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Background: The limitations of the traditional TNM system have spurred interest

in multivariable models for personalized prognostication in laryngeal and

hypopharyngeal cancers (LSCC/HPSCC). However, the performance of these

models depends on the quality of data and modelling methodology, affecting

their potential for clinical adoption. This systematic review and meta-analysis

(SR-MA) evaluated clinical predictive models (CPMs) for recurrence and survival

in treated LSCC/HPSCC. We assessed models ’ characteristics and

methodologies, as well as performance, risk of bias (RoB), and applicability.

Methods: Literature searches were conducted in MEDLINE (OVID), Embase

(OVID) and IEEE databases from January 2005 to November 2023. The search

algorithm used comprehensive text word and index term combinations without

language or publication type restrictions. Independent reviewers screened titles

and abstracts using a predefined Population, Index, Comparator, Outcomes,

Timing and Setting (PICOTS) framework. We included externally validated (EV)

multivariable models, with at least one clinical predictor, that provided

recurrence or survival predictions. The SR-MA followed PRISMA reporting

guidelines, and PROBAST framework for RoB assessment. Model discrimination

was assessed using C-index/AUC, and was presented for all models using forest

plots. MA was only performed for models that were externally validated in two or

more cohorts, using random-effects model. The main outcomes were model

discrimination and calibration measures for survival (OS) and/or local recurrence

(LR) prediction. All measures and assessments were preplanned prior to

data collection.

Results: The SR-MA identified 11 models, reported in 16 studies. Seven models

for OS showed good discrimination on development, with only one excelling (C-
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index >0.9), and three had weak or poor discrimination. Inclusion of a radiomics

score as a model parameter achieved relatively better performance. Most models

had poor generalisability, demonstrated by worse discrimination performance on

EV, but they still outperformed the TNM system. Only twomodels met the criteria

for MA, with pooled EV AUCs 0.73 (95% CI 0.71-0.76) and 0.67 (95% CI 0.6-0.74).

RoB was high for all models, particularly in the analysis domain.

Conclusions: This review highlighted the shortcomings of currently available

models, while emphasizing the need for rigorous independent evaluations.

Despite the proliferation of models, most exhibited methodological limitations

and bias. Currently, no models can confidently be recommended for routine

clinical use.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_

record.php?ID=CRD42021248762, identifier CRD42021248762.
KEYWORDS

outcome predictive model, laryngeal cancer, hypopharyngeal cancer, survival,
recurrence, systematic review
Introduction

Laryngeal and hypopharyngeal squamous cell carcinomas

(LSCC/HPSCC) are a complex subset of head and neck cancer

(HNC) that have poor prognosis, and whose treatment poses a

significant impact to patients’ health and quality of life. The

complexity of balancing treatment efficacy with the preservation

of critical functions like speech and swallowing represents a

significant challenge for clinicians and patients (1).

Traditionally, the American Joint Committee on Cancer/

International Union Against Cancer (AJCC/UICC) TNM

classification system formed the cornerstone for risk-stratification

in LSCC/HPSCC patients (2–4). However, this system only uses

limited clinical features, and has inherent limitations such as the

inability to factor in response to treatment to provide patient-level

predictions (2, 5–7). To address these limitations, there is a growing

interest in developing more sophisticated multi-variable clinical

predictive models (CPMs), incorporating clinical features,

molecular biomarkers, and radiomic signatures to augment the

accuracy of prognostication. However, previous systematic reviews

(SRs) have underscored the limitations in existing prognostic

models for mixed HNCs, as well as their considerable risk for

bias (8, 9). The efficacy of CPMs hinges inherently on the

characteristics of included patients, the quality of the datasets

employed in their development, and the rigor of modelling

methodology. These factors may profoundly shape the models’

performance and applicability, and influence the implementation

of such models in routine clinical practice (8).
02
The primary objective of this systematic review and meta-

analysis (SR/MA) is to perform for the first t ime, a

comprehensive evaluation of externally validated CPMs for

survival and/or recurrence in adults with LSCC/HPSCC.
Methods

The SR was reported according to the Preferred Reporting Items

for Systematic Reviews and Meta-analyses (PRISMA) guidelines (10),

and the recently published Transparent reporting of multivariable

prediction models for individual prognosis or diagnosis - systematic

reviews and meta-analyses (TRIPOD-SRMA) (11). A protocol was

registered with PROSPERO (CRD42021248762).
Information sources and search strategy

A comprehensive literature search of theMEDLINE,MEDLINE In

Process (OVID), Embase (OVID) and the IEEE databases was

conducted. We included articles published between January 2005

and November 2023, with no restrictions on language, or the age

and sex of the target population. Initially, we imposed no restrictions

on publication type, but excluded letters to editors and conference

abstracts that lacked sufficient details on modelling techniques and

performance assessment. The search algorithm used comprehensive

text word and index term combinations relating to LSCC/HPSCC and

prognostic models (Supplementary Table 1A). Terms for prognostic
frontiersin.org
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models were based on the search strategy proposed by Geersing et al.

