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neuroendocrine prostate cancer
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Prostate cancer is a malignant tumor caused by the malignant proliferation of

epithelial cells, which is highly heterogeneous and drug-resistant, and

neuroendocrine prostate cancer (NEPC) is an essential cause of drug

resistance in its late stage. Elucidating the evolution of NEPC and the

resistance process of enzalutamide, a novel antiandrogen, will be of great help

in improving the prognosis of patients. As a research hotspot in the field of

molecular biology in recent years, the wide range of biological functions of long

noncoding RNAs (lncRNAs) has demonstrated their position in the therapeutic

process of many diseases, and a large number of studies have revealed their

critical roles in tumor progression and drug resistance. Therefore, elucidating the

involvement of lncRNAs in the formation of NEPCs and their interrelationship

with enzalutamide resistance may provide new ideas for a deeper understanding

of the development of this disease and the occurrence of enzalutamide

resistance and give a new direction for reversing the therapeutic dilemma of

advanced prostate cancer. This article focuses on lncRNAs that regulate

enzalutamide resistance and the neuroendocrine transition of prostate cancer

through epigenetic, androgen receptor (AR) signaling, and non-AR pathways that

act as “molecular sponges” interacting with miRNAs. Some insights into these

mechanisms are used to provide some help for subsequent research in this area.
KEYWORDS

long noncoding RNA, enzalutamide, enzalutamide resistance, neuroendocrine prostate
cancer, AR, prostate cancer
1 Background

Prostate cancer progresses slowly but with a relatively high degree of malignancy, new

cases with late clinical staging, high Gleason grade, and clinical presentation of prostate

cancer with multiple metastases, which have lost the chance of surgery (1). Androgen

deprivation therapy (ADT) is the clinically preferred treatment for prostate cancer and
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significantly inhibits prostate cancer progression, but almost all

patients progress to the more aggressive castration-resistant

prostate cancer (CRPC) after 12-18 months of treatment (2). The

emergence of a new generation of potent androgen receptor

inhibitors, represented by enzalutamide, has revolutionized the

concept of novel endocrine therapy for CRPC and has also

primarily prolonged the survival time of CRPC-resistant patients.

However, patients with effective initial therapy still experience drug

resistance after a remission period of approximately 11.2 months

(3). The transformation from adenocarcinoma to NEPC that occurs

in patients with CRPC is now considered to be a significant cause of

disease progression. Primary prostate neuroendocrine tumors are

extremely rare, accounting for approximately 0.5%-2% of all

prostate tumors, but the incidence of this tumor rises significantly

after endocrine therapy, with 17%-30% of prostate cancer patients

presenting with NEPC after endocrine therapy (4, 5). lncRNAs have

essential biological functions in cells and can regulate relevant

gene expression in epigenetic, pre-transcriptional and post-

transcriptional processes, which are further involved in tumor

development, metastasis, and drug resistance (6, 7). This article

details how lncRNAs mediate CRPC treatment resistance to

enzalutamide and its conversion to neuroendocrine.
2 Clinical and molecular features and
evolutionary mechanisms of
neuroendocrine prostate cancer

NEPC is a lethal subtype of prostate cancer that encompasses all

phenotypes ranging from prostate adenocarcinoma with focal NEPC

cells to pure small-cell neuroendocrine carcinoma. Prostate tissue

mainly contains ductal cells, basal cells, and neuroendocrine cells (1%)

located in the basal layer, which secrete proteins involved in the

composition of male semen (8, 9). NEPC can be divided into primary

and treatment-related neuroendocrine prostatic carcinoma (t-NEPC);

the former refers to NEPC that is present at the time of tumor

development and accounts for about 0.5%-2% of first-diagnosed

prostate cancers, while the latter refers to prostate cancers that show

partial or complete neuroendocrine differentiation after ADT, which

accounts for about 10%-20% of CRPC (10, 11). Primary NEPC is

relatively rare and is clinically characterized by susceptibility to visceral

metastases, low prostate-specific antigen (PSA) levels, and mutations

or deletions in the TP53 and RB1 genes (12). Histologically, t-NEPC

may present as a neuroendocrine carcinoma or a mixture of

neuroendocrine carcinoma and adenocarcinoma (13, 14). Compared

with adenocarcinoma, NEPC has unique gene expression

characteristics. NEPC cells have delicate chromatin in the nucleus,

whereas adenocarcinoma cells have a more obvious nucleolus, which

suggests that the distribution of heterochromatin in NEPC is quite

different from that in adenocarcinoma. In addition, it was found that

there are neurodevelopment-related transcription factors such as

MYCN, FOXA2, BRN2, ASCL1, and NEUROD1 that activate and

drive the development of NEPC (15–17). For the evolution of NEPC

(Figure 1), many previous studies have focused on the neuroendocrine

transformation of prostate adenocarcinoma cells under the pressure of
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endocrine therapy, with reduced or loss of AR expression and

