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Introduction: This study predicted HRD score and status based on intra- and

peritumoral radiomics in patients with ovarian cancer (OC) for better guiding the

use of PARPi in clinical.

Methods: A total of 106 and 95 patients with OCwere included between January

2022 and November 2023 for predicting HRD score and status, respectively.

Radiomics features were extracted and quantitatively analyzed from intra- and

peri-tumor regions in the CT image. Radiomics signatures (RSs) were built based

on features from intra- and peri-tumor regions for predicting HRD score and

status alone or in combination. Subject working characteristics (ROC) area under

the curve (AUC), sensitivity (SEN), and specificity (SPE) were calculated as

comparative metrics.

Results: For predicting HRD score, 4 and 2 features were selected as the most

important predictors from the intra- and peritumoral regions, respectively. For

predicting HRD status, 4 features from the intratumoral region and 2 from the

peritumoral region were identified as the most important predictors. Radiomics

nomograms created by combining RSs and important clinical factors showed

good predictive results with AUCs of 0.852 (95% confidence interval [CI]: 0.765-

0.938, SEN = 0.907, SPE = 0.655) and 0.781 (95% CI: 0.621-0.941, SEN = 0.688,

SPE = 0.833) in the training and validation cohort for predicting HRD score,

respectively; with AUCs of 0.874 (95% CI: 0.790-0.957, SEN = 0.765, SPE = 0.867)

and 0.824 (95% CI: 0.663-0.985, SEN = 0.762, SPE = 0.800) in the training and

validation cohort for predicting HRD status, respectively.

Discussion: Calibration curves and decision curve analysis (DCA) confirmed

potential clinical usefulness of our nomograms. Our findings suggest that

radiomics features derived from the CT image of OC have the potential to

predict HRD score and status, and the developed nomograms can enrich the

range of applicable population of PARPi, prolong progression-free survival and

provide personalized treatment for OC patients.
KEYWORDS

ovarian cancer, HRD score, HRD status, CT, radiomics
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1477759/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1477759/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1477759/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1477759&domain=pdf&date_stamp=2025-01-08
mailto:wangxingling@cancerhosp-ln-cmu.com
https://doi.org/10.3389/fonc.2024.1477759
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1477759
https://www.frontiersin.org/journals/oncology


Wu et al. 10.3389/fonc.2024.1477759
1 Introduction

Ovarian cancer (OC) is the most common cancer among

women and the leading cause of death from gynecologic cancers

worldwide (1). OC is classified into epithelial ovarian cancer (EOC,

accounting for approximately 90%) and non-epithelial ovarian

cancer (NEOC, accounting for about 10%), which differ in

molecular characteristics, treatment outcomes, and prognosis. (2).

Standard therapy for OC includes primary surgical cytoreduction

and platinum-based chemotherapy (3). However, the PI3K pathway

plays a crucial role in chemotherapy resistance and genomic

stability in EOC, being frequently upregulated in many cancers,

including OC, and involved in key processes such as DNA

replication and cell cycle regulation, which activation enhances

cell survival and repair mechanisms, contributing to chemotherapy

resistance. (4). According to previous studies (5), 70% of tumors

will recur within 6 months after the last dose of the platinum-based

chemotherapy due to platinum resistance in the tumor (6).

Proteomic s technologies such as mass spectrometry and protein

arrays are key to understanding platinum drug resistance. They

identify the molecular signatures and proteomic features that drive

resistance, identify new therapeutic targets and lay the foundation

for the development of targeted therapies (7). Recently, targeted

therapies involving the poly (ADP-ribose) polymerase inhibitor

(PARPi) and/or the anti-angiogenic agent bevacizumab (8, 9) have

become the new standard for treating platinum-sensitive OC

patients, and the use of PARPi has been found to be effective in

prolonging survival in patients with platinum-sensitive and

recurrent OC (10).

There have been six primary pathways of DNA damage

response (DDR) identified, which are variably used to address

double-strand DNA breaks (DSB) and single-strand DNA breaks

(SSB) damage from a variety of mechanisms of injury. Homologous

recombination repair (HRR) and nonhomologous end joining

(NHEJ) recombination are the two major pathways responsible

for repairing DSB (11), however, The Cancer Genome Atlas

(TCGA) suggests that Homologous Recombination Deficiency

(HRD) is present in approximately half of OC patients (12). The

majority of HRD tumors will occur in OC patients with germline

breast cancer susceptibility gene1/2 (BRCA1 and BRCA2)

mutations, however, there are also patients with germline

mutations in other homologous recombination pathway genes

(13). OC patients with HRD-positive usually exhibit distinct

clinical phenotypes, which include superior response to platinum-

based chemotherapy and sensitivity to PARPi (14). Therefore, HRD

testing is clinically significant in guiding the use of PARPi and the

developing subsequent treatment plans.

In the clinical setting, tumors can be analyzed using the

MyChoice HRD Plus assay (Myriad Genetic Laboratories Inc, Salt

Lake City, UT), and HRD-positive has been defined as genomic

instability score (GIS) ≥ 42 (high HRD score). HRD-negative was

defined as GIS < 42 (low HRD score) and no tumor mutations in

BRCA1/2 (15). However, the HRD testing has not yet been

integrated into routine clinical practice due to the high cost (16).

