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Purpose: This study presents novel quality assurance (QA) approach for

volumetric modulated arc therapy (VMAT) that leverages frame-by-frame

electronic portal imaging device (EPID) images integrated into Mobius3D for

accurate three-dimensional dose calculations.

Methods: Sequential EPID images for VMAT plans were acquired every 0.4-

second by iView system and processed through iterative deconvolution to

mitigate blurring from photon scattering. Deconvolved images were binarized

to define multi-leaf collimator (MLC) positions. Pre-acquired box fluences

determined optimal threshold for binarization and adjusted for detector shift

depending on gantry and collimator angles. Sequential EPID images were re-

scaled using pixel scaling factor (PSF) and converted to monitor unit (MU)

proportional values. Generated EPID-based log file, including control-point

specific MLC and monitor units (MU) information, were analyzed in Mobius3D

for Gamma passing rate (GPR) of VMAT plans from 18 patients. Plan complexity

indices were calculated and correlated with GPR.

Results: Clinically appropriate threshold was defined to be 20000 that can

extract accurate MLC data from the deconvolved binarized EPID images.

Positional deviations due to gantry and collimator rotations were observed to

be up to 4.5 pixels. Recalibrated EPID pixel values showed linearity with MU

regardless of changes in dose rate. Consequently, average GPR for 18 patients

evaluated using Mobius3D reached 95.2% ± 3.7%%, based on 3% dose difference

and 3mm distance-to-agreement criterion. It was found that two plan

complexity indices showed statistically significant correlation with GPR.
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Conclusion: This study successfully implemented novel measurement-based

VMAT QA framework based on control-point specific EPID, based upon accurate

MLC and MU data at each frame.
KEYWORDS

EPID, patient-specific QA, control-point specific QA, log-based QA, VMAT QA
1 Introduction

Intensity-Modulated Radiation Therapy (IMRT) and

volumetric modulated arc therapy (VMAT) represent advanced

techniques in radiation therapy that allow for irradiate optimized

dose to cancerous tissues while sparing the surrounding healthy

tissue (1–4). The inherent complexity of these techniques occurs

from their ability to modulate the intensity of the radiation beam

and adjust the shape of the beam in real-time through the

movement of multi-leaf collimator (MLC) (5, 6). Additionally,

VMAT enhances this complexity by shifting the speed of the

gantry rotation and the dose rate during the treatment, which

necessitates sophisticated planning and execution strategies to

achieve the desired therapeutic outcomes (7, 8). The precision of

these therapies, while beneficial for patient care, underscores the

critical need for comprehensive quality assurance (QA) protocols to

ensure that the planned treatment is delivered accurately (9–11).

QA methods for treatment plans with intensity modulation, IMRT

and VMAT, can be categorized into four techniques: measurement-

based, detector-based, electronic portal imaging device (EPID)-based,

and log-based methods. The measurement-based method employing

film and ion chambers is the most trustworthy, while being labor-

intensive with special care on phantom and ion chambers (12, 13). The

detector-based method with 2D array diodes or ion chambers can

provide more efficient measurement conditions, which still requires

time and effort for detector setup (9, 14). In contrast, EPID-based

method does not need additional measurement equipment, thus

offering a quick and simple process. However, most commercialized

systems acquire and analyze 2D composite fluences even for the arc-

based treatment plans, disabling for detecting errors of dose

deliverability in control point-specific fashion (15). The log-based

method, relying on the recorded machine log files that include MLC

and monitor units (MU) information at the time of acquisition, is

known to be powerful and efficient. It can also provide independent 3D

dose recalculation with actual equipment parameters (16, 17). Despite

the conveniences, the indirect QA processmay occasionally fail to detect

MLC positional errors, which could lead to biased QA results (18).