expression of neuroendocrine markers such as synaptophysin (SYP),

chromogranin A (CgA), and neuron-specific enolase (NSE), thereby

transdifferentiating into NEPC (18–20). However, recent studies have

found that NEPCmay also originate from neuroendocrine cells with a

neuroendocrine phenotype already present in adenocarcinomas. A

scRNA-seq-based research found that a subpopulation of CRPC-like

cells and a subpopulation of neuroendocrine cells independent of the

AR signaling pathway, which share the exact origin as prostate luminal

and basal cells, were present in primary prostate cancer tissues without

endocrine therapy. ADT resulted in the predominance of these more

value-adding AR-positive neuroendocrine cells, leading to rapid

resistance to endocrine therapy and the development of NEPC in

prostate cancer (18, 21, 22). NEPC is highly aggressive and lethal,

capable of extensive metastasis to organs and bones, and has limited

treatment options, insensitivity to hormonal therapy, and short-lived

effects of chemotherapy, with a median survival of about seven

months from diagnosis. It represents the terminal stage of prostate

cancer (23, 24). The relevant literature suggests that the availability of

the more potent hormone enzalutamide may increase the incidence of

NEPC (25). Diagnosing NEPC in clinical practice is also tricky. It

usually relies on features such as the paradoxical decrease in PSA and

tumor metastasis; therefore, exploring its diagnostic markers and

therapeutic targets and determining its resistance mechanism are

the primary needs of clinical diagnosis and treatment.
3 Molecular characterization
of lncRNAs

lncRNA is a class of RNA molecules with more than 200 bp

length. lncRNAs are expressed less than mRNAs and are involved in

tumorigenesis, drug resistance, metastasis, and prognosis by

interacting with DNA, RNA, and proteins in pre-transcriptional

and post-transcriptional processes (26, 27). lncRNA alterations are

essential drivers of tumorigenesis, progression, and metastasis. They

are involved in tumor progression through mechanisms such as

chromatin remodeling, transcriptional co-activation or repression,

regulation of protein activity, post-transcriptional regulation, or

acting as a deceptive element (19, 28, 29). The development of

molecular detection techniques has led to a significant increase in

the detection of lncRNAs in related fields, such as the detection of

the prostate cancer lncRNA-associated transcript prostate cancer

associated transcript (PCAT), paved the way for many subsequent

studies. Another pan-cancer study, MiTranscriptome, identified

various tissue and tumor type-specific lncRNAs (30, 31). One

study investigated the expression of LINC00467 in prostate

cancer tissues and cells using Western blot analysis and reverse-

transcriptase PCR (RT-qPCR), and they determined that the

expression of LINC00467 was upregulated in prostate cancer

tissues and cells. Western blot analysis showed that LINC00467

could regulate the STAT3 pathway, and bioinformatics analysis and

salvage experiments indicated that LINC00467 promoted prostate

cancer progression and mediated the transformation of prostate

cancer to NEPC through the miR-494-3p/STAT3 axis (32). In
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addition, researchers have found that one of the most prominent

mechanisms by which Linc00467 regulates the development of

other human malignant tumors is the Linc00467/miRNA/mRNA

signaling regulation axis (Table 1). Here, LncRNAs have the

properties of ceRNAs and mediate tumorigenesis and

development by interacting with miRNAs. Specifically, it was

found in hepatocellular carcinoma cells that Linc00467 could

exert its pro-tumorigenic effect by adsorbing and inhibiting the

expression of miR-9-5P/miR-18a-5p and deregulating the

inhibitory effect of miR-9-5p/miR-18a-5p on PPARA/NEDD9

(33). Linc00467 can target miR-4779 and miR-7978 in lung

cancer to promote lung cancer cell proliferation, invasion and

metastasis, and it can also adsorb miR-20b-5p to relieve the

inhibitory effect of miR-20b-5p on CCND1 to promote lung
Frontiers in Oncology 03
adenocarcinoma cell growth (34, 35). In the study of cervical

cancer, Linc00467 exerted its pro-cancer effect by targeting miR-

107 and promoting the expression of KIF23 (36). In fact, in

colorectal cancer, neurological tumors, and head and neck

phosphoribocytic carcinoma, Linc00467 can exert its pro-cancer

effects by acting on miRNAs with the properties of ceRNAs (37–39).