(12). Additionally, we searched reference lists of included studies, and

additional studies were included if deemed eligible.
Study selection process

Titles and abstracts were independently screened by at least two

reviewers (AA-F, JD, EA, DM) using Rayyan software (www.rayyan.ai),

and following eligibility criteria based on the PICOTS (13)

framework (population, index, comparator, outcome, timing and

setting), Table 1. Only externally validated multivariable models,

that included at least one clinical variable in the final model, were

included. Eligible models can either be individualized predictions

models (IPMs), or risk stratification models (RSMs) that only

classified patients into broader risk categories. Studies using

multivariate analysis to identify predictors significantly associated

with an outcome but not attempting to develop a model were

excluded. Disagreements were resolved through consensus, or

referral to a wider expert steering committee.
Data items and collection process

Key data was collected using a pre-designed and piloted data

extraction form (A-AF, JD, EA), based on the Critical Appraisal and

Data Extraction for Systematic Reviews of Prediction Modelling

Studies (CHARMS) checklist (14). Disagreements were resolved

through consensus. We collected data on patient characteristics for

each development and external validation (EV) cohort, in addition

to details on study design, and final model variables. We also

extracted data on model performance measures for discrimination

(e.g., C-index and/or the area under the curve (AUC)), calibration

(e.g., calibration plots), overall model fit and accuracy (e.g., Brier’s

scores), and clinical utility if reported.
Risk of bias and applicability assessment

The Prediction model Risk of Bias Assessment Tool

(PROBAST) (13, 15) was used to assess risk of bias (RoB) and

applicability concerns for each model. PROBAST assesses RoB

across four domains (participants, predictors, outcomes, and

analysis), and applicability concerns across three domains

(participants, predictors, and outcomes). A domain-level RoB

judgment of ‘high’, ‘unclear’ or ‘low’ concern was given to each

model, and an overall judgment for each model was made (13).
Synthesis methods

Models’ discrimination was assessed using reported C-index and/

or AUC with these widely accepted thresholds: 0.5–0.59 (poor), 0.6–

0.69 (weak), 0.7–0.79 (good), 0.8–0.89 (very good) and ≥0.9

(excellent) (16, 17). Quantitative pooling of performance measures

from different models was deemed clinically meaningless and
Frontiers in Oncology 03
methodologically flawed due to differences in population, length of

follow-up, and performance metrics. Discrimination metrics for all

models were presented in forest plots without quantitative pooling.

For models that were externally validated in more than two cohorts,

meta-analysis (MA) for EV performance (discrimination and

calibration) was planned for each model independently, as per the

framework for MA of prediction models proposed by Debray et al.

(18, 19). This framework recommends using a random effects model

with restricted maximum likelihood estimation, and the Sidik-

Jonkman Hartung-Knapp method for constructing the pooled

confidence interval. We also calculated the 95% prediction intervals

to estimate potential model performance in a new EV, and estimated

the probability of good performance (AUC/C-index ≥ 0.7) when the

model is applied in practice to a new unseen population (18, 20). We

measured inter-study heterogeneity using the Cochran’s Q test and I2

statistic, with significant heterogeneity defined as chi-square p <0·05

or I2 >50% (21, 22).
TABLE 1 Population, Index, Comparator, Outcomes, Timing and Setting
(PICOTS) framework for the systematic review’s scope and eligibility criteria
for inclusion.

POPULATION

Adults (≥18 years) with LSCC or/and HPSCC who have completed treatment
with curative intent.

INDEX MODEL

All models that combined two or more predictors (prognostic factors) in a
statistical model to provide individualized cancer survival and/or recurrence
predictions, or categorize patients into risk groups according to risk of
recurrence or/and death.
AND
Models’ predictors need to include clinical variables (e.g. age, sex, tumour staging
parameters, smoking/alcohol consumption, etc.), with or without additional
molecular biomarkers or radiomics variables.
AND
Developed models must be externally validated at least once in the same study
(TRIPOD type 3 validation (36)) or in a separate publication (TRIPOD type 4
validation (36). External validation (EV) was defined as validation in a separate
patient cohort from a different institution or registry. Models that were reported
in development-only studies, but were externally validated in a separate studies
were included.
Models with only molecular biomarkers or radiomic variables were excluded.
Models that were only internally validated, or lacked external validation, were
excluded.
Models developed using national cancer registry data (e.g. SEER), and only
validated on randomly selected cohort from the same registry were excluded (no
true geographical EV).

