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The art of war: using genetic
insights to understand and
harness radiation sensitivity in
hematologic malignancies
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It is well established that hematologic malignancies are often considerably

radiosensitive, which enables usage of far lower doses of therapeutic

radiotherapy. This review summarizes the currently known genomic landscape

of hematologic malignancies, particularly as it relates to radiosensitivity and the

field of radiation oncology. By tracing the historical development of the modern

understanding of radiosensitivity, we focus on the discovery and implications of

pivotal mutated genes in hematologic malignancies such as TP53, ATM, and other

genes critical to DNA repair pathways. These genetic insights have contributed

significantly to the advancement of personalized medicine, aiming to enhance

treatment precision and outcomes, and there is an opportunity to extend these

insights to personalized radiotherapy. We explore the transition from early

discoveries to the current efforts in integrating comprehensive genomic data

into clinical practice. Specific examples from Hodgkin lymphoma, non-Hodgkin

lymphoma, and plasma cell neoplasms illustrate how genetic mutations could

influence radiosensitivity and impact subsequent radiotherapeutic response.

Despite the advancements, challenges remain in translating these genetic

insights into routine clinical practice, particularly due to the heterogeneity of

alterations and the complex interactions within cancer signaling pathways. We

emphasize the potential of radiogenomics to address these challenges by

identifying genetic markers that predict radiotherapy response and toxicity,

thereby refining treatment strategies. The need for robust decision support

systems, standardized protocols, and ongoing education for healthcare providers

is critical to the successful integration of genomic data into radiation therapy. As

research continues to validate genetic markers and explore novel therapeutic

combinations, the promise of personalized radiotherapy becomes increasingly

attainable, offering the potential to significantly improve outcomes for patients

with hematologic malignancies.
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Introduction
Fron
“Know your enemy and know yourself, and you can fight a

hundred battles without disaster.”
-The Art of War, Sun Tzu
Oncologists must confront cancer at both the macroscopic level

of the patient and the microscopic level of the cancer cell. The

modern battle against cancer continues to rely on both systemic

therapies, such as chemotherapy, immunotherapies and targeted

agents, and local treatments, including surgery and radiation

therapy (RT). While therapeutic decision making was historically

driven largely by histology and stage, contemporary planning is

increasingly reliant on molecular insights. Specifically, since the

development of Sanger sequencing in the 1970s, scientists have

meticulously mapped out somatic and germline DNA mutations

that have already demonstrated strong potential to enhance and

refine treatment approaches. In radiation oncology, however, there

are currently no widely implemented examples of molecular traits

determining appropriate RT utilization, RT targets and/or optimal

RT doses. We now stand at a pivotal moment, with the opportunity

to leverage this accumulated genetic intelligence to revolutionize

our approach and take the offensive against cancer.

In this review, we will first describe the classical understanding

of cancer radiosensitivity as it relates to DNA damage and the cell

cycle. Next, we will review key studies that have identified specific

genes which are related to radiation response. We will then discuss

current efforts to develop genetic signatures of therapeutic

sensitivity in hematologic malignancies, highlighting recent

advancements and research findings. Lastly, we will comment on

the potential future of personalized medicine within the field of RT

for hematologic malignancies, highlighting potential developments

and the implications for patient care.
What is biologic radiosensitivity
and radioresponsiveness?
“Attack him where he is unprepared, appear where you are not

expected.”
-The Art of War, Sun Tzu
RT exerts its lethal effects on cancer cells primarily through

DNA damage. This damage is not uniformly distributed; it

preferentially affects DNA in open chromatin regions compared

to heterochromatin (1). Open chromatin is less densely packed and

more transcriptionally active, making it more accessible to
tiers in Oncology 02
radiation-induced damage. Direct damage by radiation causes

single-strand breaks (SSBs) and double-strand breaks (DSBs) in

DNA. However, approximately two-thirds of the DNA damage

caused by radiation is indirect, resulting from the generation of free

radicals (Figure 1). These reactive oxygen species (ROS) are

produced when radiation ionizes water molecules within the cell.

The free radicals then diffuse through the cell, causing widespread

damage to DNA, lipids, and proteins, resulting in base damage,

SSBs, and DSBs. Hypoxic tumors, which have low oxygen levels, are

therefore less susceptible to this indirect damage because the

production of ROS is oxygen-dependent, leading to lower

radiosensitivity (2).
“In war, the way is to avoid what is strong, and strike at what is

weak.”
-The Art of War, Sun Tzu
The terms radiosensitive and radioresponsive are used in

different contexts in clinical practice. They are sometimes

referenced as a state of disease control in a clinical trial testing a

radiotherapeutic intervention; for example, if the RT arm shows

improved outcomes, patients treated in this study can be referred to

as more radioresponsive. In a lesion-specific context, these terms

may also reflect a local observation of a specific tumor decreasing in

diameter, volume, or PET SUV following RT treatment. One may

even use the term radiosensitivity to characterize the toxicity

observed in a patient, referring to patients with more toxicity after

RT as being more radiosensitive. However, in its most

straightforward form, the concept of radiosensitivity can be

defined by the observation that different phases of the cell cycle

display varying levels of cell death in response to RT (3). For
FIGURE 1

Mechanisms of DNA damage with radiotherapy. Direct and indirect
DNA damage is shown.
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example, in the G0, early G1, and late S phases, cells are generally

resistant to RT (4). Conversely, the most radiosensitive parts of the

cell cycle are the late G1, G2, and M phases (4). Variability in

radiation sensitivity throughout the cell cycle is thought to be related

to the biological characteristics of each phase. For example, in the S

phase, DNA synthesis leads to more nucleic acid content, a higher

probability of DNA damage repair enzyme activity, and intrinsic free

radical scavenging via glutathione (5). Tumor cells that proliferate at

higher rates are generally seen as more radiosensitive, likely because

a larger proportion of these cells are in the radiosensitive phases of

the cell cycle. Hematologic malignancies can sometimes exhibit

faster or more pronounced responses to relatively lower doses of

radiation when compared to treated solid tumors, due to their rapid

proliferation rates and the characteristics of the cells in these

malignancies (6). To understand the observed inherent

radiosensitivity of hematologic malignancies, one must first

understand how DNA damage caused by radiation is repaired.
How do cells detect and repair
DNA damage?
Fron
“What is of supreme importance in war is to attack the enemy’s

strategy”
-The Art of War, Sun Tzu
Cells have evolved sophisticated strategies to halt the cell cycle

and repair DNA damage, and cancer cells have developed methods
tiers in Oncology 03
to overcome these checks and balances (Figure 2). Normal cells

have DNA damage repair mechanisms that maintain genomic

integrity, involving various pathways to address different types of

DNA damage. The MRN complex, consisting of MRE11, RAD50,

and NBS1, plays a critical role in detecting and signaling DSBs (7).

Upon recognizing damage, the MRN complex recruits ATM

(ataxia-telangiectasia mutated kinase), which phosphorylates

several key proteins, including p53 and H2AX, to initiate the

DNA damage response (DDR). There are two major pathways to

repair DSBs: homologous recombination (HR) and non-

homologous end joining (NHEJ). HR, active during the S and G2

phases of the cell cycle, uses a sister chromatid as a template for

accurate repair, involving proteins such as BRCA1, BRCA2, and

RAD51. In contrast, NHEJ, which operates throughout the cell

cycle, directly ligates the broken DNA ends but is more error-prone.

NHEJ has core components including Ku70/80, DNA protein

kinases, LIG4, XRCC4, and XLF. In addition to DSB repair, cells

employ mismatch repair (MMR) to correct replication errors,

nucleotide excision repair (NER) to remove bulky DNA adducts

caused by UV radiation, and base excision repair (BER) to fix small

base lesions induced by oxidative stress. The coordination of these

pathways and others ensures comprehensive maintenance of DNA

integrity and is crucial for preventing mutations that could lead

to cancer.