In prostate cancer, it has been shown that Linc00467 can promote

the expression of STAT3 by acting on miR-494-3, which in turn

promotes the malignant progression of prostate cancer and its

transformation to NEPC (32). In recent years, some researchers

have discovered differential expression of lncRNAs in tumor drug-

resistant cells through relevant technologies. For example, Yang

(40) used high-throughput lncRNA expression profiling

microarrays to detect lung cancer cell lines and cisplatin-resistant
FIGURE 1

Neuroendocrine Evolution and drug resistance mechanism of prostate cancer. Evolution of NEPC. On the one hand, under the pressure of
endocrine therapy, adenocarcinoma cells with reduced or no AR expression undergo neuroendocrine transformation; on the other hand,
neuroendocrine cells in the prostate gland that share a common origin with basal and official cells progress directly to NEPC. Among them, lncRNAs
can participate in the transformation of prostate cancer to NEPC by regulating the NED process; lnc RNAs can also mediate the resistance process
of enzalutamide through the epigenetic pathway, the AR pathway, and related non-AR pathways. AR, androgen receptor; ADT, androgen deprivation
therapy; NED, neuroendocrine differentiation; CRPC, castration-resistant prostate cancer; NEPC, neuroendocrine prostate cancer; lncRNAs, Long
noncoding RNAs.
TABLE 1 Linc00467/miRNA/mRNA signaling axis regulates multiple tumor progression outcomes.

Tumor type Mechanism of Linc00467 participation Outcome Reference

Liver cancer Deregulation of PPARA/NEDD9 by inhibition of miR-9-5P/miR-18a-5p expression promote (33)

Lung cancer Targeting miR-4779, miR-7978; adsorption of miR-20b-5p and derepression of CCND1 by miR-20b-5p promote (34, 35)

Cervical carcinoma Targeting miR-107 to promote KIF23 expression promote (36)

Prostatic cancer Acting on miR-494-3 promotes STAT3 expression promote (32)
PPARA, Peroxisome Proliferator-Activated Receptor-Alpha; NEDD9, Neural Precursor Cell Expressed, Developmentally Down-regulated 9; CCND1, Cyclin D1 is a Protein Coding gene; KIF23,
Kinesin Family Member 23; STAT3, Signal Transducer and Activator of Transcription 3.
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cell lines and found 1380 differentially expressed lncRNAs.

Similarly, Jiang (41) used high-throughput lncRNA expression

profiling microarrays to detect differentially expressed lncRNAs in

breast cancer cell lines and adriamycin-resistant cell lines, and

found that 1649 lncRNAs were up-regulated and 1267 lncRNAs

were down-regulated. In addition, researchers have utilized lncRNA

microarrays to detect differentially expressed lncRNAs and mRNAs

in nasopharyngeal carcinoma and found that the expression of 3

lncRNAs and 46 mRNAs were significantly correlated (42). As a

gene regulatory mechanism, ceRNAs can indirectly participate in

the post-transcriptional regulation of mRNAs by competitively

binding to the response elements of miRNAs. lncRNAs can play a

regulatory role post-transcriptionally in the form of lncRNA-

miRNAs. As mentioned above, lncRNAs act as miRNA

“iRNAsned. spongese that influence the proteome by mediating

complex formation. It was found that miRNAs interacting with the

3’ untranslated region (UTR) of target mRNAs can exert inhibitory

effects on both RNAs and proteins. They also noted that the 3’ UTR

of ceRNAs is shortened, which regulates RNA transcripts at the

level of other RNA transcripts by competing for shared miRNAs

and ultimately contributes to tumorigenesis. this concept of

ceRNAs can also be applied to the interactions of lncRNAs and

miRNAs depending on whether their genes play a promotional or

inhibitory role in tumor development (43, 44). The specific

signaling mechanisms by which lncRNAs interact with miRNAs

to mediate neuroendocrine transformation in prostate cancer and

enzalutamide resistance will also be developed later.
4 LncRNAs mediate the
transformation of prostate cancer
to NEPC

4.1 LncRNAs regulate neuroendocrine in
prostate cancer through the AR
signaling pathway

AR is a central signaling pathway in prostate cancer. Androgens

bind to membrane-localized AR and activate AR, which binds to its

homologous response elements, thereby recruiting co-regulatory

factors to promote the expression of relevant genes and ultimately

promote tumor cell proliferation, malignant metastasis, and

resistance to relevant chemotherapeutic agents (45). Although

therapeutic approaches to develop inhibitors against AR are

widely used in the clinic, AR signaling can also be initiated in

prostate cancer cells from the bypass via glucocorticoid receptor

(GR) signaling, thus making prostate cancer cells resistant to AR

inhibitors (46). Improving AR resistance is currently the most

important part of prostate cancer research that needs to be

addressed, and the development of lncRNA studies related to the

AR signaling pathway may help to overcome AR resistance in

prostate cancer. AR resistance is a great challenge to be faced during

the current prostate cancer treatment, and there are multiple

lncRNAs involved in the gradual development of AR resistance in

prostate cancer, which can play the role of pro- or oncogenes. Long
Frontiers in Oncology 04
Noncoding RNA H19 (lncRNA H19) is significantly overexpressed