In contrast to HRD testing, clinical imaging is noninvasive, low-cost
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and can reflect a wide range of tumoral heterogeneity. Despite

contrast-enhanced computed tomography (CT) is the imaging

modality of choice for staging and treatment follow-up of OC

(17), radiologists cannot predict patients’ HRD status based on

visual assessments of medical images due to the lack of

imaging markers.

Radiomics refers to noninvasive quantification of tumor

characteristics from images, and has been suggested as a

promising and challenging field in recent years (18). Numeric

radiomics features can be calculated and selected from imaging

data to quantify and to screen tumor phenotypes, followed by

construction of machine learning-based models to aid in diagnosis,

prognosis and prediction of treatment responses in oncology (19,

20). Recent radiomics studies on OC have highlighted that medical

images contain a wealth of potential information regarding

prognosis (21, 22). and genetic status (23, 24). A recent study

demonstrated significant associations between radiomics features

derived from the CT image of OC and the risk of disease

progression (25). In another study for predicting the genetic

status in OC, zhang et al. built a nomogram based on CT-based

radiomics features and clinical characteristics, and showed that the

nomogram had good predictive performance in predicting BRCA

mutations (26).

Predicting only BRCA mutations ignores HRD in tumors

caused by other reasons (23, 24, 26), and predicting HRD status

may enrich the applicable population of PARPi. HRD is relatively

increased prevalence in OC compared to pancreatic, liver, lung and

kidney cancers (13), and to the best of our knowledge, there is no

radiomics study predicting the HRD score or status of patients with

OC (27). Pathological studies have shown that not only the internal

regions of ovarian tumors but also the normal tissues and stroma

surrounding the tumor are enriched with a variety of potential

markers associated with cancer invasion and metastasis. These

markers may provide valuable information for predicting HRD,

which warrants further investigation. (28). Therefore, this study

explored values of radiomics features of Intra− and peritumoral

regions in patients with OC to predict HRD score and HRD status,

aiming to enrich the range of applicable population of PARPi,

prolong progression-free survival and provide personalized

treatment for OC patients.
2 Methods

2.1 Patients

The retrospective study was approved by our institutional

review board (20220788). A cohort of 197 female patients was

constructed between Jan. 2022 and Nov. 2023. Inclusion criteria

were as follows: (1) patients who had pathologically diagnosed as

OC with surgery or biopsy; (2) underwent contrast-enhanced CT

screening before surgery; and (3) patients over 18 years. Exclusion

criteria were as follows: (1) patients with missing or incomplete

pathological data; (2) underwent chemotherapy or radiotherapy

treatment before the contrast-enhanced CT examination; (3) a
frontiersin.org
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history of other malignant tumors or pelvic metastases; and (4)

regions of interest (ROI) of CT images that could not be

segmented accurately because of overlapping artifacts. Figure 1

shows details of the process of inclusion and exclusion of patients.

A total of 106 and 95 patients were finally included for predicting

the HRD score and status, respectively. Eleven patients were

excluded due to an HRD score below 42 and the absence of

BRCA gene testing, resulting in a final cohort of 95 patients with

determined HRD status.

Patients were randomly divided into a training and

validation cohort at a ratio of 2:1 by stratified sampling. Clinical

characteristics contain age, body mass index (BMI), family

history, BRCA1/2 mutation status, Federation of International

of Gynecologists and Obstetricians (FIGO) and tumor diameter,

and were collected from the electronic medical recodes system

(EMRS). Pathological data includes histotype, carbohydrate

antigen 125 (CA125), proliferation marker protein Ki-67 (Ki-

67), estrogen receptor (ER), progesterone receptor (PR) and P53,

and were recorded from pathology reports. Figure 1 shows the

inclusion and exclusion flow chart.
2.2 CT data acquisition and
tumor segmentation

All patients enrolled in this study underwent preoperative

contrast-enhanced CT scans using a multi-slice CT scanner

(Philips iCT 256) to obtain pelvic CT images. The parameters of

CT scan were: 120 kVp and maximum tube current 500 mA. The

acquired CT data were stored in an image archiving and

communication system. For each patient, a radiologist with 15

years of experience used the software ITK-SNAP (www.ITK-

SNAP.org) to draw the tumor region (ROI) that covers the entire

tumor region layer by layer. To ensure the ROIs were segmented

correctly, a radiologist with 19 years of experience verified all

manual depicted ROIs.
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Considering that the surrounding area of the tumor may

provide predictive information, radial expansion along the

boundary of the segmented ROI at a distance of 1cm yields a

ring-shaped area, which was achieved using the “SimpleITK”

package in Python v.3.6. Thus, the generated new mask

represents the peritumoral region. Both the masks of tumor and

the progressively expanded peritumoral regions were used for

further radiomics analysis.
2.3 Radiomics feature extraction

In this study, three categories of radiomics features were extracted

from the intra- and peritumoral ROI in the CT image, which include

18 first-order, 26 shape-based and 74 texture features. All features

were extracted using the “Pyradiomics” package (3.0.1) in Python

v.3.6. The first-order and texture features were also extracted from

filtered CT image that were filtered with Wavelet, LoG, Square,

Square Root, Logarithm, Exponential, Gradient and Local Binary

Pattern filters. Detailed information about the extracted radiomics

features was described in the Pyradiomics documentation (https://

pyradiomics.readthedocs.io/).
2.4 Feature screening and
model establishment

The features were evaluated using the intra-class correlation

coefficients (ICC) (29), with thirty randomly selected patients.