This work presents a new VMAT QA method based on 2D

sequential EPID images. The hybrid QA strategy is featured to

integrate the advantages of both EPID and log-based QA approaches

that potentially implements a fast and convenient measurement-based

QA approach without compromising patient safety and treatment
02
effectiveness. It begins with capturing control-point specific 2D

sequential EPID images, which are used to precisely extract MLC

positions and MU information during the dose delivery. Using this

information, we generate a log file reflective of the MLC and MU

details from the EPID images, which is then fed into a commercial QA

software device to perform comprehensive IMRT QA analysis.
2 Methods

2.1 2D sequential EPID-based
QA framework

Figure 1 depicts the overall framework of our proposed sequential

EPID images-based VMAT QA method, compared to the existing

log-based QA method provided by Mobius 3D version 4.0.2 (Varian

Medical System, Palo Alto, CA, USA). Basically, the previous

approach performed the dose calculation for QA analysis with

reference to the MLC and MU information saved in the machine

log file following dose delivery. The proposed framework leveraged

the sequential EPID images to obtain MLC and MU information

during the dose delivery of VMAT rotational arc plans. The 2D EPID

images acquired were processed by a de-convolution algorithm that

can reduce the blurring effect caused by photon scattering. The de-

blurred EPID images were then binarized to extract MLC positions at

each time frame. The intensity of the images was adjusted by a

specific indicator named pixel scaling factor (PSF) stored in the EPID

log file, ensuring the proportionality to MU. The extracted MLC and

MU information was fed into the Mobius3D software for

comprehensive VMAT QA analysis. The details of each process

were specified in the subsequent sections. All computational tasks,

including the EPID image processing and the creation of the EPID-

based log file, were performed using an in-house software in

MATLAB version 9.13 (R2022b, Mathworks Inc., Natick, MA, USA).
2.2 MV EPID image acquisition

The execution of our proposed workflow necessitates the

precise extraction of MLC positional information and MU at each

2D sequential EPID image. EPID images used for developing the

proposed framework were acquired by the iView GT a-SI EPID
frontiersin.org
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equipped in Harmony (Elekta, Stockholm, Sweden). The iCom

mode in iView GT generated the sequential 2D EPID images on a

frame-by-frame basis at approximately 0.3-second time intervals

with a resolution of 512 × 512 pixels in JPEG format. Also, it

produced a single EPID log file, containing information of EPID

acquisition time, total number of 2D sequential images, and PSF

required for rescaling the EPID images. The number of spatially

uniform control points designated in the RT plan DICOM files did

not equal the number of temporally uniform control points in the

EPID acquisition, in which the latter was greater than the former.
2.3 MV EPID image processing

Due to the original calibration performed in iView GT image

acquisitions, the initial raw EPID images (EPIDraw) were

normalized to fit a 16-bit format whose values were inversely

proportional to actual dose of radaition. To obtain an EPID

image proportional to the dose (EPIDprocessed), the raw pixel value

of the EPIDraw is subtracted from 65535 (216 -1).

EPIDprocessed=65535− EPIDraw (1)

The EPIDprocessed was blurred by various scattered photons and

a distribution that does not accurately reflect the incident photon

fluence, requiring additional image processing (19). To convert

EPIDprocessed to incident photon fluence, we employed a

deconvolution algorithm with a Gaussian kernel, specifically

through a 2D iterative deconvolution method (20). The blurred

EPID image is mathematically represented as the convolution of

true, incident photon fluence (EPIDtrue in Equation 2) with a two-

dimensional point-spread kernel (K in Equation 2).

EPIDprocessed= EPIDtrue*K (2)

The algorithm was performed by updating the blurred image

(EPIDapprox(n)) from the true incident EPID image (EPIDapprox(0, n)),

as seen in Equation 3. Then, the incident deblurred EPID image
Frontiers in Oncology 03
(EPIDapprox(n)) was updated with the newly defined the blurred

image (EPIDapprox(n)), as expressed in Equation 4.