in NEPC patients. It was confirmed that H19 induced the

differentiation of prostate cancer to NEPC and increased the

resistance of tumor cells to ADT. It was shown that H19 acts as

an epigenetic regulator in NEPC and regulates histone H3 lysine

trimethylation at position 27 (H3K27me3) and histone H3 lysine

trimethylation at position 4 (H3K4me3) by binding to the

polycomb repressive complex 2 (PRC2) complex. This remodeled

AR signaling (ARS) and NE genes in the vicinity of chromatin,

which in turn regulated the expression of ARS and NE genes and

activated the AR signaling pathway, ultimately promoting the

transformation of prostate cancer to NEPC (23). Other studies

have shown that lncRNAs can regulate enzalutamide resistance by

promoting neuroendocrine in prostate cancer cells.

Luo’s study showed that lncRNA-p21 increases neuroendocrine

differentiation of prostate cancer induced by enzalutamide treatment.

Enhancer of zeste homolog 2 (EZH2) is the core unit of the epigenetic

effector PRC2, and lncRNA-p21 binds to EZH2 while inhibiting the

binding of EZH2 to another pair of lncRNAs that have stabilizing

effects on PRC2, thereby decreasing interactions between the core

subunits of PRC2, interfering with the PRC2 formation and enhance

the methyltransferase activity of EZH2. LncRNA-p21 also promotes

the interaction of EZH2 with ATK and ATAT3, exerts multiple

functions in this pathway, enhances STAT3methylation, and induces

NED development and drug resistance (47, 48). lncRNAs not only act

as oncogenes to promote prostate cancer progression but also

suppress the malignant phenotype of this tumor by inhibiting the

AR signaling pathway. Shreyas (49) showed that LINC00844 has an

inhibitory effect on tumor progression and metastasis, and the

expression level of LINC00844 in normal prostate tissues was

much higher than that of metastatic prostate cancer in clinical

specimens. LINC00844 has an inverse role in AR signaling and

represses global transcription of androgen-regulated genes. In this

process, LINC00844 promotes the expression of N-myc downstream

regulatory gene 1 (NDRG1), and NDRG1 acts as an AR repressor to

inhibit AR expression, and the metastasis and differentiation of

prostate cancer cells are also inhibited after the AR signaling

pathway is suppressed. However, many related literatures indicate

that lncRNAs can affect the malignant phenotype of prostate cancer

through the AR signaling pathway. However, the compensatory effect

of the AR signaling pathway through bypass signaling leads to poor

efficacy and a high recurrence rate of prostate cancer treatment

relying on the AR pathway, which also indicates that AR signaling

pathway-associated lncRNAs that can be used as efficient prostate

cancer therapeutic targets have yet to be explored.
4.2 LncRNAs regulate neuroendocrine in
prostate cancer through non-AR
signaling pathways

Wnt signaling is a class of evolutionarily conserved signal

transduction cascade pathways that play a central role in

embryogenesis, trauma repair, and malignancy (50, 51). Wnts can

activate various intracellular pathways, including the classical Wnt/

b-catenin and non-classical Wnt pathways. Classical Wnt/b-
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catenin signaling is evolutionarily highly conserved and is the most

frequent Wnt pathway in prostate cancer (52, 53). Meng (54)found

that the expression of LINC00689 was significantly elevated in

advanced prostate cancer cells, and thus, knockdown of LINC00689

significantly inhibited the proliferation, invasion, and further

differentiation of this tumor and ultimately induced apoptosis of

prostate cancer cells. Additional mechanistic studies showed that

LINC00689 acted as a ceRNA for the calmodulin-associated protein

CTNNB1 bound to miR-496 upstream of CTNNB1 and inhibited

the expression of the miRNA. miR-496 inhibited the inhibitory

effect on CTNNB1, and the expression of CTNNB1 was increased,

activating the Wnt signaling pathway to promote proliferation,

invasion, and differentiation. This Study illustrates that LINC00689

promotes prostate cancer progression through activation of the

Wnt pathway via the miR-496/CTN-NB1 axis, and thus, studying

LINC0068 may provide a new direction for further treatment of

prostate cancer. Furthermore, In addition to the Wnt signaling

pathway, it was shown that the LncRNA LINC00261, which is

highly conserved, is also involved in regulating prostate cancer

transformation to NEPC. LINC00261 is significantly upregulated in

patients with NEPC and acts as a sponge for the miR-8485 molecule

in the cytoplasm to increase the activity of chromobox homolog2

(CBX2), thereby promoting the transformation of NEPC (55). In
Frontiers in Oncology 05
summary, lncRNAs can mediate prostate conversion to NEPC

through the AR signaling pathway, the Wnt signaling pathway,

and interaction with mRNAs (Figure 2).
5 LncRNAs mediate enzalutamide
resistance in prostate cancer