COMPARATOR

Benchmarking performance against the TNM system was desirable but not an
eligibility criterion

OUTCOME

Any recurrence or survival related outcomes (e.g., Recurrence, local control (LC),
overall survival (OS), etc.)

TIMING

Any prediction ‘time-zero’ was allowed (e.g., pre-treatment or post-treatment)
Any prediction ‘horizon’ was allowed (e.g., 1-year OS, 5-year LC, etc.)

SETTING

No restriction on treatment setting or intended model use.
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We also assessed the change in discrimination ability from

development to EV for each model, by calculating the delta AUC

(dAUC), or delta C-index (dCI), representing the absolute difference

between derivation and EV values. Additionally, we computed the

percentage of change in discriminative ability on EV (dAUC% or dCI

%), relative to the reference AUC/C-index value of 0.50 (random

chance) (23). For example, if an AUC drops from 0.80 in derivation to

0.65 in validation, the dAUC will be -0.15, and dAUC% will be 50%

decrease in discriminative ability (23). We used R statistical software

(v4.3.1), and “metamisc’ package (v0.4.0) (19).
Results

Sixteen studies, reporting the development and/or EV of nine

individualized prediction models (IPMs), and two risk stratification
Frontiers in Oncology 04
models (RSMs), were included in this systematic review from 6241

articles identified on initial searches (Figure 1, Table 2).
Individualized prediction models

Study characteristics
Main model and population characteristics are shown in

Supplementary Table 1B and Table 2. The total number of

patients included across all model development cohorts was

73,328, with a median cohort size of 1,371 (IQR 994-3,442). In

the EV cohorts, the total number of patients was 5,394, with a

median cohort size of 246 (IQR 177-418).

All of the studies included in this review were published between

2011 and 2021. Geographically, the development cohorts for all nine

IPMs originated from the United States (four cohorts), the
FIGURE 1

PRISMA flow diagram.
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Netherlands (three cohorts), and China (one cohort) as shown in

Table 2. Egelmeer 2011 model (24) had the broadest EV, being

developed using a Dutch cohort and validated across nine cohorts

from six countries: Belgium (24), the United Kingdom (UK) (24, 25),

the United States (USA) (26), Australia (27), Denmark (25, 28), and

the Netherlands (24). Similarly, Petersen 2018 model (29) had wide

geographic EV, with development in a Dutch cohort and EV

conducted on a pooled cohort from four countries (29): Ireland,

the USA, Belgium, and Sweden. Both Zhu 2020 (30) and Tian 2021

(31) models were developed using data from the Surveillance,

Epidemiology, and End Results (SEER) database in the United

States but were externally validated only in Chinese cohorts.

Similarly, the Datema 2013 model (32), developed on a Dutch

cohort, was only externally validated in American patients (26).

Models like Chen 2021 (33) and Emerick 2013 (34) had the most

limited EV geographically, as these were validated only within the

countries where they were originally developed (China and the

USA, respectively).

The majority of development or EV cohorts (17/23, 74%) used

retrospectively collected data obtained from single institutions

(Table 2), except for the EV of the Egelmeer 2011 model by Ronn

Hansen et al. (28) that used data from the Danish Head and Neck

Cancer Group (DAHANCA) national cancer registry, the Petersen

2018 development cohort, which was sourced from the Netherlands

Cancer Registry (29), and the Zhu 2020, Tian 2021, and Emerick 2013

models, which were developed or validated using the SEER national

database. Additionally, one model (Lustberg 2016) was externally

validated using data from the Radiation Therapy Oncology Group

(RTOG) 91-11 multi-centre randomised controlled trial (35).

Seven IPMs were developed and/or validated on patients with

LSCC (24, 29, 30, 32, 34, 35), and two models [Chen 2021 (33) and

Tian 2021 (31)] included only HPSCC patients. No models

were found for non-squamous cell carcinoma histology. Two

models (32, 34) were developed using mixed cohorts of laryngeal

and non-laryngeal cancers, but were externally validated separately

on LSCC/HPSCC patients (26).