Relative resistance to radiation-induced damage in the S phase

is thought to be due in part to an elevated amount of DNA synthesis

and repair enzymes, as well as increased intracellular levels of

glutathione (a free radical scavenger) (8). Cell cycle blockage in

the G1 phase after ionizing radiation is believed to allow time for the

recognition and repair of DNA damage prior to the initiation of

DNA synthesis. Cells are most sensitive in the G2/M phase of the

cell cycle, possibly because there is no time for adequate repair
FIGURE 2

The cell cycle and DNA damage repair (DDR). The cell cycle is shown with various DDR mechanisms shown at the stages during which they
predominate. DSB Double strand breaks. HR Homologous recombination. MMEJ Microhomology-mediated end joining. NHEJ Nonhomologous
end joining.
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before chromosome segregation takes place. Several gene products

have been identified which increase expression or are post-

translationally altered following DNA damage, and these are

thought to participate in halting cell cycle progression (9). These

damage-responsive genes and their protein products include p53,

p21, growth arrest and damage-delay (GADD45), X-ray induced

protein (XIP269), retinoblastoma protein (Rb), and a group of

retinoblastoma control proteins (RCPs), which bind to Sp1 sites in

DNA promoters and may act to further alter gene transcription in

response to DNA damage (10). Understanding the mechanisms that

underlie radiation effects on DNA and the cell’s ability to counter

these effects highlights that tumors with highly deregulated

genomes will exhibit abnormal cell cycle biology, a potentially

advantageous observation for inducing radiosensitivity.
Historical perspectives on genetic
associations with radiosensitivity
Fron
“In war, the victorious strategist only seeks battle after the

victory has been won, whereas he who is destined to defeat first

fights and afterwards looks for victory.”
-The Art of War, Sun Tzu
A rational starting point to identify potential somatic molecular

alterations in cancer cells which might be associated with increased

radiosensitivity is to review early key observations linking

individual genetic mutations to syndromes characterized by

heightened radiation toxicity. These putative genes are

summarized in Table 1. One of the first significant discoveries

was the identification of the ATM gene, which is crucial in Ataxia-

Telangiectasia, a disorder marked by increased sensitivity to

ionizing radiation (14, 15). Similarly, mutations in the NBS1 gene,

part of the MRN complex, cause Nijmegen Breakage Syndrome

(NBS), another autosomal recessive disorder with increased

radiosensitivity and cancer predisposition (16). The discovery of

the TP53 gene, often referred to as the “guardian of the genome,”

highlighted its critical role in the cellular response to DNA damage

(17–19). Li-Fraumeni Syndrome, caused by germline mutations in

TP53, underscored the impact of genetic mutations on

radiosensitivity (20). Additionally, Xeroderma Pigmentosum (XP)

is marked by extreme sensitivity to UV radiation due to defects in

the NER pathway (21), while Fanconi Anemia (FA), characterized

by mutations in FANCA and other FA genes, increases susceptibility

to DNA crosslinking agents and radiation, demonstrating the role

of DNA repair pathways in maintaining genomic stability (22).

In addition to syndromes that were directly linked to radiation

sensitivity by a single altered gene, other DNA damage sensing and

repair gene alterations are also associated with increased risk of

cancer and radiation sensitivity, though with reduced penetrance.

The identification of mutations in the BRCA1 and BRCA2 genes,
tiers in Oncology 04
pivotal in HR repair of DSBs, was associated with a breast cancer

risk as high as 70% and emphasized the importance of intact DDR

in mitigating cancer risk (23, 24). RAD51 is an essential component

for fixing radiation-induced DSBs as part of HR, and germline

RAD51 mutations are associated with a 10-20 percent lifetime risk

in women for ovarian, fallopian tube, or primary peritoneal cancer

and a 30% risk for breast cancer (25). Alterations in XRCC1,

involved in the BER pathway crucial for repairing SSBs induced

by ionizing radiation, have been associated with increased risk for

several cancers (26). Similarly, the elucidation of the CHK2 gene as a

key checkpoint kinase in DDR, particularly to ionizing radiation,

marked another important discovery. The presence of CHK2

mutations can double the lifetime risk of breast cancer and

increase colorectal and prostate cancer risks (27–29). Each of

these genetic insights has deepened our understanding of DNA

repair mechanisms, and as RT exerts its effect on cells through DNA

damage, the presence of germline and somatic DDR alterations has

implications for both cancer risk and radiosensitivity. For example,

identifying a single altered copy of a cancer-associated gene has

allowed clinicians to begin augmenting cancer treatments through

exploiting synthetic lethality (30), and agents are already being used

to increase radiosensitivity of cells with impaired DDR (31).

Given the effects that radiation has on normal and cancer cells,

it is not surprising that cell signaling and transcription factor

pathways have also been increasingly implicated in mitigating

aspects of radiation sensitivity. The JAK-STAT pathway allows

extracellular signals including cytokines such as interferons and

growth factors to quickly influence nuclear processes. Many types of

cancer have shown that STAT3 can mediate resistance to

chemoradioimmunotherapy (32), and targeting STAT3 may

overcome radioresistance (33). The Notch pathway involves 4

short-range cell-cell signaling receptors regulating genes involved

in cell cycle regulation, cellular differentiation, and stem cell

maintenance. Of note, NOTCH1 inhibits the kinase activity of

ATM, and blocking Notch in the presence of DNA damage leads to

increased radiation sensitivity in an ATM-dependent manner (34).

Additionally, inactivation of HR in Notch-driven cancers is shown

to cause radiosensitization (35). The Nuclear factor (NF)-kB
transcription factor regulates immunity, cellular survival and

apoptosis. DSBs, like those resulting from radiation therapy,

activate the NF-kB pathway (36). Many other cell signaling

pathways are implicated in radiation sensitivity and are active

areas of research. They may yield mechanistic insight into

radiation response when they are altered or may be targeted to

induce radiation sensitivity.

While there are no guideline-approved variations in radiation

therapy indications based on clinicogenetic factors, recent insights

from solid tumors offer promising directions. For instance, solid

tumors with ATM or BRCA mutations exhibit increased

radiosensitivity compared to matched controls (37, 38). Similarly,

the radiosensitivity of human papillomavirus (HPV)-associated

oropharyngeal cancer (OPC) is partly attributed to deficient DNA

repair caused by E6 and E7 viral oncoproteins, which degrade p53

and inactivate Rb, disrupting DNA repair pathways and enhancing

susceptibility to radiation-induced DSBs (39, 40). This intrinsic

radiosensitivity of HPV-positive OPC has facilitated dose de-
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TABLE 1 Summary of major DNA damage repair genes, associated syndromes, prevalence, known targeted agents, and associated cancers (11–13).