EPIDapprox(n)= EPIDapprox(0,n)*K (3)

EPIDapprox(0,n+1)= EPIDapprox(0,n)+EPIDprocessed− EPIDapprox(n)

(4)

It began iterating with an initial guess to be EPIDapprox(0,1) =

EPIDprocessed, and stopped iterating until the difference between the

updated blurred image (EPIDapprox(n)) and the given blurred image

(EPIDprocessed) became saturated. The finally updated 2D EPID

image (EPIDapprox.(0,n+1)) was defined to be the deconvolved EPID

image (EPIDdeconv) that closely represents the incident photon fluence.
2.4 Extraction of MLC and MU Information
from EPID Images

The de-convolved image (EPIDdeconv) needed to be binarized to

extract MLC positional information, in which the appropriate

threshold value needs to be considered. To find a clinically

available value, we acquired EPIDdeconv of box-shaped fluences

with different dimensions: 5 × 5, 10 × 10, 15 × 15, and 20 × 20

cm2. The four EPIDdeconv images with different field sizes were

binarized using values from 40% to 60% of the maximum pixel

value of the EPID images, in which the range of the thresholding

operation was empirically determined. As specified in Figure 2, the

optimal threshold was chosen, such that the number of pixels in the

cross-plane direction of EPIDdeconv for 10 × 10 cm², 15 × 15 cm²,

and 20 × 20 cm² can hold linearity of 2 times, 3 times, and 4 times,

respectively, compared to the number of pixels in the cross-plane

direction of EPIDdeconv for 5 × 5 cm².

Another issue to be considered was a mechanical EPID

detector shift from gantry and collimator rotations in VMAT

treatment, potentially propagating errors in MLC positional

information. To maintain consistent accuracy in identifying
FIGURE 1

Framework of measurement-based control-point specific VMAT QA method based on EPID images.
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MLC positional information, a variety of EPID images were

obtained with a standard 10 × 10 cm2
field dimension, while

changing the gantry and collimator rotating angles. We have

divided the sources of the imaging center offset values into two

factors: 1) EPID detector sagging during the gantry angle rotation

and 2) additional center shift from collimator rotation. EPID

detector sagging from gantry rotation is unavoidable, inherent

element that can affect the EPID image center shift, being

independent of the collimator rotation. As illustrated in

Figure 3A, the gantry angles varied from 0 to 350 degrees with
Frontiers in Oncology 04
10-degree intervals to account for this. To additionally capture the

secondary factor being affected by the collimator rotation, the

EPID images were acquired at different collimator angles from -90

to 90 degrees in 30-degree intervals for each gantry angle, while

the gantry angle changes from 0 to 330 degrees with 30-degree

intervals, as illustrated in Figure 3B.

The intensity of actual dose, represented by MU, needed to be

specified at each 2D sequential EPID images. The raw EPID images

were re-scaled by Equation 1 to keep the proportionality to the dose

of radiation. The actual intensity could be converted by referring to
FIGURE 3

illustration of 10×10 cm2 box fluence used to calculate imaging center offset values to address (A) EPID detector sagging during the gantry angle
rotation, and (B) additional center shift of EPID detector from collimator and gantry angle rotation. For offset value of EPID detector sagging, the
gantry angles varied from 0 to 350 degrees with 10-degree intervals. For offset value of additional center shift, the gantry angles were adjusted in
30-degree intervals from 0 to 330 degrees, and for each gantry angle, the collimator angles were adjusted from -90 to 90 degrees in 30-
degree intervals.
FIGURE 2

Determine the appropriate threshold value, using EPID image of box-shaped fluences with four dimensions by thresholding between 40% to 60% of
the maximum pixel value. The range was found to maintain the quality of the binarized images consistently.
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aforementioned frame-specific value, PSF (21). Equation 5 shows

the conversion of the EPID image intensity to the effective global

MU equivalent value (EPIDMU).

EPIDMU=EPIDprocessed  = PSF (5)