Another radiologist was invited to manually segment the ROIs on

each CT slice. Features with ICCs > 0.85 were considered to be

reliable and retained. The Mann-Whitney U test was used for the

significance test, and the feature with P < 0.05 were considered

significant. Finally, the features selected by the above two steps were

further put into the least absolute shrinkage and selection operator

(LASSO) with 5-fold cross-validation for selecting the parameter
FIGURE 1

Details of the process of inclusion and exclusion of patients.
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lambda using the 1 standard error of the minimum criteria (1-

SE criteria).

The LASSO selected features were used to establish the radiomic

signatures (RSs) for prediction of HRD score and status with the

logistic regression model. Specifically, using the Akaike Information

Criterion (AIC) as a stopping rule for the stepwise regression

method, the subset of features that are most valuable to the

prediction goal are selected from the full model containing all

features and used to build the logistic regression classification

model. (30). A radiomics-clinical combined nomogram was

developed using logistic regression analysis.
2.5 Statistical analysis

We use IBM SPSS Statistics 24 based on the type of data for

clinical characteristics that the Chisquare (31) and Mann-Whitney

U tests (32) to assess statistical significances of all clinical factors as

appropriate. The statistical significance for all two-sided tests was

set at P < 0.05. The receiver-operating characteristic (ROC) analysis

was performed to compute the area under the ROC curve (AUC)

for comparisons among the developed RSs. Delong test (33) is used

to compare differences between the models. Performance of the

nomogram was evaluated by calibration curve (34) and decision

curve analysis (DCA) (35). Statistical analyses were performed in R

(version 4.0; R Core Team, Vienna, Austria, https://www.R-

project.org). Figure 2 shows work flow chart of the study.
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3 Results

3.1 Patients’ characteristics

Table 1 showed characteristics of the patients. For prediction of

HRD score, a total of 72 patients were finally included to form the

training cohort, which contains 43 high HRD score, 29 low HRD

score, and a total of 34 patients were included in the validation cohort

including 16 high HRD score, 18 lowHRD score. Age, Family history,

FIGO Stage, Serous Carcinoma and Ki-67 were considered

statistically significant different (P<0.05) in training cohort, but just

family history and Ki-67 were considered statistically significant

different (P<0.05) in both training and validation cohorts.

For prediction of HRD status, a total of 64 patients were finally

included to form the training cohort, which contains 37 HRD-

positive, 27 HRD-negative, and a total of 31 patients were included

in the validation cohort, including 18 HRD-positive, 13 HRD-

negative. Family history and Ki-67 were considered statistically

significant differences in both training and validation cohorts.
3.2 Radiomics feature selection
and analysis

For predictions of the HRD score and status, 12 and 13 features

were retained after ICC, Mann-Whitney U-test and LASSO

regression, respectively. Figure 3 shows the feature selection using
FIGURE 2

Work flow of the present study.
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TABLE 1 Clinical and pathologic characteristics of the patients.

(n=64) P Validation (n=31) P

HRD-nega-
tive (n=27)

HRD-posi-
tive (n=18)

HRD-nega-
tive (n=13)

59.26 ± 8.63 0.030* 55.67 ± 9.82 60.77 ± 9.83 0.196

23.28
(17.68, 28.98)

0.268
21.59

(16.38, 35.65)
22.03

(18.67, 27.05)
0.650

3 (4.69)
0.047*

9 (29.03) 2 (6.45)
0.047*

24 (37.50) 9 (29.03) 11 (35.48)

2 (3.13)
0.293

1 (3.23) 1 (3.23)
0.811

25 (39.06) 17 (54.84) 12 (38.91)

21 (38.81 0.013* 15 (48.39) 11 (35.48) 0.924

6 (9.38) 3 (9.68) 2 (6.45)

19 (29.69)
0.024*

17 (54.84) 8 (25.81)
0.022*

8 (12.50) 1 (3.23) 5 (16.13)

23 (35.94)
0.632

15 (48.39) 11 (35.48)
0.924

4 (6.25) 3 (9.68) 2 (6.45)

19 (29.69)
0.819

12 (38.71) 8 (25.81)
0.768

8 (12.50) 6 (19.35) 5 (16.13)

20 (31.25)
0.053

14 (45.16) 9 (19.03)
0.592

7 (10.94) 4 (12.90) 4 (12.90)
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Characteristic

Training (n=72) P Validation (n=34) P Training

High HRD
score (n=43)

Low HRD
score (n=29)

High HRD
score (n=16)

Low HRD
score (n=18)