Gene
symbol

Full
gene name

Associated
syndromes

Prevalence Type of DNA
damage sensing/
repair disrupted

Known
drugs targeting

Associated
cancers

XRCC1 X-ray Repair Cross
Complementing 1

No specific syndrome,
associated with
increased cancer risk

Rare, exact
prevalence
unknown

BER No specific drugs, but
associated with response to
platinum-based therapies

Multiple cancers
including Breast,
Lung, Cervical

CHK2 Checkpoint
Kinase 2

Li-Fraumeni-
like Syndrome

Rare, exact
prevalence
unknown

DDR, cell cycle
checkpoint control

CHK2 inhibitors
(e.g., CCT241533)

Breast, Lung,
Lymphoid
malignancies

TP53 Tumor Protein p53 Li-Fraumeni Syndrome < 1 in 20,000 DDR, cell cycle checkpoint
control, apoptosis

MDM2 inhibitors (e.g.,
RG7112, Nutlin-3)

Multiple cancers
including Breast,
Sarcomas, Leukemia

MRE11 MRE11 Homolog Ataxia-Telangiectasia-
Like Disorder (ATLD)

Rare, exact
prevalence
unknown

DSB No specific drugs, but crucial in
DNA damage signaling
and repair

Lymphoid
malignancies

RAD50 RAD50 Double
Strand Break
Repair Protein

Nijmegen
Breakage Syndrome

1 in 100,000 DSB No specific drugs, but
associated with DDR pathways

Lymphoid
malignancies

ATM Ataxia-
Telangiectasia
Mutated

Ataxia-Telangiectasia
(A-T)

< 1 in 100,000 DSB, DNA
damage signaling

ATM inhibitors (e.g.,
AZD0156, AZD1390,
KU-55933)

Lymphoid
malignancies,
Breast, Prostate

NBS1 Nijmegen Breakage
Syndrome 1

Nijmegen
Breakage Syndrome

1 in 100,000 DSB, DNA
damage signaling

None currently approved Lymphoid
malignancies

WRN Werner Syndrome
RecQ Helicase-Like

Werner Syndrome
(Adult Progeria)

Rare, exact
prevalence
unknown

HR, DNA replication,
Telomere maintenance

No specific drugs, but potential
targets in aging and cancer

Sarcomas, Skin
cancer,
Rare leukemias

BRCA2 Breast Cancer 2 Hereditary Breast and
Ovarian
Cancer (HBOC)

1 in 400 to 1
in 800

HR PARP inhibitors (e.g.,
Olaparib, Rucaparib)

Breast,
Ovarian, Prostate

BRCA1 Breast Cancer 1 Hereditary Breast and
Ovarian
Cancer (HBOC)

1 in 400 to 1
in 800

HR PARP inhibitors (e.g.,
Olaparib, Rucaparib)

Breast,
Ovarian, Prostate

RAD51 RAD51
Recombinase

No specific syndrome,
associated with
increased cancer risk

Rare, exact
prevalence
unknown

HR No specific drugs, but RAD51
inhibitors in development

Breast,
Ovarian, Prostate

FANCD2 Fanconi Anemia
Complementation
Group D2

Fanconi Anemia 1 in 100,000 to
1 in 350,000

Interstrand Crosslink
Repair, HR

No specific drugs, but
sensitivity to DNA
crosslinking agents

Acute Myeloid
Leukemia, Squamous
Cell Carcinoma

FANCA Fanconi Anemia
Complementation
Group A

Fanconi Anemia 1 in 100,000 to
1 in 350,000

Interstrand crosslink
repair, HR

No specific drugs, but
sensitivity to DNA
crosslinking agents

Acute Myeloid
Leukemia, Squamous
Cell Carcinoma

MSH2 MutS Homolog 2 Lynch Syndrome 1 in 500 to 1
in 3,000

MMR No specific drugs, but
sensitivity to immunotherapy
and chemotherapies

Colorectal,
Endometrial,
Ovarian

MLH1 MutL Homolog 1 Lynch Syndrome 1 in 500 to 1
in 3,000

MMR No specific drugs, but
sensitivity to immunotherapy
and chemotherapies

Colorectal,
Endometrial,
Ovarian

MSH3 MutS Homolog 3 Lynch Syndrome
(less common)

Rare, exact
prevalence
unknown

MMR No specific drugs, but relevance
in combination with other
MMR genes

Colorectal,
Endometrial,
Ovarian

ERCC1 Excision Repair
Cross-
Complementation
Group 1

Xeroderma
Pigmentosum (with
other NER genes)

1 in 1,000,000 NER No specific drugs, but
associated with sensitivity to
platinum-based chemotherapy

Skin cancer,
Lung cancer

PARP1 Poly (ADP-Ribose)
Polymerase 1

No specific syndrome Rare, exact
prevalence
unknown

SSB, BER PARP inhibitors (e.g.,
Olaparib, Rucaparib)

Breast,
Ovarian, Prostate
F
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DDR DNA damage response, BER base excision repair, HR homologous recombination, MMR mismatch repair, NER nucleotide excision repair, DSB double strand breaks, SSB single strand breaks.
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escalation studies, demonstrating that reduced radiation doses (e.g.,

30-60 Gy versus 70 Gy) can achieve comparable local control while

minimizing treatment-related toxicity (41). Furthermore, HPV-

pos i t i v e tumors a re l e s s l i k e l y to ha rbor hypox i c

microenvironments—an important determinant of radioresistance

—further enhancing their radiation responsiveness (42). These

findings underscore opportunities for tailored radiation dosing

and emphasize the importance of considering tumor

microenvironmental factors when optimizing radiotherapy for

other cancers. Lastly, the Oncotype DX DCIS score was

retrospectively correlated with local recurrence risk after

lumpectomy for DCIS, and it can guide the use of adjuvant RT

(43). However, there are no large-scale prospective trials

randomizing DCIS patients to omit radiation solely using this

score, and it is primarily used in risk-stratification and shared

decision-making contexts with questionable clinical utility and cost-

effectiveness (44).
Can personalized medicine reduce
radiation-associated toxicities?
Fron
“He who wishes to fight must first count the cost.”
-The Art of War, Sun Tzu
Radiation therapy is a powerful tool in cancer treatment, but no

therapy comes without a price: adequate radiation dose to effectively

treat a tumor and radiation-associated toxicity to surrounding

normal tissues are two sides of the same coin. As discussed above,

there are several genetic variants especially those involved with

DDR that have been associated with augmented toxicity to RT; this

emphasizes a potential to identify patients who may be less able to

adequately repair DNA damage to normal cells (45). However, the

results of studies trying to associate DDR genes and cell cycle

genetic aberration to radiation toxicity are not always

straightforward. For example, in a proof-of-principle study, the

ATM gene was sequenced in 20 patients with severe late radiation

side effects, but no ATMmutations were found (46). Since that time,

there has been inconsistent data in gene-level and population-based

studies, though, more recently, ATM sequence variants were shown

to predict adverse RT response in prostate cancer patients (47, 48).

Alternative mechanisms of radiation toxicity are also implicated

such as nucleoshuttling of ATM (49). A recent study introduced the

PROSTOX assay, a microRNA-based test that may be able predict

the risk of long-term genitourinary toxicity in prostate cancer

patients undergoing radiation therapy by looking for specific

germline microRNA single-nucleotide polymorphisms (SNPs)

(50). SNPs and TP53 polymorphisms correlate with severe late

adverse effects and clinical outcomes in cancer patients undergoing

RT (51, 52). Specifically, certain TP53 mutations predict normal

tissue toxicity following RT in head and neck cancer (53). Similarly,
tiers in Oncology 06
the presence of BRCA1/BRCA2 mutations in breast cancer patients

may influence the risk of complications after radiation, like brachial

plexopathy, though the data is conflicting (54, 55). The

Radiosensitivity Index (RSI) predicts a tumor’s response to

radiation by analyzing a 10-gene signature related to DDR and

cell cycle regulation (56), with specific studies showing its utility in

reducing breast cancer treatment toxicity (57). Building on RSI, a

dose-adjustment algorithm termed GARD (genomic adjusted

radiation dose) assayed multiple solid tumors and integrated the

radiosensitivity score with RT dose, optimizing therapeutic

outcomes while significantly minimizing the risk of radiation-

induced toxicities (58). GARD was associated with risk of local

recurrence in breast cancer and has the potential to be used to make

decisions on radiation dose adjustment (59). Therefore, it is possible

that a general test such as RSI and GARD, or a novel disease-specific

genetic signature may be used to optimize radiation doses through

personalized escalation or de-escalation.
Genomics of hematologic
malignancies and potential prediction
of treatment response
“In the midst of chaos, there is also opportunity.”
-The Art of War, Sun Tzu
Decades of research into molecular biomarkers has yielded an

undeniable truth: the genome is incredibly intricate and its

complexity is often difficult to translate into clinically relevant

information. We are no longer in an era where single genes

establish new syndromes with easily observable phenotypes.