To assess the reliability of MU obtained via EPIDMU, we

conducted a MU linearity check. Specifically, it was assessed by

ensuring the linearity of the MU equivalent values of two different

sets of EPID images at 10 × 10cm2
field dimension, while changing

the different MUs (1, 2, 3, 5, 10, 20, and 100MUs) and different dose

rates of 100, 300, and 500 MU/min. in delivering 100 MU.
2.5 Evaluation

The datasets used for this retrospective study were approved by

the institutional review board of the Yonsei University Severance

Hospital, Korea (4-2021-0869), which waived the need for informed

patient consent to use patient-specific information of RT images,

structures, dose and plan. To verify that the proposed QA method

was properly implemented, we acquired sequential EPID images

from eighteen VMAT plans using a 6 MV and 6 MV flattening filter

free (FFF) beam energies with various body sites, as shown in

Table 1. For each case, the MLC positional information and MU

values extracted from the sequential EPID images was capsulized

into a dynalog file-type format that is compatible to the Mobius 3D

QA software. This allowed for conducting comprehensive VMAT

QA analyses provided by the software, including 3D dose

calculation and quantification of gamma passing rate (GPR). The

patient-specific VMAT QA results were assessed by GPR at 3%/

3 mm criterion for the 18 cases.

To investigate the correlation between the complexity

of the given VMAT plans and the deliverability of the

VMAT plans (quantified by GPR), we calculated several plan

complexity metrics using the open-source algorithm, available on

GitHub (22) (http://github.com/AurelienCD/DeepHybrid

Learning_RadiotherapyQA_Depository_ManuscriptID_

Diagnostics), which has been employed for previous studies (23–

25). This work computed six plan complexity indices as follows:

small aperture score (SAS), leaf travel (LT), modulation complexity

score for VMAT plans (MCSv), combination of LT and MCSv

(LTMCS), aperture area variability (AAV), and leaf sequence

variability (LSV). SAS measures the proportion of small fields

within a treatment plan. LT quantifies the total distance that

MLC leaves travel during the delivery of a radiation therapy plan.

MCSv evaluates the degree of modulation in the treatment,

considering factors like variation in dose rate, gantry speed, and

MLC positions across the arc of treatment. LTMCS combines the

metrics of LT and MCSv to reflects both geometric changes in MLC

positioning and the modulation of dose delivery. AAVmeasures the

variability in the size of the apertures throughout the treatment.

LSV evaluates the changes in leaf sequences and configuration

during treatment. The plan complexity is interpreted to be

incremental with larger SAS value and lower values of LT, MCSv,

LTMCS, AAV, and LSV. Additionally, from the plan DICOM file,
Frontiers in Oncology 05
the MU and MLC information was employed for analyzing the plan

complexity. We computed averaged mean and maximum MLC

traveling distance (‘Mean_mean_MLC’ and ‘Mean_max_MLC’)

between two consecutive control points of VMAT plans

including standard deviations of those (‘STD_mean_MLC’ and

‘STD_max_MLC’). The average MU difference (Mean_MU)

between two consecutive control points and its standard deviation

(STD_MU) were also extracted. The correlation between twelve

complexity indices and the gamma passing rate of each plan was

assessed using Spearman’s rank correlation test. Spearman’s rank

correlation test was performed in R version 4.3.3 (R foundation for

Statistical Computing, Vienna, Austria).
3 Result

3.1 MLC and MU information extraction
from sequential EPID images

Table 2 shows linearity of the pixel counts of cross-plane of

EPIDdeconv of box-shaped fluence with dimension of 5 × 5 cm2, 10 ×

10 cm2, 15 × 15 cm2, 20 × 20 cm2. This analysis revealed optimal

linearity within the threshold range of 19800 to 20200.

Consequently, we selected the midpoint, 20000, as the threshold

value, facilitating accurate MLC positional extraction from the

EPID images. Figure 4 shows the effect of deconvolution applied

to EPIDprocessed. The EPIDdeconv shows sharper edges than before it
TABLE 1 Treatment sites, Beams, MUs of VMAT plans used to acquiring
EPID frame-by-frame images.