HRD-posi-
tive (n=37)

Age(mean ± SD) 53.05 ± 8.21 58.66 ± 8.55 0.009* 58.75 ± 9.59 59.78 ± 10.16 0.597 54.08 ± 8.94

BMI
(median(range))

22.95 (17.95, 35.65) 22.49 (18.67, 28.98) 0.585 21.29 (16.38, 28.25) 23.97 (17.68, 27.05) 0.266
22.02

(17.96, 29.55)

Family history, n. (%)

Yes 17 (23.61) 4 (5.56)
0.018*

7 (20.58) 4 (11.78)
0.042*

12 (18.75)

No 26 (36.11) 25 (34.72) 9 (26.47) 14 (41.17) 25 (39.06)

FIGO Stage, n. (%)

Stage I-II 5 (6.94) 13 (18.06)
0.001*

3 (8.82) 0 (8.82)
0.054

6 (9.38)

Stage III-IV 38 (52.78) 16 (22.22) 13 (38.24) 18 (44.12) 31 (48.44)

Serous Carcinoma

Yes 42 (58.33) 24 (33.33) 0.025* 15 (44.12) 13 (38.24) 0.100 36 (56.25)

No 1 (1.39) 5 (6.94) 1 (2.94) 5 (4.71) 1 (1.56)

Ki-67, n. (%)

≥50% 40 (55.56) 14 (19.44)
<0.001*

14 (41.18) 9 (26.47)
0.020*

34 (53.13)

<50% 3 (4.17) 15 (20.83) 2 (5.88) 9 (26.47) 3 (4.69)

ER, n. (%)

Positive 39 (54.17) 22 (30.56)
0.086

14 (41.18) 16 (47.06)
0.900

33 (51.56)

Negative 4 (5.56) 7 (9.72) 2 (5.88) 2 (5.88) 4 (6.25)

PR, n. (%)

Positive 31(54.17) 21 (29.17)
0.976

8 (23.53) 12 (35.29)
0.324

27 (42.19)

Negative 12 (16.67) 8 (11.11) 8 (23.53) 6 (17.65) 10 (15.63)

P53, n. (%)

Mutant-type 38 (52.78) 21 (29.17)
0.084

14 (41.18) 14 (41.18)
0.458

34 (53.13)

Wild-type 5 (6.94) 8 (11.11) 2 (5.88) 4 (11.76) 3 (4.69)

SD, standard deviation; BMI, body mass index; FIGO, Federation of International of Gynecologists and Obstetricians; Ki-67, proliferation marker protein; ER, estrogen.
receptor; PR, progesterone receptor HRD, homologous recombination deficiency *p < 0.05.
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LASSO regression. The retained 12 and 13 features were further

filtered using stepwise regression with AIC as the stopping rule, and

finally 6 (for prediction of HRD score) and 6 features (for prediction

of HRD status) were retained as the best subset of features and fitted

to the final logistic regression model, respectively. For prediction of

HRD score, 4 and 2 features were selected as the most important

predictors from the intra- and peritumoral regions, respectively. For

prediction of HRD status, 4 and 2 features were selected from the

intra- and peritumoral regions, respectively. Table 2 showed

performance of all selected features. Figure 4 demonstrates the

Pearson correlation coefficients for all features; the correlation

coefficients between two by two for all manual features, both for

predicting HRD status and predicting HRD scores, are less than 0.6,

which indicates that there is no high correlation between the features.
3.3 Development of the
radiomics signature

RSs were derived from intra- and peritumoral regions separately

and in combination. Relevant features with non-zero coefficients in the

logistic regression model were selected based on the training cohort.

The formulas for predicting HRD score was calculated as follows:

Intra-RS-Score=-30.12 + 6.72E-4×original_ngtdm_Busyness+

17.15×wavelet-LLH_glszm_SmallAreaEmphasis -909.70×

wavelet-HLH_glrlm_GrayLevelVariance+989.86 ×wavelet-

HHL_glcm_JointEnergy-66 .66×log-s igma-5-0-mm-

3D_gldm_SmallDependence
Frontiers in Oncology 06
-HighGrayLevelEmphasis-1 .03E-04×original_glr lm_

LongRunHighGrayLevelEmphasis

+ 6.64E-01×original_glszm_ZoneEntropy

Peri-RS-Score=7.96 + 2.01×lbp-2D_firstorder_10Percentile

+9.76×square_glrlm_

ShortRunLowGrayLevelEmphasis+0.41×gradient_glszm_

SmallAreaHighGrayLevelEmphasis -26.03×wavelet-HHH_

glszm_GrayLevelNonUniformityNormalized

Com-RS-Score=-6.53 + 25.98×log-sigma-1-0-mm-3D_ngtdm_

Contrast+4.6×1log-sigma-3-0-mm-3D_glszm_LowGray

L e v e l Zon eEmpha s i s + 5 . 0 5×wav e l e t - LHH_g l s zm_

LowGrayLevelZone-

Emphasis+6.36×square_glrm_ShortRunLowGrayLevel

Emphasis +0.05×Wavelet-LLL_gldm_DependenceVariance-

0.79×square_glcm-JointAverage.