While certain single nucleotide variants (SNVs) are associated

with targeted therapies (60), the associations with radiosensitivity

are more complicated, often involving defects in multiple genes or

entire pathways. This complexity necessitates a more nuanced

understanding of the mutational landscape and its impact on

therapeutic sensitivity.

Preclinical models such as cell lines and transgenic mice have

contributed our earliest observations about radiation sensitivity in

hematologic malignancies, indicating that lymphomas are at one

extreme of the spectrum of radiosensitivity relative to solid tumors

like melanoma and glioblastoma (61, 62). In Mantle cell lymphoma

(MCL), cell lines derived from patients indicated that observed

radiosensitivity may be due to distinct mechanisms in subtypes of

MCL such as telomere shortening, loss of heterozygosity at the

ATM locus, and the functionality of TP53 mutants (63).

Paradoxically, in mice with lymphomas arising in a background

of altered ATM, TP53, ARF, or NBS1, showed that mice with an

intact DDR had the most durable remission after irradiation (64). In

Burkitt lymphoma (BL) cell lines, mutant TP53 abrogated the

ability of G-phase arrest following radiation (65). Additional
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studies of lymphoma cell lines have shown that in the presence of

wild type TP53, having mutations in downstream proteins can

result in similar radiosensitivity (66). Using exogenous agents to

inhibit NF-KB signaling has been shown to radiosensitize BL cell

lines (67). Studies of mouse lymphoma cell lines show that radiation

resistance correlates to Bcl-2 expression and suggest that Bcl-2

blocks apoptosis by the antioxidant pathway (68). The transition

from candidate gene studies to genome-wide association studies

(GWAS) in identifying genetic markers of RT toxicity and response

will likely involve genomic profiling (69). Through target

sequencing panels, whole exome sequencing (WES), and whole

genome sequencing (WGS) approaches, a vast amount of molecular

information can inform clinical radiation oncology practice. Studies

that establish models in which genes are associated with radiation

sensitivity or predict patient response could be translated into a

framework for personalized RT (70).

A thorough understanding of the genetic underpinnings of

hematologic malignancies have already led to advancements in

targeted systemic therapy options. For example, Tazemetostat

inhibits the EZH2 protein, frequently altered in lymphomas, and

phase II trials have demonstrated benefit in patients with EZH2

mutations (71). Moving forward, we foresee that these same insights

could facilitate personalized consideration and integration of RT.

Specifically, these opportunities include a better understanding of

how these aforementioned targeted therapies could be optimally

used in conjunction with RT. Furthermore, these insights may

highlight opportunities for rational RT dose alterations or even RT

inclusion/omission, treatment-response prediction, and RT

modality selection (Figure 3). There may also be opportunity to

better predict risk of normal tissue toxicity post-RT.

In the following sections, we will review the current landscape

of common genetic mutations in hematologic malignancies,

focusing on their implications for treatment sensitivity

and resistance.
Hodgkin lymphoma

Hodgkin lymphoma (HL) is challenging to characterize from a

genomic perspective given that the main neoplastic cells, Hodgkin

and Reed-Sternberg (HRS) cells, comprise a minority of the tumor

microenvironment (<5%). Only recently has it become realistic to

isolate HRS cells for better characterization; whereas, most existing

work relied on bulk sequencing with admixed cell populations. The

observed mutations in HL are shown in Table 2. From targeted

sequencing panels of FFPE biopsy samples, TP53 is the most

frequently mutated gene in HL (approximately 20% of patients)

(78). BCL2, an antiapoptotic factor, is thought to be involved in the

pathogenesis of HL, and overexpression of BCL2 in HL is correlated

with poorer response to chemotherapy (79). Microdissected HL

samples indicated that EP300 and CREBBP, epigenetic regulators,

are mutated in up to 40% of samples (80). No studies have identified

specific genetic markers that can determine the radiosensitivity of

HL; however, genetic aberrations are found in the immune system,

JAK-STAT, NF-kB, DNA repair and cell cycle pathways, indicating
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that there are potentially radiosensitive HLs depending on the

underlying molecular characteristics (81).

Though ATM is not mutated at high frequencies in HL, ataxia-

telangiectasia and Rad3-related (ATR), which is also essential for

proliferation, is shown to be mutated in some HL cell lines (82).

Previous studies suggest that ATR might participate in the signaling

of ionizing radiation (IR)- and ultraviolet (UV)-induced DNA

damage (83). ATR is activated not only by UV-induced SSBs but

also other forms of DNA damage and replication blocks, with

mutations believed to cause abrogation of ATR in HL (82). Other

cell cycle genes like KLHDC8B61 (84) are NPAT (85) (nuclear

protein, ataxia-telangiectasia), are also implicated in HL, and may

convey similar radiosensitivity to ATM/ATR mutations. Finally,

mutations in POT1 in HL are associated with increased

chromosomal instability (CIN) which may associate with

increased radiosensitivity (86). Copy number alterations (CNA),

which involve the gain or loss of DNA segments directly affecting

gene dosage, are present in more than 20% of HL cases and are

enriched in genes related to NF-kB signaling, such as REL, IKBKB,

CD40, andMAP3K14 (87). The presence of specific recurrent CNAs

in HL was shown to be related to chemotherapy resistance (88).
Non-Hodgkin lymphoma and other
lymphoid malignancies

Non-Hodgkin lymphoma (NHL) encompasses a diverse group

of lymphoid malignancies, each characterized by distinct genetic

profiles that may influence radiosensitivity and treatment outcomes

(Figure 4). Indolent lymphomas, such as follicular lymphoma (FL)

and marginal zone lymphoma (MZL), generally exhibit slow disease

progression and relatively good responses to treatment, while other

lymphomas like MCL, BL and diffuse large B-cell lymphoma

(DLBCL) can have more aggressive courses (Figure 5). Of note,

depending on histology and clinical situation, guideline-supported

RT doses acceptable for treatment of NHL range from 4-54 Gy (89).

This wide spectrum underscores a critical need to personalize

RT dosing.
Indolent lymphomas
“If he is taking his ease, give him no rest.”
-The Art of War, Sun Tzu
Indolent lymphomas are mature B-cell neoplasms that often

involve translocations which bring oncogenes in proximity to the

immunoglobulin heavy chain (IGH) locus at chromosome band

14q32, resulting in overexpression of the oncogene (Table 3). For

example, FL is commonly defined by t(14;18)(q32;q21) occurring in

up to 90% of cases and resulting in overexpression of BCL2 by
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placing it under control of the IGH promoter. Extranodal marginal

zone lymphomas (ENMZL) often arise in the gastrointestinal tract,

salivary glands, and other extranodal sites. ENMZLs often have

rearrangement involving the MALT1 gene, such as t(11;18)(q21;
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q21), t(14;18)(q32;q21), and t(1;14)(p22;q32), which result in the

activation of the NF-kB pathway (97). Chromosomal translocations

involving the BIRC3 gene, such as t(1;14)(p22;q32), have also been

implicated in MALT lymphomas of the intestine and lung (98).

BIRC3 (also known as cIAP2) is an inhibitor of apoptosis, and its

dysregulation can contribute to radioresistance by preventing

radiation-induced cell death (99). In ENMZLs of the GI system,

BCL10-IGH translocation t(1;14) is a driving feature. In ocular

ENMZLs, t(3;14)(p14.1;q32) resulting in FOXP1-IGH can occur.

Other indolent lymphomas, such as nodal MZL and

lymphoplasmacytic lymphoma, can also harbor distinct genetic

alterations such as MYD88 and L265P mutations, implicated in

promoting survival through constitutive NF-kB activation (100).