5.1 LncRNAs are involved in epigenetic
modifications to regulate
enzalutamide resistance

Epigenetic modifications are closely related to tumorigenesis

and development, mainly through DNA methylation, histone

demethylation, and other ways to regulate gene function and

expression levels. Abnormal DNA methylation is one of the

critical epigenetic modifications that drive the occurrence and

development of cancer. GHILDIYAL (56) reported for the first

time that lncRNA-NXTAR (LOC105373241) is located on

chromosome Xq12 and is repressed for expression in prostate

tumors. NXTAR enhances cellular resistance to enzalutamide by

interacting with AR at the epigenetic level. It was noted that

NXTAR, by binding upstream of the AR promoter, promotes
FIGURE 2

LncRNAs are involved in the neuroendocrine secretion of prostate cancer. AR pathway: lncRNA H19 activates AR signaling by binding to the PRC2
complex and regulating H3K27me3 and H3K4me3; lncRNA-p21 binds to EZH2 while inhibiting the binding of EZH2 to HOTAIR, interfering with PRC2
formation, and enhances methylation of STAT3; LINC00844: promotes NDRG1 expression and inhibits AR expression. Non-AR pathway: LINC00689
promotes CTNNB1 expression and activates the Wnt signaling pathway; LINC00261 acts as a miR-8485 molecular sponge and enhances CBX2
activity. AR, androgen receptor; PRC2, polycomb repressive complex 2; H3K27me3, Trimethylation modification of lysine at position 27 of histone
H3; H3K4me3, The fourth lysine of histone H3 undergoes trimethylation catalyzed by methyltransferase (HMT); EZH2, enhancer of zeste homolog 2;
STAT3, signal transducer and activator of transcription 3, STAT3; NDRG1, N-myc downstream regulatory gene 1; CTNNB1, Catenin Beta 1 is a Protein
Coding gene; CBX2, chromobox homolog2.
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H3K27 methylation at the epigenetic level by mediating (enhancer

of zeste homolog 2) EZH2 recruitment, resulting in a significant

reduction or loss of AR and AR-V7 expression.

Conversely, AR can bind to the NXTAR promoter and inhibit

AR expression using a small molecule inhibitor of ACK1/TNK2,

thereby inhibiting the proliferation of enzalutamide-resistant cells

and reducing enzalutamide resistance during tumor therapy. It

suggests that this pharmacological restoration approach’s up-

regulation of NXTAR expression can provide new ideas for

treating patients who develop resistance to new-generation

AR antagonists.
5.2 Involvement of lncRNAs in the AR
signaling pathway regulates
enzalutamide resistance

AR is a central signaling pathway in prostate cancer. lncRNAs

can also affect enzalutamide resistance by regulating AR signaling

axis transduction through different mechanisms (Figure 3).

LINC00675 promotes depot resistance by blocking the binding

region between AR andMDM2 and protects against ubiquitination-

mediated degradation. Meanwhile, antisense oligonucleotides

(ASO)-LINC00675 significantly inhibited enzalutamide resistance

in CRPC cells (57). lncRNA-HOTAIR from the HOXC genome is

significantly increased in prostate cancer cell lines, and HOTAIR

binds to AR proteins to block their interaction with the E3 ubiquitin

ligase MDM2, thereby preventing AR ubiquitination and protein

degradation. Knockdown of HOTAIR inhibits the proliferation of

enzalutamide-resistant tumor cells and is a potential therapeutic

target for reversing enzalutamide resistance (26, 58). CHANG’s (59)

study concluded that HOTAIR is involved in NEPC development
Frontiers in Oncology 06
and drug resistance through multiple mechanisms. HOTAIR is a

downstream target RNA of the neuronal restriction silencing

element REST, which plays a central role in NEPC. In vitro

experiments confirmed that HOTAIR was significantly

upregulated in CRPC cell lines with neuroendocrine (NE)

phenotype and synchronized with the increased expression of

trans-neuroendocrine markers. Knockdown of the HOTAIR gene

resulted in the suppression of cytokine 6 (IL-6)-induced NED,

which led to the hypothesis that HOTAIR is involved in regulating

IL-6-induced NED process. In addition, a gene ontology analysis of

dysregulated genes in CRPC cell lines overexpressing HOTAIR

identified the autophagy pathway. The autophagy pathway has a

crucial role in IL-6-induced NED and chemoresistance in NEPC,

and HOTAIR has demonstrated that HOTAIR may have a

regulatory role in the autophagy pathway in developing NEPC

and drug resistance (60).