The formulas for predicting HRD status were calculated as follows:

Intra-RS- Status= -353.04 + 1141.31×wavelet-HHH_firstorder_

Mean+ 555.07×wavelet-HHL_gldm_LowGrayLevelEmphasis+

5.93×wavelet-LHH_glszm_LowGrayLevelZoneEmphasis+

6.21wavelet-LLL_glcm_MCC

Peri–RS-Status=3.17E-01-14.26×log-sigma-3-0-mm-3D_glcm_

InverseVariance-9.71 ×wavelet-HHH_glszm_SmallAreaEmphasis

+0.08×logarithm_firstorder_Skewness +2.91 ×wavelet-

HHL_fi r s t o rde r_Skewne s s+6 . 67× log - s i gma-5 -0 -mm-

3D_glcm_MaximumProbability

Com-RS-Status=5.22 + 10.47×square_glszm_SizeZoneNon

UniformityNormalized-0.21×wavelet-HHH_glszm_GrayLevel

NonUni formi ty+4 .24×wave le t -LLL_g lcm_Imc2-3 .66×
FIGURE 3

Radiomics features selected by LASSO regression. (A, B) represent tuning parameter (lambda) selection in the LASSO used fivefold cross-validation in
predicting HRD score (A) and HRD status (B), respectively. (C, D) represent LASSO coefficient profiles of the features. The red dots in the (A, B) indicate the
AUC values of the model at different lambda values. From left to right, the bottom horizontal coordinates of the two dashed lines correspond to the log
(lambda) values when the mean square error is minimized and when the standard error is doubled, respectively. Each curve in (C, D) represents one of the
input features that was retained after the Mann-Whitney U test. The top horizontal coordinates of all four panels represent the number of retained features.
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TABLE 2 Performances of the selected features for predicting HRD score and HRD status.

Mean ± SD

AUC
P

HRD-
positive

HRD-
negative

– – 0.679 0.010

– – 0.517 0.878

– – 0.649 0.033

– – 0.769 0.006

– – 0.678 0.011

– – 0.701 0.046

– – 0.675 0.012

– – 0.677 0.081

– – 0.684 0.008

– – 0.566 0.528

– – 0.682 0.009

– – 0.653 0.135

0.70 ± 0.20 0.91 ± 0.16 0.671 0.019

0.83 ± 0.17 0.59 ± 0.15 0.800 0.007

7.67 ± 3.78 10.05 ± 4.21 0.663 0.025

7.09 ± 4.57 10.81 ± 5.35 0.719 0.053

0.39 ± 0.13 0.44 ± 0.11 0.662 0.026

0.41 ± 0.07 0.43 ± 0.14 0.752 0.025

0.49 ± 0.10 0.38 ± 0.16 0.690 0.009

0.47 ± 0.10 0.48 ± 0.12 0.490 0.950

0.16 ± 0.20 0.14 ± 0.06 0.640 0.007

0.14 ± 0.04 0.15 ± 0.04 0.560 0.983

0.50 ± 0.35 1.00 ± 0.32 0.697 0.041

0.65 ± 0.34 0.73 ± 0.35 0.495 0.603
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Feature Region Cohort

Mean ± SD

High
HRD score

Low
HRD score

log-sigma-1-0-mm-3D_ngtdm_Contrast (E0) Intra
Training 0.92 ± 0.02 0.08 ± 0.03

Validation 0.09 ± 0.03 0.10 ± 0.11

log-sigma-3-0-mm-
3D_glszm_LowGrayLevelZoneEmphasis (E1)

Intra
Training 0.33 ± 0.12 0.26 ± 0.10

Validation 0.26 ± 0.12 0.34 ± 0.09

Wavelet-LHH_glszm_LowGrayLevelZoneEmphasis (E2) Intra
Training 0.56 ± 0.16 0.48 ± 0.14

Validation 0.44 ± 0.18 0.59 ± 0.09

square_glcm_JointAverage (E3) Intra
Training 1.94 ± 0.54 2.36 ± 0.73

Validation 2.01 ± 0.37 1.74 ± 0.55

square_glrlm_ShortRunLowGrayLevelEmphasis (E4) Peri
Training 0.18 ± 0.11 0.11 ± 0.08

Validation 0.12 ± 0.64 0.12 ± 0.07

Wavelet-LLL_gldm_ DependenceVariance (E5) Peri
Training 32.77 ± 8.68 27.56 ± 10.65

Validation 30.19 ± 5.11 34.39 ± 8.27

square_glszm_GrayLevelNonUniformityNormalized (F0) Intra
Training – –

Validation – –

wavelet-HHH_glszm_GrayLevelNonUniformity (F1) Intra
Training – –

Validation – –

original_glszm_SmallAreaEmphasis (F2) Intra
Training – –

Validation – –

wavelet-LLL_glcm_Imc2 (F3) Intra
Training – –

Validation – –

square_glszm_SizeZoneNonUniformityNormalized (F4) Peri
Training – –

Validation – –

exponential_glszm_GrayLevelNonUniformityNormalized
(F5)