Site Beam Fx. Dose MU MU/Fx. Dose

Bone 6 500 1639 3.28

Brain 6 200 734 3.67

Breast 6 320 923 2.88

Breast 6 520 1366 2.63

Breast 6 520 1816 3.49

Breast 6 520 1840 3.54

Breast 6 520 1865 3.59

Lung 6 300 558 1.86

Lung 6 400 769 1.92

Pancreas 6 600 1889 3.15

Pelvic seed 6 350 1971 5.63

PNS 6 200 582 2.91

Liver 6 FFF 700 2086 2.98

Lung 6 FFF 375 2281 6.08

Lung 6 FFF 500 1198 2.4

Lung 6 FFF 500 2078 4.16

Lung 6 FFF 700 1855 2.65

Ovary 6 FFF 350 871 2.49
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was applied, and the effect is more noticeable after the threshold is

taken. Additionally, GPR calculated by Mobius3D shows better

result when the deconvolution is performed. The imaging center

offset values are calculated. The EPID detector sagging during the

gantry angle rotation induces an offset ranging from -3.0654 to

0.4218 pixels on the left bank and from -2.5 to 1 pixel on the right

bank in the cross-plane direction, as shown in Figure 5A.

Additionally, an offset between -4.5 to 0 pixels is observed at the

upper edge of the leaf in the in-plane direction, with an offset of

-3.7792 to 0.2208 pixels at the lower edge of the leaf, as shown in

Figure 5B. Regarding the shift in center of the EPID images caused

by rotation of the collimator angles for the respective gantry angles,

an offset is generated ranging from -10 pixels to 5 pixels in the

cross-plane direction and from -7.5 pixels to 5.5 pixels in the in-

plane direction, as shown in Figure 6. Figure 7A shows that the pixel

values converted to EPIDMU held linearity to the MUs delivered

across 1, 2, 4, 10, 20, 50, and 100 MUs. Additionally, regardless of

changes in dose rate, the pixel values of EPIDMU remain consistent

at 100 MU as shown in Figure 7B.
3.2 GPR and plan complexity

The VMAT QA method based on 2D sequential EPID images

was successfully executed by generating the EPID-based log file

compatible to Mobius3D system for the 18 patient cases. For each

plan, metrics such as GPR, DVH, and target coverage were

calculated by Mobius3D. On average, the GPR remarked 95.2% ±

3.7%, in which most of the cases exceeded 90% in GPR, as shown in

Table 3. However, the GPRs of two plans for lung and breast VMAT

cases with 6 MV and 6MV FFF energy were below 90%, which

might need to be reviewed before actual treatment. The MUs

relative to the fractional dose were found to be high among the

tested datasets, while some other cases with larger ratio of MUs

to fractional dose resulted in the GPRs larger than 95%. This

triggered on the necessity of quantifying and analyzing the plan

complexity metrics.

The magnitude and pattern of the plan complexity values

behaved different, which required for the correlation test with

statistical analysis to ensure the relationship between GPRs and

plan complexity indices. Figure 8 shows scatter plots of correlation

between six plan complexity indices and GPRs for the 18 VMAT

plans, in which the solid lines represent Spearman’s rank

correlation, and dashed lines mark threshold values for significant

indices, suggesting critical levels of plan complexity. The

correlations between three metrics (SAS, LSV, and LT) and GPRs
Frontiers in Oncology 06
were opposed to the expected, which were excluded in statistical

analysis. For instance, the plan with greater value of SAS was

supposed to yield low GPR, which behaved entirely opposite in

our experiments. The remaining two of three plan complexity

indices (AAV and MCSv) exhibited the large correlations around

±0.45 in appropriate direction, which led to the statistically

significant influences (p < 0.05). Those complexity metrics,

however, were not direct predictors for the GPRs as indicated by

the dotted lines in red in Figure 8. The plans with similar

complexity values to those with GPRs < 90% did not always

result in the low GPRs.

Figure 9 shows scatter plots of correlation between the direct

MLC and MU-related complexity indices and GPRs. The mean of

averaged MLC traveling distance (Mean_mean_MLC), averaged

MU differences (Mean_MU), and standard deviation of MU

differences (STD_MU) between two consecutive CPs revealed the

reasonable direction of the correlations to the GPRs and statistically

significant influences. Importantly, two indices (Mean_mean_MLC

and Mean_MU) were rigorous predictors for the GPRs, in which

the average MLC traveling distance of 6 cm and average MU

difference of 8 MUs between two consecutive control points could

offer a warning sign regarding plan deliverability.