Sex was reported for most cohorts (19/23, 82.6%), with males

comprising the majority of patients (77%-98.3%). Smoking status

was only reported in three studies (Supplementary Table 1B), but

this variable was not incorporated in any of the included models

(Figure 2). Only 5/23 cohorts (21.7%) reported TNM information

(26, 31, 33), and TNM version was documented in just four cohorts

across two IPMs. Despite this, N- and T-classifications were the

most commonly used variables, included in 9/11 (81.8%) and 8/11

(72.7%) models, respectively.

Models included between two and nine variables each.

Sociodemographic factors were variably represented: age in 8/11

(72.7%), sex in 7/11 (63.6%), and race, insurance status, and marital

status in only one or two models. Comorbidity-related variables

were rare, with Adult Comorbidity Evaluation-27 (ACE-27) and

American Society of Anaesthesiologists (ASA) physical status were

included in 1/11 (9.1%) and haemoglobin in 3/11 (27.3%) models.

Treatment-related variables, including modality and radiation dose,

along with tumour pathology factors like extranodal extension and

tumour grade, were incorporated into one to three models each. All

models included only clinical +/- histopathology variables, except
T
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the model by Chen et al., 2021 (33) that used clinical variables and a

radiomics score. No models included clinical and any molecular/

genomic variables (Figure 2).

Most patients in the included models were treated with curative

intent, but there was variability in the proportion of patients

receiving different treatment modalities across cohorts. Most

cohorts (11/23, 47.8%) included patients treated only with

definitive radiotherapy (RT) or chemoradiotherapy, while 8/23

(34.8%) cohorts included a mix of surgically treated and non-

surgically treated patients, and only one cohort included

exclusively surgically treated patients +/- RT (30).

Out of the nine IPMs included in our review, eight were

developed using standard regression techniques: seven models

employed Cox proportional hazards regression (24, 29–32, 35),

and one model [Chen 2021 (33)] used logistic regression (Table 2).

The exception was the Emerick 2013 (SNAP) model (34), which

utilized g-values and complex mathematical equations.

Most models were externally validated only once except the

Egelmeer 2011 OS and LC models (24), and the Lustberg 2016 OS

model (24) that were externally validated in nine, five and two

cohorts respectively (Table 2). Six models were independently

validated in separate studies to the development ones using

independent patient cohorts (TRIPOD type 4 validation (36)),

and three models underwent EV within the same development

study (TRIPOD type 3 validation (36)).

Model performance: overall survival
Development cohorts

Discrimination was ‘good’ for most of the model development

studies and EVs, but only one model development had a C-index
Frontiers in Oncology 11
of >0.9 (excellent) (34). Five models (24, 26, 29, 30, 35) reported C-

indices/AUCs < 0.7 indicating weak or poor discrimination,

Figure 3. The discrimination performance of four models (24, 29–31)

was superior to the TNM system when benchmarked against

it, Table 2.

External validation cohorts

External validation showed deterioration in the discrimination

ability of most models, indicating high variance and overfitting

(Figure 3, Table 3). The Emerick 2013 (34) and Petersen 2018 (29)

models had the highest variance and the least generalizability, as

evidenced by dAUC% of -57% and dCI% of -40% respectively

(Table 3). The Lustberg 2016 (35) model also suffered a large drop

in discrimination performance on EV using the RTOG 91-11 cohort;

dAUC% of -74.10%. The Chen 2021 (33) model was the only IPM

that utilized a non-clinical variable (radiomics score), achieving a C-

index of 0.78 in the derivation cohort, and 0.75 on EV (dCI% of

-10.7%). External validations of the Egelmeer 2011 OS model (24)

met the eligibility criteria for MA. The median dAUC% EV for this

model based on nine EVs was 0% (no change), with IQR (−8.7% to

4.4%), Table 3. The pooled AUC for the nine EVs was 0.73 (95% CI

0.71-0.76), with an approximate 95% prediction interval of 0.68-0.78,

Figure 4. As expected, the nine EV studies showed significant

heterogeneity (I (2) = 95.5%).

Model calibration was reported for 16 model development/EVs,

which showed good calibration for most models, but some

underestimated OS (e.g., Lustberg 2016 (development and

EV) (35), and Ronn Hansen 2019 (28) (EV for Egelmeer 2011).