Understanding the genetic landscape of indolent lymphomas

provides critical insights into their biology and may inform

personalized therapeutic approaches, including the potential for

targeted radiosensitization strategies.
Follicular lymphoma

In FL, genetic mutations occur in epigenetic regulators such as

KMT2D or CREBBP in roughly two-thirds of patients (101). Given

the high frequency of epigenetic dysregulation, epigenetic targets

are hypothesized to be cancer-driving and involve cell-cycle

regulation. If a clear genetic phenotype is identified, it is possible

that there may be an observable and exploitable relationship with

radiation sensitivity (102). Although no specific mutations have

been identified that are directly associated with radiation sensitivity

per se, there are already some examples of incorporating genetic

information into tools to guide clinical decision making with

respect to chemoimmunotherapy. For example, the m7-FLIPI

(Follicular Lymphoma International Prognostic Index) score
FIGURE 3

The potential uses of genetic information in radiotherapy (RT).
Addition addresses the identification of mutations such as those
implicated in synthetic lethality that may be targeted and used in
conjunction with RT. Avoidance concerns the germline mutations
that may indicate that a patient has greater radiosensitivity of their
normal tissue. Dose can be reduced or escalated depending on
observed genetic phenotypes. The potential for tumor genetics to
provide insight into the behavior of different lesions within the same
patient or the aggressiveness of a particular lesion has implications
for targeting radiation (i.e., only targeting the largest lesion out of
several). Tumor genetics may indicate that RT is not the preferential
mode of treatment and provide insight into omission of RT.
Genetics can be used to predict the likelihood of RT eradicating the
tumor. Lastly, the RT modality (i.e. photons, protons, brachytherapy,
etc.) may be chosen by understanding the tumor genetics.
TABLE 2 Summary of Hodgkin lymphoma and associated genetic aberration (72–77).

Hodgkin
lymphoma
type

Known
subtypes
and
prevalence

Major mutated
genes
and prevalence

Known CNAs Known
translocations

Differentially expressed genes
(RNA/Protein)

Nodular
Sclerosing

Subtypes: NS1,
NS2; Prevalence:
60-80%

B2M (40-50%), SOCS1
(30-40%), GNA13
(20-30%)

9p24.1
amplification,
2p16.1 gain,
6q deletion

Rare CD30 (IHC), CD15 (IHC), PDL1/PDL2 (IHC);
SPARC, CTSK, COLI

Lymphocyte-
Depleted

1-2% TP53 (20-30%), SOCS1
(30-40%), B2M
(10-15%)

9p24.1
amplification, 7q
deletion, 17p loss

Rare CD30 (IHC), PDL1/PDL2 (IHC), MUM1 (IHC)

Lymphocyte-
Rich

5-10% SOCS1 (30-40%), B2M
(20-30%), TNFAIP3
(10-20%)

2p16.1 gain,
6q deletion

Rare CD30 (IHC), CD15 (IHC), PDL1/PDL2 (IHC),
OCT.1 (IHC), OCT.2 (IHC), BOB.1 (IHC),
BCL6 (IHC)

Mixed
Cellularity

15-30% B2M (40-50%),
TNFAIP3 (20-30%),
STAT6 (15-20%)

9p24.1
amplification, 6q
deletion, 17p loss

Rare CD30 (IHC), PDL1/PDL2 (IHC), CD15 (IHC); 1Qa,
C1Qb, CXCL9

Nodular
Lymphocyte-
Predominant

5-10% TNFRSF14 (50-60%),
BCL6 (20-30%), JUNB
(15-25%)

9p24.1 gain,
2p16.1 gain

t(2;5)(p23;q35) -
NPM1-ALK in
rare cases

CD20 (IHC), BCL6 (IHC), CD45 (IHC), OCT.2
(IHC), BOB1 (IHC), OCT.1 (IHC) Pax-5 (IHC),
KLHL6 (IHC), GCTE-1 (IHC)
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FIGURE 4

Non-Hodgkin lymphomas (NHLs). The distribution of the prevalence of the most common NHLs with commonly expressed factors on
histopathology shown.
FIGURE 5

Mutations associated with each type of non-Hodgkin lymphoma. The progression of B-cell maturation and the associated development of
lymphoma with the most commonly identified mutations.
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combines clinical factors with genetic mutations in EZH2, ARID1A,

MEF2B, EP300, FOXO1, CREBBP, and CARD11, providing a more

nuanced risk stratification that guides therapeutic decisions and

identifies patients who may benefit from more aggressive treatment

strategies (103); of note, the utility of m7-FLIPL for prediction of

response to chemotherapy is inconsistent (104, 105). A study of the

m7-FLIPI on patients from the GALLIUM trial, a clinical study

which evaluated rituximab vs. obinutuzumab frontline treatment

(106), found that EZH2 mutations were associated with more

benefit from cyclophosphamide, adriamycin, vincristine and

prednisone (CHOP)/cyclophosphamide, vincristine and

prednisone (CVP) chemotherapy, whereas EZH2 wild-type

patients had superior outcomes with bendamustine-based

regimens (107).

More recently, genomically distinct subtypes of FL have been

identified with different, often more favorable, treatment response

(108). Translocation t(14;18) negative FL is noted to arise

predominantly in inguinopelvic sites, is enriched for STAT6 and

CREBBP mutations, and usually has a good response to

chemotherapy and RT (109). Additionally, pediatric-type FL,

which occurs in young patients and adolescents, is recognized for

its excellent prognosis and high responsiveness to treatment with

roughly 50% of cases harbor mutation of IRF8 and frequent MAPK

mutations with a surprising absence of epigenetic modifier

mutations (110). This subtype is often localized and exhibits a

low-grade histology, resulting in long-term remission with standard

treatment protocols (111).
Marginal zone lymphomas

In MZL, most ENMZLs show trisomy of chromosomes 3 and 18.

The t(11;18)(q21;q21) translocation resulting an API2–MLT/MALT1

is associated with resistance to antibiotic therapy in gastric MALT

lymphoma, suggesting a more advanced and therapy-resistant disease

(51). In lung cancer cell lines,MALT1 loss is associated with increased
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radiosensitivity (112). In MALT1 rearrangement-negative gastric

MALTs, TRAF3, TNFAIP3, and NOTCH1 are commonly altered

(113). Targeted mutations of TNFAIP3 are seen in ocular adnexal

MALT, possibly associated with more DDR errors and

radiosensitivity (114); whereas salivary MALTs have mutations in

TBL1XR1 and GPR34, which have been implicated in lung cancer

radiation resistance (115). In a study of ocular ENMZL patients using

whole genome and targeted sequencing, JAK3 mutation occurred in

11% of cases and was associated with reduced PFS after

chemotherapy relative to wild-type (116). Studies also showed

deletions of TNFAIP3, and amplifications of NOTCH targets and

the CEBP transcription factor family (116). Mutations of TBL1XR1

leads to increased NCoR degradation and activation of NF-kB and

JUN signaling pathways (117). Lastly, MYD88 mutations in ocular

ENMZL have been associated with inferior disease-free survival after

chemotherapy (DFS) (118).
Aggressive lymphomas
“If your opponent is in superior strength, evade him.”
-The Art of War, Sun Tzu
Aggressive lymphomas encompass a subset of NHLs

characterized by increased proliferation, more genetic complexity,

and higher clinical acuity than indolent lymphomas. Subtypes such

as MCL, DLBCL, and BL can exhibit brisk disease progression and

are often driven by distinct genetic mutations or chromosomal

rearrangements that influence both prognosis and treatment

responsiveness (Table 4). Despite their aggressive nature, these

malignancies can be highly responsive to therapy, especially when

their specific molecular features are targeted.
TABLE 3 Summary of indolent non-Hodgkin lymphoma and associated genetic aberration (90–96).