We also compared the GPRs of EPID-generated (proposed) logs

with those from machine-generated logs, yielding a significant

correlation of 0.737 (p < 0.05). However, for VMAT plans using a

6MV FFF beam, GPR calculations using machine logs consistently

showed results above 99%, indicating a limited capacity to

differentiate plan complexity. Consequently, a Spearman’s rank

correlation test for VMAT plans using 6MV beams only revealed

a significant correlation coefficient of 0.919 (p= 0.00002).
4 Discussion

This study introduces a novel measurement-based control-

point specific VMAT QA method that integrates the strengths of

EPID-based QA and log-based QA. The primary goal was to utilize

sequential EPID images captured during beam-on gantry rotation

to mitigate occasional failure of detecting errors caused by machine

fault due to lack of independent measurements in log-based QA.

Furthermore, unlike traditional EPID-based QA that acquired and

compared 2D composite fluences, our approach generated a

dynalog file from MLC and MU information extracted from

sequential EPID images, followed by facilitating independent 3D

dose calculations. This enabled the acquisition of comprehensive

information such as DVH and target dose, while maintaining the
TABLE 2 Linearity of the pixel counts of cross-plan of deconvolved EPID image of box-shaped fluence with dimension of 5×5 cm2, 10×10 cm2, 15×15
cm2, 20×20 cm2.

Threshold value 16000 18000 19800 19900 20000 20100 20200 2000 24000

Linearity

10×10/5×5 1.973 1.985 2.000 2.000 2.000 2.000 2.000 2.010 2.028

15×15/5×5 2.951 2.977 3.000 3.000 3.000 3.000 3.000 3.020 3.054

20×20/5×5 3.928 3.964 4.005 4.005 4.005 4.005 4.005 4.031 4.083
fro
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advantages of efficiency. Some previous works and the commercial

products have attempted to develop patient-specific VMAT QA

system with sequential EPID images. To our best knowledge,

however, this study is the first trial of integrating both MLC and

MU information with the measured frame-by-frame EPID images.

In technical aspects, the most challenging phase was to acquire the

sequential EPID images. Differentiated from conventional EPID-based

QA with only 2D composite fluence assigned to a whole or partial arc,

frame-by-frame EPID images were required for generating a dynalog

file in the new framework that is compatible to the commercial QA

system, Mobius3D, for comprehensive QA analysis, including GPR
Frontiers in Oncology 07
based on 3D dose distributions. The Elekta linear accelerator allowed

for an iCom connection mode that exported sequential 2D EPID

images with a timing resolution of 0.3 seconds. The EPID images

obtained from iCom mode, unfortunately, were blurred due to photon

scattering in JPEG format, necessitating additional processing to extract

accurate MLC andMU information. The blurred 2D sequential images

were processed through iterative deconvolution algorithm and

thresholding operator, which facilitated accurate and consistent

extraction of placements of MLC leaves. Also, the PSF embedded in

log files of sequential EPID images successfully converted the image

intensities to MU-proportional values. The appropriateness of the
FIGURE 4

EPID images of before deconvolution (EPIDprocessed) and after deconvolution (EPIDdeconv) is performed. (A) EPID image before binarization, (B)
binarized EPID images by adequate threshold value. In the enlarged part, one can see that the boundaries of the binarized image and the MLC
position do not align as well as after the deconvolution is applied. Additionally, GPR calculated by Mobius3D shows better result when the
deconvolution is performed.
FIGURE 5

Imaging center offset values to address EPID detector sagging during the gantry angle rotation in the (A) cross-plane direction, (B) in-plane direction.
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threshold value in image binarization and PSF information for MU

compatibility was ensured by independent linearity checks of the EPID

images acquired with differentMLC field sizes and differentMU values.

The new QA framework developed in this work was successfully

implemented, yielding an average GPR of 95.2% ± 3.7% across 18

VMAT plans. Most cases surpassed the clinically acceptable threshold

of 90% GPR, while two out of the 18 plans exhibited GPRs below 90%.

