups (such as

gender and age) in multicenter external validations to further verify

our findings.
Conclusion

In summary, we successfully developed and validated three ML

models for the prediction of distant metastasis in Bca. In particular,

the logistic regression algorithm achieved better prediction results.

The application of these models can assist clinicians in making

more accurate treatment decisions and in providing personalized

follow-up management, ultimately improving patient prognosis.
FIGURE 4

Logistic regression importance scores.
FIGURE 3

Receiver operating characteristic (ROC) curves of the internal validation cohort (A) and the external validation cohort (B).
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