Lymphoma
type

Known subtypes
and prevalence

Major mutated
genes
and prevalence

Known
CNAs

Known
translocations

Differentially expressed
genes (RNA/Protein)

Follicular
Lymphoma (FL)

Grade 1-2: 60-70%, Grade 3A: 15-20%,
Grade 3B: 10-15%, Pediatric: <5%,
Inguinal type: ~10%, BCL2
translocation negative: ~5-10%

KMT2D (60-70%),
CREBBP (60%), EZH2
(20%), BCL2 (85-90%)

1p36 loss,
6q deletion

t(14;18)(q32;q21)
- BCL2

BCL2 (IHC/FISH), MUM1 (IHC), CD10
(IHC), BIN2, TNFRSF13B, CD69, SLP1,
C9ORF52, TNFSRF25, STAT4, IL7R,
LEF1, GZMB, BCL2, C4A)

Marginal Zone
Lymphoma
(MZL)

Nodal: 10%, Splenic: 30-40%,
Extranodal: 50-60%

KMT2D (30%),
NOTCH2 (20-25%),
KLF2 (10-15%),
PTPRD (15%), BIRC3
(5-10%)

7q deletion,
17p
deletion

t(11;18)(q21;q21) -
MALT1, t(14;18)
(q32;q21) - BCL2

BCL2 (IHC), MALT1 (FISH), BCL6
(IHC), MNDA, TRAF4, CD82, ACI,
TNFRSF14, TGFB1

Chronic
Lymphocytic
Leukemia (CLL)

IGHV-mutated: 50-60%, IGHV-
unmutated: 40-50%

TP53 (10-15%), ATM
(15-20%), SF3B1
(10-15%)

13q
deletion,
11q
deletion,
17p
deletion

t(11;14)(q13;q32) -
CCND1, t(14;19)
(q32;q13.3) - BCL3

ZAP-70 (IHC), CD38 (IHC), BCL2
(IHC); BANK, CD40L1, ICOS, CRBN,
CD19, CD5
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Mantle cell lymphoma

MCL is a subtype of NHL characterized by the presence of

characteristic rearrangement t(11;14) involving cyclin D1 (CCND1),

a cell cycle signaling factor. Cyclin D1 can form a complex with

CDK4 or CDK6, both of which are overexpressed in MCL (124). The

downregulation of specific microRNAs has been linked to CDK6

upregulation and poorer survival (125). Studies have shown that

there are also frequent mutations in the TP53 and ATM genes, which

have implications for therapeutic sensitivity. In MCL, mutations in

TP53 are associated with poor prognosis and resistance to

conventional therapies (126). TP53 mutation is associated with

MCL blastoid morphology, and its presence informs

chemotherapy decision making. ATM is mutated in roughly 70%

of MCL, and since they are thought to result in defective DNA repair

mechanisms, they implicate ATMmutation as a likely MCL defining

event. The high frequency of ATM mutations make it ideal for

further study as a clinical biomarker (127). At present, neither TP53

nor ATM alteration are used routinely to guide RT utilization;

however, MCL can be extremely sensitive to very low dose

radiation (128), and therefore, a relationship between MCL’s

altered DDR and radiosensitivity may exist.

Another interesting finding is that MCL has a relatively high

degree of CNA compared to other lymphomas, perhaps attributed

to mechanisms allowing a bypass of the normal cell cycle checks

through cyclin D1/CDK4 (129). CNA in MCL has also been linked

to altered MAP2 and MAP6, microtubule genes that could

contribute to genomic instability (130). From WES of MCL,

recurrent mutations were identified including WHSC1, RB1,

POT1, and SMARCA4 (131). Another study noted 4 mutational

signatures in MCL with different overall survival probabilities:

mutated IGH variable, CCND1 mutation, amplified 11q13, and

active B cell receptor signaling (122). The CCND1 signature was

also associated with del(11q), ATM mutations, and upregulation of

NF-kB and DNA repair pathways (122). Understanding these

genetic mutations may allow for more precise decision making

with respect to radiation doses, potentially improving patient

outcomes by enhancing the therapeutic ratio.
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Burkitt lymphoma

BL is a highly aggressive form of NHL characterized by the

rapid growth of malignant B-cells. There are three distinct clinical

subtypes: sporadic BL, endemic BL predominantly in sub-Saharan

Africa, and immunodeficiency-associated BL. Genetic studies have

demonstrated both common mutations across subtypes (e.g.,

mutations in ID3), and distinct alterations for each subtype (132).

BL is most commonly associated with translocation t(8;14)(q24;

q32), which juxtaposes the MYC gene with IGH locus (121). This

translocation leads to the overexpression of the MYC oncogene, a

critical regulator of cell proliferation, apoptosis, and metabolism.

The aberrant expression of MYC drives the uncontrolled growth

and rapid proliferation of lymphoma cells, contributing to BL’s

aggressive clinical behavior. The translocation involving MYC can

also occur with other immunoglobulin loci, such as t(2;8)(p12;q24)

involving the kappa light chain or t(8;22)(q24;q11) involving the

lambda light chain, although these are less common. MYC

dysregulation is a key driver of oncogenesis in BL, and its

detection is critical for diagnosis and therapeutic decision making.

Studies have shown that MYC overexpression is associated with

poor prognosis and resistance to conventional therapies, making it a

target of interest for novel therapeutic approaches (133). Sporadic

and immunodeficiency-associated BLs were shown to be genetically

similar with mutations in TCF3, CCND3, and SMARCA4 (134);

whereas, endemic BL has more frequent mutations in BCL7A and

BCL6 and fewer genetic alterations in DNMT1, SNTB2, and

CTCF (132).
Diffuse large B-cell lymphoma

DLBCL is the most common form of NHL and is characterized

by significant genetic and phenotypic heterogeneity, which

influences treatment response and prognosis. DLBCL can be

classified into two major phenotypes based on gene expression

profiles: activated B-cell-like (ABC) and germinal center B-cell-like

(GCB), with distinct molecular characteristics and clinical behaviors.
TABLE 4 Summary of aggressive non-Hodgkin lymphoma and associated genetic aberrations (92, 119–123).

Lymphoma
type

Known
subtypes
and prevalence

Major mutated
genes
and prevalence

Known
CNAs

Known
translocations

Differentially expressed genes
(RNA/Protein)

Diffuse Large B-
Cell
Lymphoma
(DLBCL)

GCB: 40-50%, ABC:
30-40%, Double-Hit: 5-
10%, Triple-Hit: 2-3%

BCL2 (30-40%), BCL6
(20-30%), MYC
(10-15%)

3q gain,
18q21
gain,
17p loss

t(14;18)(q32;q21) -
BCL2, t(3;14)(q27;q32)
- BCL6, t(8;14)(q24;
q32) - MYC

BCL2 (IHC/FISH), BCL6 (IHC), MYC (IHC); CD68,
BAFF, CD163, KI67, S1PR2

Mantle Cell
Lymphoma
(MCL)

Classic: 70-80%,
Blastoid: 10-15%,
Pleomorphic: 5-10%

CCND1 (95-100%),
TP53 (20-30%), ATM
(40-75%), SP140 (10%),
NSD2 (10%)

11q
deletion,
13q
deletion,
17p loss

t(11;14)(q13;q32)
- CCND1

Cyclin D1 (IHC), SOX11 (IHC), BCL2 (IHC),
RNGTT, HDGFRP3, FARP1, CSNK1E, SETMAR,
HMGB3, LGALS3BP, PON2, CDK2AP1, DBN1,
CNR1, CNN3, SOX11

Burkitt’s
Lymphoma (BL)

Endemic: 40-50%,
Sporadic: 30-40%,
Immunodeficiency-
associated: 10-20%

MYC (90-95%), ID3 (30-
40%), TCF3 (20-30%)