Peri
Training – –

Validation – –

SD, standard deviation; Intra, intratumoral; Peri, peritumoral.
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s qua r e_g l s zm_S i z eZoneNonUn i f o rm i t yNo rma l i z ed -

2.54×exponential_glszm_

GrayLevelNon Uniformity Normalized-5.32×original_glszm_

SmallAreaEmphasis.
3.4 Comparisons of intra- and peritumoral
regions and their combination

Table 3 showed comparisons of overall prediction performance of

each RS. For predicting the HRD score, the Intra-RS-Score showed

higher prediction abilities than Peri-RS-Score in terms of AUCs. The

Com-RS-Score incorporating features from both intra- and

peritumoral regions can significantly improve predictive AUCs

compared with the Intra-RS-Score or Peri-RS-Score alone. It is worth

noting that the Com-RS-Score has an overall higher SEN than the

Intra-RS-Score and the Peri-RS-Score. However, in the training cohort,

the increase in SEN comes at the cost of a significant decrease in SPE,

and thus the ACC is only slightly improved, suggesting that the Com-

RS-Score is identifying positive cases is more sensitive, but also leads to

an increase in false positive cases. Similar trends were also observed in

the validation cohort. To address this issue, future research should

focus on optimizing radiomics feature selection and integration, and

using more data or refined extraction methods to enhance positive case

identification while minimizing false positives. Meanwhile, Intra-RS-

Status was more predictive than Peri-RS-Status for predicting HRD

status, and Com-RS-Status combining intra- and peritumoral regional

features significantly improved the prediction of AUC compared to

Intra-RS-Status or Peri-RS-Status alone. Additionally, the SEN and SPE

of all three models were relatively balanced. Figure 5 showed ROC

curves of each RS. To demonstrate the value of our models, we plotted

waterfall diagrams based on Com-RS. As shown in the Figure 6, most

patients’ HRD score and status can be correctly distinguished by

our RSs.
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3.5 Construction and evaluation of
radiomics nomogram

Radiomics nomograms (Figure 7) were formulated based on

Com-RS-Score and Com-RS-Status, family history and Ki-67,

aiming to facilitate clinical practitioners in using our radiomics

models to predict the HRD score (Figure 7A) and HRD status

(Figure 7B). For predicting the HRD score, the second row

represents Com-RS-score, and rows third to fourth represent

family history and Ki-67, respectively. The risk of high-HRD

score (Figure 7A) for each patient can be derived by combining

Com-RS, family history and Ki-67 in the last row of the nomogram.

For predicting the HRD status, we integrated Com-RS, family

history with Ki-67 for constructing the nomogram.

Table 4 compares prediction performances of Com-RSs, clinical

models, and nomograms. For predicting HRD score, the nomogram

had the best predictive performance, followed in order by Com-RS-

Score and clinical model in both training (nomogram vs. Com-RS-

Score vs. clinical model, 0.871vs.0.852 vs.0.666) and validation

cohorts (nomogram vs. Com-RS-Score vs. clinical model,

0.802vs.0.781 vs.0.604). For predicting HRD status, the nomogram

had the best predictive performance, followed in order by Com-RS

and clinical model in both training (nomogram vs. Com-RS-Status

vs. clinical model, 0.874 vs. 0.865 vs. 0.699) and validation cohorts

(nomogram vs. Com-RS-Status vs. clinical model, 0.824 vs. 0.800 vs.

0.660). Additionally, compared to the clinical model, the Nomogram

shows significantly higher ACC, SEN, and SPE in predicting both

HRD status and HRD score. These results suggest that radiomics,

which captures subtle image features not visible to the naked eye, and

the inclusion of these features help overcome the limitations of

traditional clinical models, thereby enhancing predictive

performance. Calibration curves demonstrated good agreements

between the nomogram-predicted and actual values in predicting

HRD score (Figures 7C, D) and HRD status (Figures 7E, F). ROC
FIGURE 4

Pearson correlation coefficients for the selected features. (A) Schematic representation of the radiomics feature Pearson correlation coefficients chosen
for predicting HRD scores. (B) Schematic representation of the radiomics feature Pearson correlation coefficients chosen for predicting HRD status.
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curves in Figure 8 provide an intuitive comparison of the predictive

performance of each model. Finally, DCA curves in Figure 9A

showed that the nomogram had a better net benefit in predicting

HRD status compared to Com-RS-score and the clinical model when
Frontiers in Oncology 09
the threshold probability range of 0.30–0.70. Meanwhile, DCA curves

in Figure 9B showed that the nomogram had a better net benefit in

predicting HRD status when the threshold probability range of

0.25-0.45.
FIGURE 5

ROC curves of the Intra-RS-Score, Peri-RS-Score and Com-RS-Score for predicting the HRD score and HRD status. (A, B) represent ROC curves of
the Intra-RS-Score (blue line), Peri-RS-Score (green line) and Com-RS-Score (red line) for predicting the HRD score; (C, D) represent ROC curves of
the Intra-RS-Status (blue line), Peri-RS-Status (green line) and Com-RS-Status (red line) for predicting the HRD status; (A, C) corresponds to the
training cohort, whereas the (B, D) corresponds to the validation cohort.
TABLE 3 Performances of the Intra-RSs, Peri-RSs and Com-RSs for predicting HRD score and HRD status.