Zhang (61) was the first to illustrate the vital role of lncRNA

PCBP1-AS1 in CRPC resistance. They found that both PCBP1-AS1

and ubiquitin-specific processing peptidase 22 (USP22) could bind

to the NTD of androgen receptor shear variant 7 (AR/AR-V7)

region and interfere with PCBP1-AS1 in cells significantly

attenuated the binding ability of AR/AR-V7 and USP22. At the

same time, AR ubiquitination levels were significantly increased,

thereby enhancing the sensitivity of C4-2EnzR cells to

Enzalutamide. This Study demonstrated that targeting PCBP1-

AS1 increases the sensitivity of prostate cancer cells to

Enzalutamide by reducing the binding of USP22 to AR-V7 or AR

and decreasing the stability of the complex, providing new ideas for

the clinical treatment of drug-resistant patients with CRPC.

LncRNA-LBCS was significantly down-regulated in CRPC, and

mechanistic studies revealed that LBCs can act as a scaffold to

interact with RNA-binding protein hnRNPK and AR mRNA to
FIGURE 3

LncRNAs are involved in the AR pathway to regulate enzalutamide resistance. LINC00675: blocked the inter-AR and MDM2 region; HOTAIR: HOTAIR
binds to AR to block its interaction with MDM2 and inhibit AR ubiquitination; PCBP1-AS1: PCBP1-AS1 expression was reduced to inhibit AR/AR-V7
and USP22 binding and promote AR ubiquitination; LBCS: acted as a scaffold for interaction with hnRNPK and AR mRNA interaction to inhibit AR
expression; MALAT1: induced high expression of MALAT1/AR-V7 axis. AR, androgen receptor; MDM2, mousedouble minute 2; AR/AR-V7, Androgen
receptor splicing variant 7; USP22, ubiquitin-specific processing peptidase 22; hnRNPK, heterogeneous nuclear ribonucleoprotein; MALAT1,
metastasis associated lung adenocarcinoma transcript 1.
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form a complex as a way to inhibit AR expression (62). WANG (63)

validated the role of metastasis-associated lung adenocarcinoma

transcript 1 (MALAT1) in enzalutamide resistance using

enzalutamide-resistant cell lines. It demonstrated that

enzalutamide promotes the development of resistance by inducing

high expression of the MALAT1/AR-V7 axis and that, in contrast,

targeting the MALAT1/AR-V7 axis could restore the sensitivity of

resistant cells to enzalutamide treatment.
5.3 LncRNAs regulate enzalutamide
resistance through non-AR
transduction pathways

In addition to their involvement in the AR signaling pathway,

lncRNAs can regulate enzalutamide resistance accordingly through

interactions with miRNAs and positive and negative feedback

(Table 2). LncRNA TTTY15 from the Y chromosome regulates

drug resistance in prostate cancer cells by upregulating cell division

protein kinase 6 (cell division protein kinase 6) and fibronectin-1

(fibronectin-1) expression via sponge adsorption of miRNA-let-7

(64). A study by Chen (65) indicated that enzalutamide resistance-

associated lncRNA NONHSAT-210528 can function as a

competitive endogenous RNA (ceRNA) that promotes prostate

cancer cell invasion and drug resistance through the miR-21-5p/

YOD1 signaling pathway. They noted that NONHSAT-210528

promoted the expression of YOD1, an element involved in the

regulation of enzalutamide resistance, by participating in the

regulation of miR-21-5p expression in enzalutamide-resistant

prostate cancer cells and that when the miR-21-5p expression was

inhibited, the invasive effect of LncRNA-NONHSAT-210528 on

enzalutamide-resistant cells was significantly reduced. LncRNA

PTTG3P can upregulate the expression of Pituitary tumor

-transforming gene-1 (PTTG1) by competitive binding to miR-

146a-3p, thereby promoting the development of enzalutamide

resistance during prostate malignancy treatment (66). With the

development of sequencing technologies, there is increasing

evidence that novel lncRNAs are involved in human

tumorigenesis and progression (67, 68). SHI (69) identified VIM-

AS1 as a key LncRNA regulator; VIM-AS1 overexpression reduced

the sensitivity to enzalutamide treatment, which plays a regulatory

role in prostate cancer proliferation as well as enzalutamide

sensitivity through the VIM-AS1/IGF2BP2/HMGCS1 axis. They
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showed that VIM-AS1 promotes the mRNA stability of 3-hydroxy-

3-methylglutaryl-CoA synthase 1 (HMGCS1) by interacting with

growth factor 2 mRNA binding protein 2 (IGF2BP2), which

enhances HMGCS1 expression.