Brier scores were only reported for Tian 2021 model (31),

which suggested borderline model performance (Brier score 0.2)
FIGURE 2

Predictors used for the included models (IPMs and RSMs) HB, haemoglobin level; pENE, extranodal extension on pathology; HNC, Head and Neck
cancer; ACE-27, Adult Comorbidity Evaluation-27; ASA, The American Society of Anaesthesiologists physical status classification system. Variables
are ranked by frequency of inclusion. Models within the red box represent the risk stratification models (RSMs).
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in the EV cohorts (Table 2). MA of calibration performance was not

possible for any model, as information on the total

number of observed (O) and expected (E) events were poorly

reported (18, 19).

Model performance: tumor recurrence
Only one model predicted non-survival outcomes; the Egelmeer

2011 local control (LC) model (24), that showed weak

discrimination on model development with an AUC of 0.67 (95%

CI 0.64–0.71). This model was externally validated in four cohorts

within the same derivation study (TRIPOD type 3 validation).

Additionally, this model was externally validated once by an

independent team from Australia, that used local recurrence (LR)

as the predicted outcome (27). The pooled AUC estimate for the

five EVs was 0.67 (95% CI 0.6-0.74), with 95% prediction interval of

0.49-0.81, indicating only 34% probability of good discrimination

on any future EV (Figure 5). However, when benchmarked against

the TNM system, this model outperformed it in both the
Frontiers in Oncology 12
development cohort (TNM AUC 0.62) and EV cohorts (TNM

AUC 0.56-0.64), Table 2.
Risk stratification models: study
characteristics and models’ performance

The SR only identified two RSMs (37–40), Table 2 and

Supplementary Table 1B. The Ho 2018 model (37) used recursive

partitioning analysis on data from the American national cancer

database, to modify the pathological N-stage and re-classify

patients. All patients in that cohort were surgically-treated LSCC

(84%) or HPSCC (16%). The model’s 3-year OS discrimination was

weak with a C-index of 0.67 (95% CI 0.67‐0.69), which matched the

performance of standard TNM-8 (C-index 0.67, 95% CI 0.66‐0.68).

The model had one independent EV (38), and demonstrated a

modest improvement in predictive performance (C-index 0.71, 95%

CI 0.6–0.8, dCI% 15.7%).
FIGURE 3

Overview forest plot for the C-Indices and/or AUCs of the overall survival models. Black dotted vertical line is a reference line set at AUC/C-index
0.7 (threshold between weak and good discrimination). Circles indicate models’ performance on development cohorts, while squares indicate
performance on validation cohorts. Black squares/circles indicate good or excellent model discrimination, while red squares/circles indicate poor/
weak discrimination. DEV; development cohort, IV; internal validation cohort, EV; external validation cohort, CI; C-Index, AUC; area under the curve,
OS; overall survival, RSM; risk stratification model, 95% CI; 95% confidence interval.
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TABLE 3 Absolute and percentage change in discrimination performance on external validation.

Model Study and year Cohort
Discrimination

metric
Absolute

D discrimination
% change in
discrimination

Overall survival models

Chen Chen 2021 (33)

Dev: Xiangya Hospital 0.78

IV: Xiangya Hospital 0.75 -0.03 -10.70%

EV: Hunan Cancer Hospital 0.75 -0.03 -10.70%

Datema
Datema 2013 (32) Dev: Leiden 0.73

Hoban 2017 (26) EV: Michigan 0.66 −0.07 −30.43%

Egelmeer

Egelmeer 2011 (24)

Dev: MAASTRO 0.73

EV1: Leuven 0.68 -0.05 -21.70%

EV2: VU 0.74 0.01 4.40%

EV3: NKI/AVL 0.71 -0.02 -8.70%

EV4: Manchester (1998-2005) 0.76 0.03 13.00%

Hoban 2017 (26) EV5: Michigan 0.72 -0.01 -4.40%

Aly 2021 (27) EV6: NSW 0.73 0 0

Hansen 2019 (28) EV7: DAHNCA (2005-2015) 0.78 0.05 21.70%

Hansen 2022 (25)
EV8: Odnese/DAHNCA (2005-2018) 0.74 0.01 4.40%

EV9: Manchester (2005-2018) 0.7 -0.03 -13.00%

Emerick*
Emerick 2013 (34) Dev: SEER 0.99

Hoban 2017 (26) EV: Michigan 0.71 -0.28 -57.10%

Lustberg Lustberg 2016 (35)

Dev: MAASTRO 0.77

EV1: Wollongong 0.71 -0.06 -22.20%

EV2: RTOG 91-11 0.57 -0.2 -74.10%

Petersen Petersen 2018 (29)
Dev: NCR 0.65

EV: Five pooled cohorts 0.59 −0.06 −40.00%

Tian Tian 2021 (31)