Training cohort Validation cohort

Model AUC (95% CI) ACC SEN SPE AUC (95% CI) ACC SEN SPE

HRD score

Intra-RS-Score 0.829 (0.738-0.921) 0.750 0.722 0.778 0.739 (0.571-0.907) 0.716 0.609 0.909

Peri-RS-Score 0.800 (0.697-0.902) 0.750 0.846 0.697 0.718 (0.542-0.894) 0.676 0.700 0.786

Com-RS-Score 0.852 (0.765-0.938) 0.736 0.907 0.655 0.781 (0.621-0.941) 0.716 0.688 0.833

HRD status

Intra-RS-Status 0.841 (0.744-0.939) 0.766 0.735 0.867 0.786 (0.615-0.956) 0.774 0.762 0.800

Peri-RS-Status 0.815 (0.710-0.919) 0.750 0.825 0.708 0.758 (0.586-0.930) 0.613 0.733 0.750

Com-RS-Status 0.865 (0.776-0.953) 0.797 0.794 0.867 0.800 (0.637-0.963) 0.710 0.714 0.800
fr
AUC, area under the receiver operating characteristic curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity; Intra-RS-Score, intratumoral-radiomics signature for
predicting scores; Peri-RS, peritumoral-radiomics signature for predicting scores; Com-RS-Score, combined- radiomics signature for predicting scores; Intra-RS-Status, intratumoral-radiomics
signature for predicting status; Peri-RS-Status, peritumoral-radiomics signature for predicting status; Com-RS- Status, combined- radiomics signature for predicting status; *, P<0.05.
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FIGURE 6

The waterfall plots for predicting HRD score and HRD status. The Com-RS-Score and Com-RS-Status of each patient are represented by colored
bars, (A, B) represent the waterfall plots of the training and validation sets, respectively, for predicting HRD scores, and (C, D) represent the waterfall
plots of the training and validation sets, respectively, for predicting HRD status.
FIGURE 7

Development and validation of radiomics nomogram and Calibration curves for predicting HRD score and HRD status. (A, B) are column line plots
for predicting HRD score (A) and HRD status (B), respectively. Calibration curves for predicting HRD score and HRD status. (C, D) are calibration
curves for predicting HRD score’s column line plots in the training (C) and validation cohorts (D). (E, F) are calibration curves for predicting HRD
status’column line plots in the training (E) and validation cohorts (F).
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4 Discussion

This study built and validated radiomics models based on the

CT image for noninvasive prediction of HRD score and HRD status.

In contrast to previous works that were focusing solely on the intra

tumoral region of OC (23, 24, 26), our study analyzed radiomics

features from both intra− and peritumoral areas and fusion to build

radiomics models, with the aim of exploring whether the region

surrounding OC contains potential information correlated to HRD.
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Results showed that the AUC of Com-RS-Score was higher than

that of Intra-RS-Score and Peri-RS-Score for predicting HRD score;

and the AUC of Com-RS-Status was higher than that of Intra-RS-

Status and Peri-RS-Status for predicting of HRD status, which

suggests that intra− and peritumoral regions can provide

complementary information associated HRD score and status.

The developed models may be helpful to guide the physicians

in developing individualized maintenance therapy regimens for

OC patients (36–38).
TABLE 4 Comparisons of the Com-RSs, clinical models and nomograms for predicting HRD score and HRD status.

Training set Validation set

Model AUC (95% CI) ACC SEN SPE AUC (95% CI) ACC SEN SPE

M1 0.852 (0.765-0.938) 0.736 0.907 0.655 0.781 (0.621-0.941) 0.716 0.688 0.833

M2 0.666 (0.561-0.770) 0.667 0.655 0.884 0.604 (0.427-0.780) 0.559 0.278 0.938

M3 0.871 (0.788-0.954) 0.833 0.724 0.930 0.802 (0.651-0.953) 0.735 0.833 0.668

M4 0.865 (0.776-0.953) 0.797 0.794 0.867 0.800 (0.637-0.963) 0.710 0.714 0.800

M5 0.699 (0.633-0.769) 0.672 0.706 0.633 0.660 (0.461-0.859) 0.645 0.619 0.700

M6 0.874 (0.790-0.957) 0.797 0.765 0.867 0.824 (0.663-0.985) 0.774 0.762 0.800
fr
AUC, area under the receiver operating characteristic curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity; M1, Com-RSs-score; M2, clinical model for HRD score; M3,
nomogram for HRD score; M4, Com-RSs-status; M5, clinical model for HRD status; M6, nomogram for HRD status; *, P<0.05.
FIGURE 8