Conversely, the knockdown of HMGCS1 expression

ameliorated VIM-AS1 overexpression-induced prostate tumor cell

progression and enzalutamide resistance. It was found that SNHG4,

as one of the members of the SNHG family, belongs to the lncRNA

subgroup, which is involved in the regulation of various biological

expression processes in humans, such as transcription and

translation of genes and modification of RNAs and proteins (70,

71). Dong (72) indicated that SNHG4 promotes prostate tumor cell

growth and drug resistance through let-7a/RREB1 positive feedback

and ceRNA network. The specific mechanism is that SNHG4

regulates the cell cycle control factors RRM2, EZH2, AURKA,

and TK1 through a let-7 miRNA-mediated ceRNA regulatory

network, which regulates gene expression, apoptosis, and tumor

cell proliferation and enzalutamide resistance. In addition, RREB1

activates SNHG4 transcription and is regulated by the SNHG 4/let-

7/RREB one feedback loop.

6 Involvement of lncRNAs in relevant
therapeutic targets for
prostate cancer

The ideal situation for tumor treatment is to kill tumor cells

precisely and effectively without damaging normal cells. Early-stage

limited prostate cancer can be cured by radical surgery or

radiotherapy, while advanced prostate cancer is mainly treated

with androgen deprivation therapy (ADT)-based combination

therapy, but also gradually develops drug resistance and a

neuroendocrine transformation. The current first-line treatment

regimen for NEPC is a platinum-based chemotherapy regimen, but

the results are poor. Targeted therapy based on small molecule

inhibitors has made some breakthroughs in clinical trials for NEPC.

NEPC highly expresses the oncogenic transcription factor MYCN

and the cell cycle kinase AURK, and the small molecule inhibitor

alisertib, which targets MYCN-AURKA, has achieved some efficacy

in phase II clinical trials (73). Han (16) identified significant

activation of the FOXA2-KIT signaling axis in t-NEPC,

identifying the KIT signaling pathway as a therapeutic target for

NEPC, but current clinical trials of KIT inhibitors in prostate cancer
TABLE 2 Involvement of lncRNAs in non-AR pathways to regulate enzalutamide resistance.

LncRNAs Pathway Enzalutamide Resistance Outcome Reference

TTTY15 Molecular sponge adsorption of miRNA-let-7 promote (64)

NONHSAT miR-21-5p/YOD1 signaling pathway promote (65)

PTTG3P Competitive binding to miR-146a-3p upregulates PTTG1 promote (66)

VIM-AS1 VIM-AS1/IGF2BP2/HMGCS1 Axis promote (69)

SNHG4 let-7a/RREB1 positive feedback and ceRNA network promote (70–72)
miRNA-let-7, A non coding microRNA called let-7; miR-21-5p, One of the members of the microRNA family; YOD1, Ubiquitin thioesterase OTU1; miR-146a-3p, One of the members of the
microRNA family; PTTG1, Pituitary tumor-transforming gene-1; VIM-AS1, Long non coding RNA vimentin antisense RNA1; IGF2BP2, growth factor 2 mRNA binding protein 2; HMGCS1, 3-
hydroxy-3-methylglutaryl-CoA synthase 1; RREB1, ras responsive element binding protein 1; ceRNA, competing endogenous RNAs.
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have not reached valid endpoints (phase III) (74). In addition,

DLL3/CD3 dual-antibody Tarlatamab/AMG757 is effective in

treating small-cell lung cancer (75, 76). Tarlatamab/AMG757

promotes immune response and immunotherapy by

bidirectionally targeting DLL3-expressing neuroendocrine cancer

cells and CD3-positive cytotoxic T cells (77). It has been shown that

NEPC cells highly express DLL3, and DLL3 can sensitize the

therapeutic effect of AMG757 in the t-NEPC model (78). This

study provides preclinical basic research for the clinical application

of AMG757 in NEPC, which is now in phase I clinical trials.

lncRNAs are transcription products similar to most mRNAs, and

they serve as targets for small interfering RNAs (siRNAs) and small

molecule inhibitors (79). This targeting of lncRNAs based on the

use of siRNAs is very successful in vitro, but in vivo, the major

challenge is targeting tumors with low efficiency and poor stability.

However, in vivo, we found lncRNA-HOTAIR, which can act

precisely on cancer cells using peptide nucleic acids (PNAs)

bound to pH-(Low) Insertion Peptides (pHLIP) and inhibited the

interaction of HOTAIR with EZH2. This also overcomes the

challenges faced by in vivo siRNA technology (80).