Dev: SEER 0.718

IV: SEER 0.708 −0.01 −4.59%

EV: Fudan University 0.709 −0.009 −4.13%

Zhu Zhu 2020 (30)
Dev: SEER 0.602

EV: Fudan University 0.659 0.06 55.90%

Ho
Ho 2018 (37) Dev: NCDB 0.678

Chen 2021 (33) EV: Seoul 0.706 0.028 15.73%

Lacy
Lacy 1998 (40) Dev: Missori 0.76

Lacy 2004 (39) EV: Melbourne 0.79 0.03 11.50%

Local control/recurrence models

Egelmeer
Egelmeer 2011 (24)

Dev: MAASTRO 0.67

EV1: Leuven 0.7 0.03 17.70%

EV2: VU 0.71 0.04 23.50%

EV3: NKI/AVL 0.62 -0.05 -29.40%

EV4: Manchester (1998-2005) 0.72 0.05 29.40%

Aly 2021 (27) EV5: NSW 0.59 -0.08 -47.10%
F
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Lacy et al. (40) used logistic regression and conjunctive

consolidation to develop the Composite Laryngeal Recurrence

Staging System (CLRSS), that they later externally validated in a

separate study (39), Table 2. That model achieved good

performance in predicting 2-year OS after LSCC recurrence in

both the development cohort (C-index 0.76) and the EV cohort (C-

index 0.79), compared to the TNM system (C-index 0.63).
PROBAST risk of bias and
applicability assessment

The overall PROBAST RoB rating was high (or unknown) for

the included models, and none achieved low RoB in the analysis

domain (Figure 6, Table 4). Main areas of concern in the analysis

domain included inappropriate handling of participants with

missing data; selection of predictors based on univariate analysis;

poor reporting of relevant model performance measures; unclear

evidence that complexities in the data (such as competing risks)

were accounted for; and difficulty in determining events per variable

(EPV) metrics to check if cohorts had a reasonable number of

participants. Zhu et al.’s model (30) excelled in EPV metrics,
Frontiers in Oncology 14
leveraging the expansive SEER registry for model development,

and a substantial local cohort for validation. Similarly, the Egelmeer

2011 models (24) achieved satisfactory EPV, utilizing a large local

cohort and a focused model consisting of seven variables.

There were fewer concerns relating to the participants,

predictors and outcomes RoB domains. However, only two

models; Egelmeer 2011 (24) and Lustberg 2016 (35), had low RoB

in all three non-analysis domains. In the predictors domain, there

was universal lack of evidence that predictors were defined and

assessed in similar way for all participants.

The development and validation cohorts for the included

models appeared to be reasonably representative of unselected

LSCC or HPSCC population. Most models included clinically-

relevant predictors but they all failed to explain why other

relevant predictors (e.g., smoking status), were not included. We

also assessed the PROBAST applicability section to determine the

extent to which the included IPMs match our SR question and

PICOTS criteria (Figure 6, Table 4). The models were generally

considered to have unclear or low concerns regarding applicability.

However, two models, Tian 2021 (31) and Emerick 2013 (34), raised

significant concerns about applicability, mainly due to difficulty in

determining that palliative patients were excluded.
FIGURE 4

Forest plot showing the meta-analysis of the AUCs for all nine external validations of Egelmeer 2011 OS model. Black dotted vertical line is a
reference line set at 0.73 to indicate the model’s discrimination in development study.
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Discussion

Outcome prediction models only have clinical transportability

and statistical robustness if they can withstand performance

assessment in multiple samples from the same or similar target

populations (41). Despite the generation of numerous outcome

prediction models for HNC, most remain confined to the

development stage, or have shown poor external validation (8).

This study marks the first comprehensive SR of performance

and RoB of externally-validated prognostic CPMs for LSCC and

HPSCC patients. Our SR identified nine distinct IPMs and two

RSMs. The SR by Aly et al. (8) only focused on assessing

methodological quality and RoB using PROBAST (13) and the

checklist for critical appraisal and data extraction for systematic

reviews of prediction modelling studies (CHARMS) (14). Their

review identified seven models for LSCC, with four overlapping in

our SR, and three models that were only internally validated. The SR

by Tham et al. (9) only focused on using the AJCC precision
Frontiers in Oncology 15
medicine core checklist (42) to evaluate prognostic nomograms for

different HNCs, and only included three LSCC models.