It led to the necessity of further investigation into the plan

characteristics in relation to the GPRs. The 12 metrics were

incorporated into the analysis, including six plan complexity metrics

and six metrics based on direct MLC and MU transitional information

from RT plan DICOM files. Two out of the six plan complexity metrics

(AAV and MCSv) showed substantial correlations to the GPRs and

had statistically significant influences. Two MLC and MU-directly

associated metrics (averaged mean MLC traveling distance and

averaged MU difference between two control points) had also strong

correlations to GPRs and had statistically significant differences.

Interestingly, those two MLC and MU-direct metrics implied strong

potential for the GPR predictions, compared to the three plan

complexity metrics. Plans with an average MLC traveling distance of

6 cm and an average MU difference of 8 MUs between two consecutive
Frontiers in Oncology 08
control points would be likely to leading to the GPRs < 90 with very few

exceptions. In addition, for VMAT plans using 6MV FFF beams,

despite variations in plan complexity indices, the machine log-based

QA failed to detect the differences in GPR calculations, as observed in

our study, thereby limiting its ability to screen non-deliverable plans

during pre-treatment QA procedures. Contrarily, our EPID-generated

logs successfully reflected the plan complexity of different plans in GPR

calculations, ensuring a clinically secure methodology for patient-

specific VMAT QA.

Despite the various strengths of our framework proposed in this

work, there are a couple of limitations to be discussed. This study was

conducted exclusively with a single linear accelerator, Harmony Pro by

Elekta, which fortunately provided the 2D sequential EPID images. As

stated previously, the presence of 2D sequential images was a key for

the development of our proposed framework. Thus, it would be

necessary to identify if a specific linear accelerator could allow us to

obtain such sequential 2D EPID images for the applicability of this

framework. Also, some critical parameters in determining a threshold

value for image binarization and estimating mechanical offsets across

gantry and collimator angles are likely to vary depending on the linear

accelerators. It would have to be verified that such procedures proposed
FIGURE 6

Imaging center offset values to address additional center shift of EPID detector caused by rotation of the gantry angle and collimator angle in the (A)
cross-plane direction, (B) in-plane direction.
FIGURE 7

(A) Linearity of MU to EPID image intensity corrected by pixel scaling factor. (B) Consistency of EPID image intensity corrected by pixel scaling factor
regardless of changes in dose rate.
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FIGURE 8

Scatter plots showing the correlation between GPR and six plan complexity indices (SAS, AAV, LSV, LT, MCSv, LTMCS). AAV and MCSv showed
substantial correlations to the GPRs and had statistically significant influences.
FIGURE 9

Scatter plots showing the correlation between GPR and six MLC and MU parameters (averaged mean and maximum MLC traveling distance
(‘Mean_mean_MLC’ and ‘Mean_max_MLC’) and their standard deviations (‘STD_mean_MLC’ and ‘STD_max_MLC’), average MU difference (Mean_MU)
between two consecutive control points and its standard deviation (STD_MU)). Averaged mean MLC traveling distance (Mean_mean_MLC) and averaged
MU difference (Mean_MU) between two control points had also strong correlations to GPRs and had statistically significant influence.
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TABLE 3 Gamma passing rate calculated from Mobius3D and six plan complexity indices of 18 VMAT plans.