Ongoing clinical trials of LncRNA-targeted therapies in

prostate cancer are still minimal, which is a direction we need to

explore further in the future (Table 3). We found that SSTR 5-AS1

is one of the solid predictive markers of t-NEPC. SSTR 5-AS1 has

been extensively studied in neuroendocrine tumors of non-prostate

origin with significant clinical potential (81–84). SSTR is used in the

clinic for tumor imaging (85, 86), as a predictive marker for

the prognosis of relevant tumors (87), and as a target involved in

the course of therapy (82). A phase I clinical trial of SSTR 5 in

patients with metastatic NEPC is now available (88). Long

noncoding RNA small nucleolar RNA host gene 3 (SNHG3) is

expressed at high levels in prostate cancer tissues.SNHG3 mediates

prostate cancer metastasis and progression by regulating TRIM25

through the sponge miR-487a-3p.SNHG3 expression and miR-

487a-3p inhibitors can promote cell viability in prostate cancer

(89). Targeting SNHG3 may help to prevent prostate cancer

metastasis as well as the treatment of metastatic prostate cancer,

for which research experiments are currently underway. In

addition, relevant experiments have demonstrated that the

expression of LncRNA-PRRT3-AS1 was significantly increased in

prostate cancer cells, and the targeting relationship between

lncRNA-PRRT3-AS1 and PPARN was demonstrated. PPARn

expression was increased by targeting lncRNA-PRRT3-AS1,

which inhibited the activation of the mTOR signaling pathway

and thus inhibited the progression of prostate cancer cells.
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Therefore, targeting lncRNA-PRRT3-AS1 can also play an active

role in the treatment of prostate cancer (90). In conclusion,

lncRNAs have the potential to serve as non-invasive biomarkers

and the ability to target therapies against tNEPC/NEPC, and they

deserve to be tested in a clinical trial setting. In conclusion, lncRNAs

have the potential to serve as non-invasive biomarkers and the

ability to target therapies against tNEPC/NEPC, and they deserve to

be tested in a clinical trial setting.

Finally, nanotherapeutic systems may be the future direction of

development of anticancer drugs. Some researchers have utilized

nanomaterials as a carrier, loaded with si-lncRNA, to construct a

nanotherapeutic system (si-LNC@PB) targeting prostate cancer

cells. The nanotherapeutic delivery system has the advantages of

precise drug delivery, high stability, and improved controlled

release effect, which can effectively enhance the efficacy of

prostate cancer treatment (91–94). This is a specific direction that

needs further research.
7 Conclusion & future perspective

The molecular typing of NEPC is gradually demonstrated as the

molecular pathologic typing of prostate cancer has been

increasingly studied. Multiple transcription factors drive

neuroendocrine carcinoma, and molecular typing of small cell

carcinoma of the lung based on the transcription factors ASCL1,

NEUROD1, POU2F3, and YAP1 can provide a basis for precision

targeted therapy for lung cancer patients (95). NEPC has more

similarities with small cell carcinoma of the lung, but due to the

small number of clinical NEPC tissue samples, multicenter

cooperation is needed to conduct research related to molecular

typing, which is also a challenge. We also need to conduct further

research to establish molecular typing of NEPC, identify the drivers

and underlying factors of the disease, and formulate corresponding

therapeutic regimens, which can help to realize the precision

targeted therapy of NEPC. With the development of high-

throughput sequencing technologies (e.g., RNA-seq and

microarrays), it has been found that noncoding RNAs, especially

lncRNAs, play an essential role in the process of tumorigenesis and

progression, instead of being considered as genomic “enomic or

“rnomicr”. Combining morphological and multi-omics techniques

with artificial intelligence to predict the evolutionary outcomes

associated with prostate cancer and propose targeted intervention

strategies to delay or reverse the transformation of adenocarcinoma

to neuroendocrine carcinoma is a necessary intervention to prolong
TABLE 3 Ongoing clinical trials against different targets for prostate cancer.

Clinical Trial ID Target Point Phase Enrollment Completion Date Reference

NCT01799278 MYCN-AURKA II 60 2018.01 (73)

NCT00676650 FOXA2-KIT III 873 2013.02 (74)

NCT04702737 AMG757 I – 2024.03 (78)

NCT01468532 SSTR 5-AS1 I 18 2021.03 (88)

Y20180831 SNHG3 – 50 – (89)
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and enhance the quality of patient survival. Aberrant expression of

lncRNAs, an indispensable component of the human

transcriptome, is expected to be developed as a biomarker for

interfering with NEPC formation and enzalutamide resistance.

However, despite the large amount of experimental data

suggesting that lncRNAs are promising for treating enzalutamide

resistance, their clinical translation is still an urgent problem that

needs to be solved. Furthermore, multiple resistance mechanisms

can coexist due to the complexity of resistance, limiting the

precision of a single therapy. Although challenging, the challenges

facing enzalutamide resistance will eventually be overcome as

research in preclinical work deepens.
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