Our findings indicate that available models for LSCC/HPSCC

generally have good discrimination ability, especially on their

development cohorts. Zhu 2020 (30) and Petersen 2018 (29)

models showed weak performance in the development cohorts

and on EV. Interestingly, these models were developed using data

from population-based cancer registries (SEER and NCR

respectively), which, despite their extensive case numbers, have

been criticized for including potentially heterogeneous data (43, 44).

Moreover, reliance on pre-collected datasets, such as trial data or

national registries, presents a persistent problem for CPM: their

inflexibility due to preset variables, which may not include all

relevant predictors for the cancer being modelled, and potentially

leading to poor performing models. Furthermore, population-based

registries are notorious for containing significant data gaps,

necessitating effective imputation strategies to preserve valuable

information (45). The decision by Zhu et al. (30) and Petersen et al.
FIGURE 5

Forest plot showing the meta-analysis of the AUCs for all five external validations of Egelmeer 2011 LC model.
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(29) to exclude cases with missing data may have inadvertently

contributed to the poor performance of their models, especially

during the development phase.

Most of the variables used in LSCC/HPSCC prognostic models

reflected solid underlying biological or pathological mechanisms

linked to patient outcomes. Advanced T- and/or N-classification,

for instance, is linked to higher recurrence rates and poorer survival

(46, 47). Tumour grade and extranodal extension are also important

predictors of aggressive disease and worse prognosis (38, 48, 49).

Haemoglobin level is also a potentially crucial predictor,

particularly in LSCC/HPSCC models for patients treated with RT,

as low haemoglobin leads to tumour hypoxia, making the cancer

less responsive to treatment and decreasing survival (50–52).

Sociodemographic factors like age and sex impact prognosis, with

older patients and males facing worse outcomes due to greater

exposure to risk factors like smoking and reduced treatment

tolerance (53, 54). Moreover, race and insurance status further

affect survival, as disparities in healthcare access can lead to delayed

diagnosis and treatment (53, 55, 56).

While these important predictors such as N- and T-

classifications, sex and tumour subsite, were frequently included,

it’s notable that known significant risk factors like smoking status

were rarely incorporated. This highlights a significant gap in the

predictive modelling landscape for LSCC/HPSCC patients, with

continued smoking after completion of treatment being well-

established as an independent risk factor for survival in those

patients (57–60). Moreover, heterogeneity in treatment modalities

across different cohorts may influence model predictions and

applicability in diverse clinical contexts. For instance, in the Chen

2021 (33) model, surgical treatment dominated the development

cohort (85%), whereas in other cohorts, such as the Egelmeer 2011
Frontiers in Oncology 16
(24), Tian 2021 (31) and Lustberg 2016 (35) models development

cohorts, there was significant proportions undergoing radiotherapy-

only treatments. These aspects warrant consideration, especially

when tailoring treatment strategies based on model predictions.

The selection criteria of the training population are vital to the

quality and generalisability of predictive models. In cohorts focused

on specific treatments like RT or chemoradiation [e.g., Petersen

2018 (29) and Egelmeer 2011 (24)], rigorous patient selection is

essential for ensuring valid predictions. While narrow selection may

enhance model performance within that specific group, it limits

broader applicability. For example, models based on Egelmeer’s

cohort, where 100% of patients received radiotherapy-only, may not

generalise well to patients undergoing primary surgical treatment.

This underscores the need for clinicians to carefully consider the

development and validation cohorts when assessing a model’s

applicability to their own patient populations.

On external validation, a discernible trend of decreased model

performance was observed universally, indicating possible overfitting

and/or a mismatch between training and validation populations. These

issues are detrimental for cancer outcome prediction with excessively

tailored models performing well on training data but failing to

generalize well to new unseen data and therefore not useful in a

clinical setting (41, 61). A good example is the Emerick 2013 model

(34), that was trained on a dataset from the SEER registry

encompassing over 50,000 cases. That model demonstrated

excellent performance for predicting 10-year cancer specific mortality

in the development cohort (C-index 0.99), but failed to adequately

generalize on a local cohort (C-index 0.68). Interestingly, Tian

2021 model (31) that also trained on SEER HPSCC data, also

failed to externally validate on a local cohort from China.

Another notable finding is that the models trained on mixed HNC
FIGURE 6

PROBAST risk of bias and applicability assessment for overall survival predictive models. OS, Overall survival; RoB, risk of bias.
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cohorts, e.g., Emerick 2013 (34) and Datema 2013 (32), both showed

weak discrimination on EV using datasets specific to LSCC/

HPSCC patients.