LTMCS AAV LSV MLCmn MLCSn MLCmx MLCSx MUmean MUSTD

0.015 0.030 0.700 4.845 5.405 17.681 9.741 9.269 36.021

0 0.009 0.022 0.824 4.830 1.568 12.408 0.928 1.420 0.946

0.011 0.018 0.839 4.677 2.328 13.022 6.324 4.690 22.721

0.012 0.018 0.859 5.025 3.029 13.008 7.544 12.074 90.754

0.009 0.014 0.829 4.383 2.337 13.033 7.246 9.652 57.890

0.009 0.016 0.836 6.377 2.250 12.359 1.139 7.694 8.004

0.010 0.016 0.863 4.866 2.521 13.063 6.843 9.923 58.840

0.024 0.037 0.783 2.329 2.535 15.111 8.237 1.603 1.336

0.035 0.056 0.756 6.015 3.287 32.091 10.532 5.849 4.719

0.014 0.029 0.731 4.051 2.851 17.876 6.005 5.309 3.375

6 0.004 0.014 0.773 8.031 6.759 25.721 15.873 7.077 43.733

0.021 0.030 0.802 6.359 4.066 18.509 13.487 13.313 98.461

0.012 0.023 0.846 4.143 2.179 20.620 2.141 5.853 7.093

0.008 0.016 0.822 5.522 4.537 24.517 9.990 6.079 7.946

0.033 0.057 0.720 2.568 3.077 13.909 7.294 6.537 10.363

0.012 0.021 0.843 8.269 4.695 24.778 13.278 20.507 55.211

0.023 0.045 0.710 3.699 3.888 16.581 6.126 5.213 6.570

0.010 0.021 0.660 4.262 4.586 9.930 6.692 2.479 2.438

0.395 0.501 -0.660 -0.557 0.184 0.197 -0.010 -0.694 -0.650

0.105 0.034 0.003 0.016 0.465 0.433 0.968 0.001 0.003

ters: gamma passing rate from machine log (GPRmach), SAS, LT, MCSv, LTMCS, AAV, LSV, Mean_mean_MLC (MLCmn),
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Site Beam MU GPRprop GPRmach SAS MCSv LT

Bone 6 1639 95.2% 98.7% 2.837 0.021 56.483

Brain 6 734 95.3% 99.2% 1.520 0.018 101.35

Breast 6 923 95.2% 96.1% 1.513 0.015 52.295

Breast 6 1366 93.9% 94.5% 1.583 0.016 53.823

Breast 6 1816 91.3% 88.3% 1.571 0.012 46.817

Breast 6 1840 88.9% 93.3% 1.614 0.013 61.378

Breast 6 1865 93.2% 93.5% 1.591 0.013 54.856

Lung 6 558 99.4% 99.9% 2.220 0.029 34.979

Lung 6 769 99.0% 99.4% 2.007 0.042 37.011

Pancreas 6 1889 99.2% 99.9% 2.173 0.021 68.965

Pelvic seed 6 1971 97.3% 98.6% 1.976 0.010 117.59

PNS 6 582 93.0% 97.9% 1.699 0.024 27.433

Liver 6 FFF 2086 93.8% 99.4% 1.709 0.020 80.769

Lung 6 FFF 2281 97.6% 99.8% 1.629 0.013 73.848

Lung 6 FFF 1198 98.6% 99.9% 2.819 0.041 41.279

Lung 6 FFF 2078 86.3% 99.6% 1.585 0.018 69.551

Lung 6 FFF 1855 99.5% 100.0% 2.473 0.032 54.840

Ovary 6 FFF 871 97.1% 99.2% 3.221 0.014 52.275

Spearman’s rank
correlation test

Coefficient 0.737 0.588 0.491 -0.125

p-value 0.000 0.491 0.039 0.621

Correlation and p-value of Spearman’s rank correlation test between gamma passing rate from proposed method (GPRprop) and parame
STD_mean_MLC (MLCSn), Mean_max_MLC (MLCmx), STD_max_MLC (MLCSx), Mean_MU (MUmean), STD_MU (MUSTD).
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in this work are generalizable and applicable to the other linear

accelerators. Additionally, the study was validated with only 18 plans.

It possibly led to a bias in analyzing the results and identifying the

factors associated with low GPRs. Therefore, further validation

involving a wider range of equipment and a larger number of plans

might be necessary to generalize the findings and improve the

robustness of the proposed QA method.
5 Conclusion

This study successfully implemented a novel, measurement-based

VMAT QA framework using control-point specific, frame-by-frame

EPID images. The methodology involved extracting accurate MLC

positions through iterative deconvolution and offset correction, as well

as determining MU values using a PSF. The generated EPID-based log

files were compatible with the Mobius3D system, facilitating accurate

3D dose calculations and comprehensive QA evaluations. Most of QA

results met the clinical criteria, validating the effectiveness of the

framework. In plans that did not meet the clinical criteria, we

identified significant correlations between several plan complexity

indices and the GPR. These findings highlight the framework’s

potential to enhance VMAT QA processes. Future work will focus

on validating this approach across a broader range of linear accelerators

and treatment plans to ensure its generalizability and robustness.
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