13q
deletion,
1q gain,
17p loss

t(8;14)(q24;q32) -
MYC, t(2;8)(p12;q24) -
MYC, t(8;22)(q24;q11)
- MYC

MYC (IHC/FISH), BCL6 (IHC), CD10 (IHC)
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ABCDLBCL is often associated with poorer prognosis and resistance

to standard therapies, including radiation, due to constitutive

activation of the NF-kB pathway (135). In contrast, GCB DLBCL

generally has a better prognosis and is more responsive to

chemotherapy (136). Despite efforts to classify the cell of origin of

DLBCL, precision oncology based on these subtypes has not

consistently translated into clinical benefit (137), although upfront

Polatuzumab was recently demonstrated to have more benefit for

ABC DLBCL than GCB DLBCL (138, 139). Rearrangements,

mutations, and overexpression of BCL2, BCL6, and MYC are

critical genetic alterations in DLBCL that further influence

treatment outcomes. BCL2 rearrangements are more common in

GCB DLBCL and are associated with resistance to apoptosis, which

can impact the effectiveness of radiation therapy (140). BCL6

rearrangements, which are found in both ABC and GCB subtypes,

can inhibit differentiation and promote survival of lymphoma

cells, potentially affecting their radiosensitivity (141). MYC

rearrangements, often associated with a more aggressive disease

course, lead to overexpression of the MYC protein, driving rapid

cell proliferation and metabolic activity. The co-occurrence of MYC

rearrangements with BCL2 and/or BCL6 rearrangements, known

previously as “double-hit” or “triple-hit” lymphomas, now known as

High-Grade B-Cell Lymphoma (HGBCL), is associated with very

poor prognosis and resistance to conventional treatments (142).

MYC-positive cells are shown to have more oxidative stress and

replication errors which lead to DNA damage and genomic

instability (143). DDR activation in DLBCL correlates with MYC

expression and predicts poor prognosis (144). In fact, inhibition of

ATR-CHK1/2mediated DDR was linked to chemotherapy resistance

in MYC-positive DLBCL (145).

Early WES studies of DLBCL, showed recurrent mutations in

MYD88, CARD11, EZH2, and CREBBP, which were known to be

altered in DLBCL and somatic mutations in novel genes like

MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and

TNFRSF14 (146). Later studies compared ABC and GCB subtypes

to show GCB type preferentially mutated in EZH2, SGK1, GNA13,

SOCS1, STAT6, and TNFRSF14, and ABC type biased toward

mutations ETV6, MYD88, PIM1, and TBL1XR1 (147). Loss of

CDKN2A is associated shorter survival after Rituximab-CHOP

through dysregulation of the RB/E2F pathway, activation of

cellular metabolism, and decreased immune and inflammatory

responses (148). Shipp et al. identified five DLBCL genetic

phenotypes including transformed from indolent lymphoma, two

subsets of GCB-DLBCLs and group with biallelic inactivation of

TP53, CDKN2A loss, and associated genomic instability (142). The

LymphGen classification further refines the molecular

categorization of DLBCL into distinct genetic subgroups with

specific phenotypic and clinical characteristics (149). This

classification includes subtypes MCD (MYD88L265P and CD79B

mutations), BN2 (BCL6 fusions and NOTCH2 mutations), N1

(NOTCH1 mutations), EZB (EZH2 mutations and BCL2

translocations), ST2 (PI3K signaling and JAK2 signaling), A53

(low p53 target genes), and TP53Mut (p53 signaling

dysregulation, immune deficiency, and PI3K activation), each

associated with different therapeutic responses and outcomes
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(150). Lastly, primary central nervous system lymphoma

(PCNSL) is an aggressive large B-cell lymphoma that also displays

CDKN2A loss and mutations in MYD88, CD79B, and TBL1XR1,

thus with potentially definable genetic subtypes (151).

Understanding these genetic and phenotypic subtypes may allow

for more precise tailoring of radiation therapy protocols. For

instance, patients with MYC, BCL2, and/or BCL6 rearrangements

may benefit from more aggressive treatment regimens or novel

therapeutic combinations that enhance radiosensitivity and

overcome resistance mechanisms.
T-cell lymphomas

T-cell lymphomas are a heterogeneous group of malignancies

characterized by various genetic alterations that influence their

response to treatments. Among the key genetic mutations

associated with T-cell lymphomas are those in the TP53 and

anaplastic lymphoma kinase (ALK) genes, which significantly

impact disease behavior and treatment outcomes (152). Early

genetic studies exploring mutations in ATM and TP53 showed

that mutant mice developed T-cell lymphoma with mice having

both genes knocked out displaying resistance to radiation (153). In

T-cell lymphomas, TP53 mutations can lead to impaired apoptosis

and increased survival of malignant cells despite radiation-induced

DNA damage, suggesting a potential for reduced radiation

sensitivity (154). Conversely, ALK mutations or translocations,

particularly in ALK-positive anaplastic large cell lymphoma

(ALCL), are associated with a distinct clinical and biological

profile (155). ALK-positive T-cell lymphomas generally exhibit

better responses to chemotherapy and RT compared to ALK-

negative variants, likely due to the oncogenic driver role of ALK

mutations that render the cells more susceptible to targeted

treatments, though no clear relationship with radiation is known

(156). The potential to understand variability in radiation sensitivity

based on genetic alterations underscores the importance of

molecular profiling in T-cell lymphomas to optimize treatment

strategies and improve patient outcomes.
Plasma cell neoplasms

Plasma cell neoplasms like solitary plasmacytoma and multiple

myeloma (MM) have also shown associations with mutations in the

TP53 and ATM genes. Initial reports showed roughly a third of

extramedullary MM reported t(4;14), deletion of 13q the RB1 locus,

and deletion 17p the TP53 locus. Recently, WES of extramedullary

MM showed most patients had 1q21 amplification including the

CKS1B gene and at least one mutated gene in the MAPK signaling

pathway, with KRAS as the most frequently mutated gene (157).

NBS1 mutations in myeloma may contribute to carcinogenesis and

may be targetable (158). Additionally, MM polymorphisms in DNA

repair genes such as XRCC1 have been identified and could

potentially influence radiosensitivity and treatment responses

across myeloma and various lymphoid malignancies (159).
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Transformed hematologic malignancies

While chronic lymphocytic leukemia (CLL) is not thought to

have a large amount of genetic dysregulation, Richter’s syndrome

(RS), a transformation to aggressive disease, has recently been

characterized through WGS with some recurrent mutations

observed (160). Mutations were found in the DDR pathway, but

also other genes like PTPRD and TRAF3. Immune genes were also

implicated including BTG2, CXCR4, NFATC1, PAX5, and NOTCH.

Transformed FL may be associated with CDKN2A/B deletions

which are also associated with inferior PFS and OS after

Rituximab (161).
Discussion

Radiogenomics in
hematologic malignancies
Fron
“The rule is, not to besiege walled cities if it can possibly be

avoided”
-The Art of War, Sun Tzu
While successful efforts in non-hematologic malignancies have

linked radiation sensitivity to genomic classifiers for solid tumors,

implicating genes like KEAP1 and CTNNB1 and pathways such as

ROS reduction and cell-cycle deregulation, these studies have often

explicitly omitted hematologic malignancies (162). In the absence of

clear molecular markers of radiosensitivity, radiation oncologists

determine radiation candidates, targets, and doses, based on factors

including existing retrospective and prospective trials, lymphoma

aggressiveness, disease burden, disease location, and chemotherapy

response, though practice patterns may vary. As different hematologic

cancer subtypes exhibit both distinct and common molecular traits

that influence disease behavior and treatment response, we are now in

an era of where integrating genomic information into treatment

decision-making is possible. The prospect of incorporating genetic

information into a radiation treatment plans has given rise to the

exciting, emerging field of radiogenomics. Radiogenomics promises to

identify genetic markers that can predict RT toxicity (163), and better

predict and prognosticate RT efficacy (164). By leveraging genomic

data, oncologists can already tailor treatment plans to individual

patients in medical oncology, enhancing the precision and efficacy of

chemoimmunotherapy, and similar techniques should exist in

radiation oncology.