ROC curves for Com-RS-Score, Clinical model-Score and Nomogram-Score. ROC curves for Com-RS-Score, Clinical model-Score and
Nomogram-Score in the training (A) and validation (B) cohort, and ROC curves for Com-RS-Status, Clinical model-Status and Nomogram-Status in
the training (C) and validation (D) cohort.
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We comprehensively analyzed 1688 radiomics features from

intra− and peritumoral regions of OC. This far exceeds previous

studies that analyzed only 217 features (26) and 696 features from

intratumoral regions in CT (39). For predicting HRD score, we

identified 4 and 2 most important features from intra- and

peritumoral regions, respectively, all belong to the textural feature

class, which are based on statistics and can provide great amount of

details regarding the intratumoral heterogeneity (24). For predicting

HRD status, we identified 4 and 2 textural features from the intra-

and peritumoral, respectively. The features were all filtered features

that cannot be understood by naked-eyes, which may explain

why radiologists can hardly evaluate the HRD scores and status of

OC through visual examinations on the CT image. The

original_glszm_SmallAreaEmphasis is a measure of the distribution

of small size zones, with a greater value indicative of more smaller size

zones and more fine textures. Our results showed that the average

value of this feature is higher in the HRD-negative group than that in

the HRD-positive group, which may indicate that the CT images of

HRD-positive ovarian tumors are not finely textured enough. For

predicting HRD status, the Gray Level NonUniformity feature was

calculated from intratumoral regions, which measures the similarity

of gray-level intensity value, with a lower value indicating a greater

similarity in intensity values within the tumor. Our results revealed

that the average value of this feature was lower in the HRD-positive

group than that in the HRD-negative group. This was partially in line

with a recent effort on the prediction of BRCA gene mutations, which

showed that BRCA gene mutation was associated with the gray value

of the CT image of OC (40).

Clinical factors were analyzed separately for the two prediction

tasks, and family history and Ki-67 were considered to be

statistically different in predicting HRD score and HRD status.

This was consistent with previous findings suggesting that the

prevalence of BRCA gene mutations is highest in patients with a

family history of OC, which may lead to HRD in patients (27). We

found Ki-67 is a high-risk factor for high HRD score and HRD-

positive (41). This is consistent with previous studies (42, 43), which

suggest that Ki-67 may be a clinical factor associated with in
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patients with OC. The nomogram model, which integrates family

history, Ki-67, and radiomics features, outperforms the Com-RS-

Score in predicting HRD scores, with improved AUCs of 0.871 in

the training and 0.802 in the validation cohort. In predicting HRD

status, the nomogram also demonstrates superior performance

compared to Com-RS-Status, with an AUC of 0.874 for the

training and 0.824 for the validation cohort This suggests that the

nomograms constructed in our study can help physicians in

predicting HRD score and HRD status of OC.

There are limitations in this study. Firstly, this is retrospective

research with samples from a single hospital. Validations with a

larger sample size from multi centers would be conducted in our

future work. We plan to implement a multi-center validation study

with a larger and more diverse patient cohort. This will involve

standardizing imaging protocols across participating centers to

minimize variability in data collection and analysis. We will work

closely with collaborating institutions to ensure consistency in

imaging techniques, acquisition parameters, and post-processing

methods, which are critical for the accurate and reliable assessment

of our radiomic biomarkers. Secondly, although CT imaging is

important in pelvic cavity screening, performance of other

modalities for predicting HRD score and status should also be

evaluated. Thirdly, manual segmentation of regions of interest is

time-consuming and subjective, limiting research progress. To

overcome this, future studies should integrate machine learning-

based automated or semi-automated tumor segmentation methods,

such as deep learning models like U-Net, transfer learning, and

active learning. These strategies could improve accuracy, efficiency,

and accelerate research. Finally, although we assessed intra- and

peritumoral regions, the peritumoral region was generated with a

dilation distance of 1 cm, and the establishment of a radiomics

model based on the peritumoral region with different dilation

distances could be a new direction for research.

In addition to these limitations, future research should focus on

addressing how these findings can be effectively integrated into

clinical workflows. While radiomics models have demonstrated

promising performance, their real-world applicability in clinical
FIGURE 9

DCA curves for the developed Com-RSs, clinical models and nomograms. (A) HRD score prediction. (B) HRD status prediction. The x-axis represents
the threshold probability, whereas the y-axis measures the net benefit. The black line represents the hypothesis that all patients were low HRD score
(A) and HRD negative (B). The gray line indicates the assumption that all patients were high HRD score (A) and HRD positive (B).
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settings will depend on overcoming challenges such as cost-

effectiveness, infrastructure requirements, and staff training. For

instance, substantial investment in advanced computing

infrastructure and imaging equipment, as well as the development

of user-friendly interfaces for clinical staff, is essential for the

implementation of these models in clinical practice. Furthermore,

training radiologists and oncologists to interpret radiomics data and

integrate it with other clinical factors is crucial for successful

adoption. By addressing these challenges, we can ensure that the

models we have developed are reliably integrated into personalized

treatment plans, ultimately improving outcomes for ovarian cancer

patients and those with other cancers.
5 Conclusion

This study suggests that radiomics features of abdominal CT in

OC can provide high discrimination efficiency for predicting patients’

HRD scores and HRD status. The proposed nomograms can help

clinicians provide personalized treatment plans for patients.
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