Two models, Egelmeer 2011 (24) and Chen 2021 (33),

demonstrated promising performance in both development and

EV. However, caution is advised since none achieved ‘very good’ or

‘excellent ’ discrimination that would allow them to be

recommended for routine clinical application. The Egelmeer 2011

(24) model was the most externally validated model with four

TRIPOD type 3 EVs; AUCs 0.68-0.76, and five TRIPOD type 4

independent EVs; AUCs 0.66-0.78. TRIPOD type 4 validation,

using entirely independent cohorts from varied settings or

populations, is seen as a robust EV due to its stringent process

(61–63). Moreover, this model was developed using a well-defined

cohort of 994 consecutive LSCC patients, all treated with

radiotherapy, with a relatively long median follow-up of 72

months. Egelmeer et al. (24) also applied strict inclusion and

exclusion criteria, clearly defined the predicted outcomes, and

managed missing data using predictive mean matching. They also

employing bootstrapping to adjust for optimism, with a sufficient

events-per-variable ratio of approximately 20.

Interestingly, the model by Chen et al. (33) was trained and

externally validated on relatively small datasets; 95 and 54 HPSCC

cases respectively. Despite the limited data, it exhibited reasonable

performance in both the development cohort (C-index 0.78) and EV

(C-index 0.75). This was the only model that integrated a robust

radiomic score, derived from six radiomic features, alongside a single

clinical predictor (N-classification). This model had only one EV in

the same derivation study, and no independent TRIPOD type 4 EV,

so generalizability cannot be fully determined. However, radiomic

features and scores in HNC are gaining recognition for improving

predictive accuracy, but their reproducibility and practicality in

routine clinical settings require careful consideration (64, 65).

The models in our SR have overwhelmingly demonstrated high

RoB across all domains. Future modeling efforts should pay special

attention to the analysis domain, as this was most frequently rated

as having a high RoB in our SR and across the literature (66, 67).

Addressing bias is critical to ensure accurate predictions, which

requires careful consideration of data collection, preprocessing, and

algorithm design. Furthermore, reducing bias can also potentially

enhance models’ performance and generalizability across diverse

cohorts (23).

Moreover, the current predictive models for LSCC and HPSCC

are further limited by poor external validation and the exclusion of

critical predictors like smoking status, which can significantly

impact outcomes. Additionally, inconsistent reporting of key

variables, such as TNM staging, limits the ability to fully assess

model performance. These issues, along with the high risk of bias

observed in many models, reduce their generalizability across

diverse patient populations and treatment modalities. Addressing

these limitations, alongside improvements in bias reduction, is

essential for future models to be more robust and applicable in

clinical practice. By incorporating comprehensive predictor sets and

ensuring more inclusive external validation, future efforts can

improve the utility and performance of predictive models in

varied clinical settings.
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The strengths of this SR-MA include adhering to the TRIPOD-

SRMA and CHARMs guidelines, and used the PROBAST ROB tool.

Moreover, we used a comprehensive literature search strategy that

incorporated the IEEE database, along with EMBASE and

MEDLINE databases, resulting in the retrieval of 4,600 unique

titles. However, we acknowledge that incorporating additional

databases such as Scopus and/or Web of Science could potentially

have further improved both the recall and precision of our search

strategy. We also performed quantitative analysis when feasible,

using robust methods for pooling summary estimates. The

limitations of this SR-MA include the exclusion of models based

solely on radiomic or genomic features that did not include clinical

variables. Although these may significantly influence future

modeling for LSCC/HPSCC, their current clinical utility remains

unknown. Moreover, models that were not externally validated

were excluded, with the possibility that these demonstrate good

performance in future validations. It’s also important to

acknowledge that the discrimination thresholds we used for

AUCs/C-indices were arbitrarily set, and might vary based on

models’ application and the prevalence of outcomes.
Conclusion

While the integration of real-world data into CPMs holds promise,

our review highlights the necessity of rigorous evaluation for their

effective and safe use in routine practice. Despite the proliferation of

models, most exhibited methodological limitations and bias,

underscoring the need for careful scrutiny. Currently, no models can

confidently be recommended for routine clinical use. Clinicians should

choose LSCC and HPSCC prognostic models that match their patients’

characteristics, and have undergone thorough external validation

ideally involving a local cohort. Future modelling efforts for LSCC/

HPSCC should incorporate clinically important candidate predictors,

and explore the addition of radiomic and/or biomolecular predictors

for each treatment setting to potentially enhance performance.
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