Genomic tools may offer a powerful method to help determine

which patients are most likely to respond well to RT. While

chemotherapy alone can effectively control malignancies, there

are specific situations where RT after chemotherapy may be

necessary, such as a bridging strategy before CAR T-cell therapy,

cytoreduction prior to transplant, or consolidation therapy for

high-risk disease. Identifying specific genomic markers linked to
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radiosensitivity can guide these decisions, particularly in cases like

MCL and HL, where combined modality therapy may offer

advantages, potentially reducing the need for extensive

chemotherapy. In the pre-rituximab era, efforts like SWOG 8736

established that fewer cycles of chemotherapy combined with

radiation were superior in treating DLBCL compared to more

cycles of chemotherapy alone (165). Future efforts are needed to

determine which genetic markers reliably identify patients who can

tolerate reduced-intensity chemotherapy when additional cycles are

substituted for radiotherapy.

Currently, it is unknown whether signals of radiosensitivity

exist in hematologic malignancies. Recently, in an abstract,

CREBBP alterations in FL were shown to predict response to very

low dose RT, offering a significant advancement in RT

personalization (166). However, in a study of higher RT doses in

early-stage FL, no gene alterations were associated with outcomes

(167). Similarly, Ma et al. explored genomic correlates of

radiosensitivity in DLBCL, focusing on the LymphGen

classification (168). Studies like these could stratify patients from

the outset based on whether certain subtypes will likely benefit from

lower-dose regimens. For example, ATM-mutant MCL could be

preferentially treated with 4 Gy in an adaptive RT approach,

potentially minimizing RT exposure for specific MCL patients.

Additionally, genomic profiling opens opportunities for novel

treatment combinations with lower RT doses. For example,

incorporating EZH2 inhibitors with low-dose RT could be

explored for specific LymphGen subtypes in relapsed/refractory

DLBCL. Furthermore, radiopharmaceuticals could be utilized for

patients with systemic disease predicted to have high RT sensitivity

based on their genomic profile. However, challenges in accessing

radiopharmaceutical agents and regulatory hurdles limit their use.

Personalized genomic profiling may justify broader adoption of

radiopharmaceuticals, which could also be combined with immune

checkpoint inhibitors to unlock new treatment avenues for systemic

lymphomas. By moving beyond standard approaches, these novel

strategies have the potential to improve outcomes in patients with

challenging lymphoma cases.

Bulky tumors, which are often less sensitive to radiation, might

benefit from the addition of radiosensitizers based on specific

genomic vulnerabilities. Conversely, identifying patients at lower

risk of long-term RT toxicities—through germline or somatic

mutations affecting DNA repair pathways—could lead to better-

informed decisions about dose and modality, allowing oncologists

to balance efficacy and safety. These personalized approaches align

with the overarching goal of optimizing radiation oncology through

genomics, ensuring that each patient receives the most appropriate

treatment for their unique cancer profile.

Future directions in this field are promising, with ongoing

research aimed at refining genomic profiling techniques and

expanding our understanding of the molecular mechanisms

underlying radiosensitivity. Studies are needed to investigate the

significance of mutations in commonly mutated cell cycle-

regulating genes like TP53, MYC, BCL2, and BCL6 and DDR

genes like ATM. Additionally, associations between lymphoma

and epigenetic modifiers offer clinically useful biomarkers given

their high frequency and connection to disease development. As
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genomic technologies continue to evolve, they hold the potential to

transform radiation oncology, making personalized treatment a

standard practice. Collaborative efforts like the Radiogenomics

Consortium will be essential in overcoming current obstacles and

realizing the full potential of genomics in optimizing radiation

therapy for lymphoma patients (169).

Recognizing the transformative potential of genomics in

radiation oncology within the framework of precision medicine,

the American Society for Radiation Oncology, American

Association of Physicists in Medicine, and the National Cancer

Institute convened a Precision Medicine in Radiation Oncology

Workshop (170). The group emphasized the urgent need to develop

and validate genomic markers for predicting radiosensitivity in

tumors and normal tissues, with a focus on creating polygenic risk

scores. They also called for deeper exploration of molecular

mechanisms underlying radiosensitivity and resistance, including

hypoxia, HPV status, and alterations in DNA damage response

pathways, while investigating synergies between radiation therapy

and systemic treatments like immune checkpoint inhibitors and

targeted molecular therapies.

To support these goals, the workshop advocated for multi-

institutional consortia such as ORIEN to pool resources for

genomic research (171), cooperative group trials that integrate

genomics into radiation therapy protocols, and the expansion of

genomic repositories to include detailed radiation therapy data such

as dose-volume histograms and locoregional recurrence rates. The

group stressed the importance of designing randomized trials to

assess the benefits of genomically personalized radiation therapy,

including selective dose escalation and chemoradiotherapy

combinat ions ta i lored to genet i c profi l e s . Prac t i ca l

recommendations included enhancing radiation oncologists’

genomic literacy through residency curricula, symposia at

national meetings, and dedicated study sections within funding

agencies like the NIH to prioritize precision radiation oncology

research. Lastly, the group highlighted the importance of fostering

academic-industry collaborations to advance radiation-guided

precision oncology platforms, drawing inspiration from the

pharmaceutical industry’s success in integrating precision medicine.
Challenges in translating genetic research
into clinical applications
Fron
“He will win who knows when to fight and when not to fight.”
-The Art of War, Sun Tzu
Translating genetic research into the clinic poses numerous

challenges, largely due to the complexity and variability of genetic

data. The transition from candidate gene studies to GWAS

necessitates robust validation and reproducibility (172), and large,

well-designed studies to confirm associations before clinical use
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(173). Ethical, legal, and social implications also play a significant

role (174), as incorporating genetic information into cancer care

issues of consent, privacy, and potential discrimination. Integrating

genetic data into clinical workflows presents practical challenges,

requiring comprehensive clinical decision support systems, timely

availability during clinical decision-making, and extensive training

for healthcare providers for interpretation (70). Technical and

methodological barriers, such as the need for standardized

protocols and the complexity of polygenic models, further

complicate the clinical translation of genetic research (172).

Economic and resource constraints are additional obstacles

resulting in financial and infrastructural requirements for

implementing genetic testing and genomic data analysis in clinical

practice (175). Moreover, the acceptance of genetic testing by both

patients and physicians remains a significant barrier, and education

is needed to facilitate the adoption of genetic research in clinical

settings (176). Regulatory and policy issues also need to be addressed,

highlighting the necessity for clear guidelines and policies to support

the integration of genetic research into clinical practice (177). Future

research should focus on addressing these challenges, developing

more precise and comprehensive genomic profiles, and validating

predictive models in large, diverse patient populations.
Conclusion
“Ponder and deliberate before you make a move.”
-The Art of War, Sun Tzu
The intersection of genetic research and radiation therapy in

hematologic malignancies represents a promising frontier for

personalized medicine. Over the years, substantial progress has been

made in understanding themolecular underpinnings of radiosensitivity

through the study of key genes involved in DNA repair and cell cycle

regulation. Syndromes such as Ataxia-Telangiectasia, Nijmegen

Breakage Syndrome, and Li-Fraumeni Syndrome have provided

critical insights into the role of ATM, NBS1, and TP53 mutations in

radiation response. Additionally, advances in genomic profiling have

revealed complex mutational landscapes in various types of non-

Hodgkin lymphomas, including FL, MCL, and MALT. These

discoveries have paved the way for the development of predictive

tools which combines clinical and genetic information to guide

therapeutic decisions and optimize treatment outcomes.

The war on cancer needs to be fought with smarter, more

deliberate tactics, and future research should focus on validating

genetic markers of radiosensitivity through large, well-designed

clinical trials and exploring novel therapeutic combinations to

overcome resistance mechanisms. The emerging field of

radiogenomics holds great potential to enhance the precision of

radiation therapy, minimize adverse effects, and improve patient

outcomes. By bridging the gap between genetic research and clinical
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application, we can move closer to realizing the full potential of

personalized RT in the treatment of hematologic malignancies.
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